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Abstract: The paper contributes to stabilization problems of linear systems subject to time-varying
delays. Drawing upon small gain criteria and robust analysis techniques, upper and lower bounds on
the largest allowable time-varying delay are developed by using bilinear transformation and rational
approximates. The results achieved are not only computationally efficient but also conceptually
appealing. Furthermore, analytical expressions of the upper and lower bounds are derived for specific
situations that demonstrate the dependence of those bounds on the unstable poles and nonminumum
phase zeros of systems.
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1. Introduction

Stability of time-delay systems has been long and well-studied for recent decades; nevertheless,
the stabilization of time-delay systems proves a problem fundamentally more difficult, for which a
satisfactory answer is yet to be available. Classic stabilization techniques include the time-domain
approaches, involving with the solvability of algebraic riccati equations (AREs) or the feasibility of linear
matrix inequalities) (LMIs) [1,2], the Smith predictor [3], the finite spectrum assignment [4], and the
like. On the other hand, a robust stabilization problem draws more and more attention nowadays,
allowing us to consider various classes of perturbations, such as time-varying type, with the aid
of robust tools. There are two major approaches for robust stabilization. One is the time-domain
approach, concerning the quadratic Lyapunov functions [5–9]. The other is the frequency-domain
approach, employing the H∞ optimization tools (see [5,10–14], and the references therein). The existing
results, however, have been largely focused on the synthesis issues. On the other hand, the results
for fundamental robustness analysis are few. Moreover, the analysis on stabilizability is generally
investigated case by case, without generalized solution.

In this paper, we are concerned with linear systems with an input time-varying delay

ẋ =Ax + Bu(t− τ(t)),

y =Cx.
(1)

Let the time-varying delay be specified as

0 ≤ τ(t) ≤ h, (2)

and

0 ≤ |τ̇(t)| ≤ δ < 1. (3)
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The purpose of this paper is to find a general method to determine the largest delay range
such that there exists an LTI feedback controller K(s) that can stabilize the system (1) through the
output feedback

u(s) = K(s)y(s),

for all time-varying delays that satisfy Label (2). The feedback configuration is shown in Figure 1,
where ∆ represents the linear operator

∆u(t) = u(t− τ(t)).
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Figure 1. Feedback system with time-varying input delay.

The problem on stabilization delay margin has been under investigation for some time. In [2]
(p. 154), the delay margin was examined for the first-order system with a constant delay stabilized by
static feedback, while in [15], the stabilization was achieved by using PID controllers for first-order
systems. Furthermore, for single-input single-output (SISO) systems with constant delays, the upper
bound was determined in [16,17] for general LTI systems with an arbitrary number of unstable poles.
These bounds consequently provide a limit beyond which no single LTI output feedback controller
may exist to robustly stabilize a delay plant family within the delay margin. On the other hand,
lower bounds on the delay margin were developed by the authors in [18], which provide instead, an
interval of the delay range ensuring that the delayed plant can be robustly stabilized for SISO systems
with constant delays and the possibility that the lower bounds can be extended to LTI systems with
time-varying delays.

In this paper, we seek to explore both the upper and lower bounds on the delay margin for
LTI systems with time-varying delays and investigate the H∞ optimal controller synthesis problem
in this paper. This development is nontrivial. It appears that, in all cases, our results not only are
computationally attractive, but shed significant conceptual insights; furthermore, our developments
generate analytical expressions for specific plants, such as systems with one unstable pole or one
nonminimum phase zero, revealing how fundamentally unstable poles and nonminimum phase zeros
may limit the range of delays over which a plant may or may not be stabilized. In addition, the
H∞ optimal feedback controller can be obtained by solving the H∞ control problem. The results can
be applied directly to SISO systems subject to time-varying delays and extended to multiple-input
multiple-output (MIMO) systems with time-varying delays.

We end this section with a brief description on the notation. Let R be the space of real numbers,
Rn the space of n-dimensional real vectors, and Rn

+ the n-dimensional space of positive real numbers.
Let C− := {s : Re(s) < 0}, C+ := {s : Re(s) > 0}, and C̄+ := {s : Re(s) ≥ 0} be the open left and
the open right-half of the complex plane, and the closed right-half of the complex plane, respectively.
z̄ denotes the conjugate of a complex number z, and xH denotes the conjugate transpose of a complex
vector x, while AH denotes the conjugate transpose of a complex matrix A. We denote the largest real
eigenvalue of a matrix A by σmax(A), and for a Hermitian matrix A, its largest eigenvalue is denoted
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by λ̄(A). A ≥ 0 or A > 0 means that A is nonnegative definite or positive definite. For any stable
transfer function matrix G(s), define its H∞ norm by

‖G(s)‖∞ = sup
ω

σ̄(G(jω)),

where σ̄(·) denotes the largest singular value. For an n-tuple of scalars, vectors and matrices
{ f1, . . . , fn} with compatible dimensions, we denote D f =diag ( f1, . . ., fn).

2. Problem Formulation

Before dealing with the robust stabilization analysis for LTI systems with time-varying delays,
we focus on the stabilization delay margin problem under the constant delay situation firstly.
Consider the feedback system depicted in Figure 2, where Pτ(s) denotes a family of plants with
an unknown constant delay τ, and P0(s) denotes the delay-free plant

Pτ(s) = e−τsP0(s), τ ≥ 0. (4)

Suppose that P0(s) can be robustly stabilized by some finite-dimensional LTI controller K(s).
Hence, the same controller K(s) can thus stabilize Pτ(s) for sufficiently small τ > 0 by continuity.
The delay margin problem concerns the fundamental limit on robust stabilization of systems with time
delays, i.e., what is the largest delay such that there exists a certain LTI controller that can stabilize
all the plants within that range? In other words, the delay margin problem seeks to determine the
largest delay range within which Pτ(s) can be stabilized by a finite-dimensional LTI controller K(s),
or equivalently, the endpoint of delay range where the delay plan cannot be robustly stabilized by a
single, fixed controller. Therefore, the problem amounts to computing

τ∗ = sup{r : K(s) stabilizes Pτ(s), ∀τ ∈ [0, r)}, (5)

or, alternatively,

τ∗ = inf {r : There exists no K(s) to stabilize Pτ(s), ∀τ ∈ [0, r)} . (6)

- i - Pτ(s) -
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−

Figure 2. Feedback control structure.

For K(s) to stabilize the delayed plant (4), it is both necessary and sufficient that

1 + Pτ(s)K(s) 6= 0, ∀s ∈ C̄+.

Since P0(s) can be stabilized by K(s), the above condition is equivalent to

1 + T0(s)
(
e−τs − 1

)
6= 0, ∀s ∈ C̄+,
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where T0(s) = P0(s)K(s)(1 + P0(s)K(s))−1 is the system’s complementary sensitivity function.
Thus, the delay margin problem is equivalent to find

τ∗ = sup
{
ν : inf

K(s)
inf

s∈C̄+

∣∣1 + T0(s)
(
e−τs − 1

)∣∣ > 0, ∀τ ∈ [0, ν)

}
.

Since the exact delay margin is difficult to achieve, an alternative way is to estimate the upper
bound τ̄ and lower bound τ of the delay margin. Evidently, τ ≤ τ? ≤ τ̄. Based on a small gain
theorem, there exists some stabilizing K(s) for all τ ∈ [0, τ] if

sup
τ∈[0, τ]

inf
K(s)

∥∥T0(s)(e−τs − 1)
∥∥

∞ < 1. (7)

Hence, a sufficient condition is obtained that provides a computing method on the lower bound
of the delay margin. Similarly, there exists no controller K(s) to stabilize Pτ(s) if for any K(s) such that

1 + T0(jω)
(

e−jωτ − 1
)
= 0, for some ω.

In other words, the upper bound of the delay margin can be calculated according to the following
condition. The plant Pτ(s) can not be stabilized by any controller if τ > τ̄ with

τ̄ = inf
{

τ > 0 : inf
K(s)

inf
ω

∣∣∣1 + T0(jω)
(

e−jωτ − 1
)∣∣∣ = 0

}
, (8)

= sup
{

τ > 0 : inf
K(s)

inf
ω

∣∣∣1 + T0(jω)
(

e−jωτ − 1
)∣∣∣ > 0

}
. (9)

3. Main Results

3.1. Upper Bounds on the Delay Margin

Consider the time-varying delay system (1). It is easy to see that the upper bound for the constant
delay case is also an upper bound on h, i.e., h ≤ τ̄. Consequently, the main point is to compute τ̄

by conditions (8) and (9). However, it is still difficult compute τ̄ since the all-pass function e−τs is
irrational. Thus, it is useful to use another all-pass and rational function to estimate e−τs. In this paper,
we use bilinear transformation to estimate the upper bound.

Define an all-pass function WT(s) =
1− Ts
1 + Ts

. Note that
∣∣e−τs∣∣ = ∣∣∣∣1− Ts

1 + Ts

∣∣∣∣. Then, for any (ω, τ), let

ωτ = 2 tan−1 ωT. (10)

Since tan−1(θ) < θ, we have

τ =
2 tan−1 ωT

ω
≤ 2ωT

ω
≤ 2T.

Define f (s, T) = 1 + T0(s) (WT(s)− 1) . Then, the following conditions are satisfied

f (s, 0) = 1, (11)

f
(

p,
1
p

)
= 0, (12)
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where p is the unstable pole of the delay-free plant P0(s). Note that condition (12) holds due to the
interpolation T0(p) = 1. By continuity, we have

f (p, T) < 0, ∀T >
1
p

. (13)

Referring to condtion (9), it can be concluded that the nominal plant is stabilizable for all T ≤ 1/p.
Hence, we are led to the following lemma.

Lemma 1. Suppose that P0(s) has only one unstable pole p ∈ C+, and no nonminimum phase zero. Then,
there exists no controller K(s) that can stabilize the system (4) for all τ > τ̄ with

τ̄ =
2
p

. (14)

Moreover, if P0(s) has multiple unstable poles pi ∈ C+, i = 1, ..., n, and no mominimum phase
zero. Then,

τ̄ = min
i

2
pi

. (15)

Additionaly, suppose also that P0(s) has one unstable pole p ∈ C+, and one nominimum phase zero
z ∈ C+. If p < z, then there exists no controller K(s) that can stabilize the system (4) for all τ > τ̄ with

τ̄ = min
{

2
p

,
2
p
− 2

z

}
. (16)

Proof. By bilinear transformation, WT(s) is equal to e−τs as long as τ ≤ 2T. Let s = p, condition (13)
turns to be ∣∣∣∣1 + T0(s)

(
1− Ts
1 + Ts

− 1
)∣∣∣∣ > 0, ∀T >

1
p

.

Upon Label (9), the upper bound can be obtained as Label (14) P0(s) only has one unstable pole.
The upper bound (15) can be derived in the similar manner. On the other hand, under the circumstance
that P0(s) has one unstable pole and one nominimum phase zero, the bilinear transformation function
is chosen to be

ŴT(s) =
1− Ts
1 + Ts

z + s
z− s

,

by noting that |WT(s)| = |e−τs| . For any (ω, τ), let

τω =
∣∣∣−2 tan−1 (ωT) + 2 tan−1

(ω

z

)∣∣∣ , (17)

which gives rise to

τ ≤ 2
∣∣∣∣T − 1

z

∣∣∣∣ .

Define f̂ (s, T) = 1 + T0(s)
(
ŴT(s)− 1

)
. Analogously, the upper bound (16) can be

easily obtained.

In what follows, we shall extend our results on upper bounds of delay margin to LTI systems
with time-varying delays. The following theorem is an easy consequence of Lemma 1. Evidently, if no
controller may exist to robustly stabilize a plant with a constant delay beyond the range of delay
margin, then no controller may achieve the same for plants subject to time-varying delays.
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Theorem 1. Let p ∈ C+ be a real unstable pole of P0(s). Then, there exists no controller K(s) that can stabilize
the system (1) subject to (2) if

h >
2
p

. (18)

Moreover, if P0(s) has multiple unstable poles pi ∈ C+, i = 1, ..., n, and no mominimum phase zero.
Then, there exists no controller K(s) that can stabilize system (1) subject to Label (2) if

h > min
i

2
pi

. (19)

Additionally, let p ∈ C+ be a real unstable pole of P0(s), and z ∈ C+ a real nonminimum phase zero
P0(s). If p < z, then there exists no controller K(s) that can stabilize the system (1) subject to Label (2) if

h > min
{

2
p

,
2
p
− 2

z

}
. (20)

Note that the upper bound of the delay margin only involves with the delay bound h,
which implies the time-varying delay may vary arbitrarily fast, as long as it is bounded by some
certain value.

3.2. Lower Bounds on the Delay Margin

In the following part, we work to find an LTI controller K(s) such that the delay system (1) is
stabilized by way of the output feedback u(s) = K(s)y(s) within a region defined by (h, δ).

By model transformation, it is possible to employ the approximations of the time-varying operator

∆̃ (x(t)) = ∆ (x(t))− x(t),

i.e.,
∆̃ = ∆− I,

where I is the identity operator. Then, the original system (1) can be regarded as Figure 3. In view of
the small gain theorem [19], system (1) subject to Labels (2) and (3) is stable if

inf
K(s)

∥∥∆̂T0(s)
∥∥

2,2 < 1, (21)

with T0(s) and ∆̂ being the certain and uncertain part, respectively.
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Figure 3. Small gain setup of the feedback control system (1).

It is worth noting that the original system (1) with the controller K(s) in Figure 1 is stable whenever
the system depicted in Figure 3 is stable [1]. Let P0(s) = C(sI − A)−1B be the transfer function of the
delay-free plant. It is then useful to estimate the induced norm of the uncertainty ∆̃. One such estimate
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can be obtained by employing the Littlewood’s Second Principle. An approximation in this spirit was
developed in [20].

Lemma 2. Let τ(t) be specified by Labels (2) and (3). Then, for any ω > 0,∥∥∥∆̃ (φ(ω) + ε)−1
∥∥∥

2,2
≤ 1, (22)

where

φ(ω) =


√

8
2− δ

sin (ωh/2) |ω| ≤ π/h,√
8

2− δ
otherwise.

(23)

Proof. Let [ωi, ωi+1], i = 1, ..., n− 1, be an arbitrary small subset of the interval [ωm, ωM]. Assume that
a real-valued function u(t) with supp (|û(jω)|) = [ωm, ωM] can be approximated well by some
function u(t) with u(t) = ∑

i
ui(t). Thus, the Fourier transform of of ui(t) should satisfy

ûi(jω) =


1√
2
|û (jγi)| ω ∈ [ωi, ωi+1] ∪ [−ωi+1,−ωi] ,

0 otherwise,
(24)

with γi ∈ [ωi, ωi+1] . It is evident that∥∥∆̃u(t)
∥∥

2 ≤
∥∥∆̃ (u(t)− u(t))

∥∥
2 +

∥∥∆̃u(t)
∥∥

2

≤ O (‖u(t)− u(t)‖2) + ∑
i

∥∥∆̃ui(t)
∥∥

2 , (25)

which can be further extended to be

∥∥∆̃u (t)
∥∥

2 ≤ O (‖u(t)− u(t)‖2) +

(
sup

ω∈[ωm ,ωM ]

ϕ(ω)

)
∑

i
‖ui(t)‖2 , (26)

by constructing a positive function ϕ(ω) such that

∥∥∆̃ui (t)
∥∥

2 ≤
(

sup
ω∈[ωi ,ωi+1]

ϕ(ω)

)
‖ui(t)‖2 . (27)

We note that

∑
i
‖ui(t)‖2 =

∥∥∥∥∥∑i
ui(t)

∥∥∥∥∥
2

= ‖u(t)‖2 +O (‖u(t)− u(t)‖2) .

As such, Inequality (26) is equivalent to

∥∥∆̃u (t)
∥∥

2 ≤ O (‖u(t)− u(t)‖2) +

(
sup

ω∈[ωm ,ωM ]

ϕ(ω)

)
‖u(t)‖2 , (28)

where O (‖u(t)− u(t)‖2) can be arbitrarily small.
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Next, we concern the estimation of ϕ(ω). Recalling Label (24), we can express ui(t) by the
following sink function

ui(t) = |û (jγi)| ×
√

ωi+1 −ωi ×
sin (ωi+1t)− sin (ωit)√

π (ωi+1 −ωi)t
, (29)

satisfying
‖ui(t)‖2 = |û (jγi)|

√
ωi+1 −ωi.

Define g(t) = sin (ωi+1t)−sin (ωit)√
π(ωi+1−ωi)t

. Then, its Fourier transform satisfies

Ĝ(jω) =


1√

2 (ωi+1 −ωi)
ω ∈ [ωi, ωi+1] ∪ [−ωi+1,−ωi] ,

0 otherwise.

Thus, ϕ(ω) can be estimated by sup
i

∥∥∆̃g(t)
∥∥

2 with sufficient small [ωi, ωi+1]. Let a = (ωi+1 + ωi) /2

and b = (ωi+1 −ωi) /2. We can rewirte g(t) as

g(t) =
√

2 cos (at) sin (bt)√
πbt

, (30)

with

‖g(t)‖2 =

∥∥∥∥∥
√

2
πb

cos (at) sin (bt)
t

∥∥∥∥∥
2

= 1. (31)

Consequently,

∆̃g(t) = g (t− τ(t))− g(t)

=

√
2

πb

(
cos (a (t− τ(t))) sin (b (t− τ(t)))

t− τ(t)
− cos (at) sin (bt)

t

)
. (32)

Define

g1(t) = (cos (a (t− τ(t)))− cos (at))× sin (b (t− τ(t)/2))
t− τ(t)/2

, (33)

g2(t) = cos (a (t− τ(t)))×
(

sin (b (t− τ(t)))
t− τ(t)

− sin (b (t− τ(t)/2))
t− τ(t)/2

)
, (34)

g3(t) = cos (at)×
(

sin (b (t− τ(t)/2))
t− τ(t)/2

− sin (bt)
t

)
. (35)

Thus, we can rewrite Equation (32) to be

∆̃g(t) =

√
2

πb
× (g1(t) + g2(t) + g3(t)) .

We then estimate the L2 norm of g1(t), g2(t) and g3(t) one by one. Since that g1(t) can be
expressed as

g1(t) = 2 sin
(

aτ(t)
2

)
× sin

(
at− aτ(t)

2

)
× sin (b (t− τ(t)/2))

t− τ(t)/2
,
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the L2 norm bound of g1(t) can be obtained as follows

‖g1(t)‖2 ≤ sup
t

2
∣∣∣∣sin

(
aτ(t)

2

)∣∣∣∣× ∥∥∥∥sin
(

at− aτ(t)
2

)
× sin (b (t− τ(t)/2))

t− τ(t)/2

∥∥∥∥
2

≤ sup
t

2
∣∣∣∣sin

(
aτ(t)

2

)∣∣∣∣×(1− δ

2

)−1/2
×
∥∥∥∥ sin (at) sin (bt)

t

∥∥∥∥
2

≤
√

4πb
2− δ

× sup
t

∣∣∣∣sin
(

aτ(t)
2

)∣∣∣∣ , (36)

where the last inequality is derived in light of (31).
Concerning [ωi, ωi+1] is arbitrarily small (i.e., b is arbitrary small) and lim

x→0

sin (x)
x = 1, we are

led to

‖g2(t)‖2 ≤ 2b→ 0, (37)

and

‖g3(t)‖2 ≤ 2b→ 0. (38)

As a result, ∥∥∆̃g(t)
∥∥

2 ≤
√

2
πb
× ‖g1(t)‖2 .

In other words,
∥∥∆̃g(t)

∥∥
2 is bounded by

∥∥∆̃g(t)
∥∥

2 ≤
√

8
2− δ

× sup
t

∣∣∣∣sin
(

ωiτ(t)
2

)∣∣∣∣ .

The expression of ϕ(ω) in Label (23) and Inequality (22) thus follow directly.

Upon above, condition (21) is equivalent to

sup
ω
|T0(jω) (φ(ω) + ε)| < 1, (39)

for sufficiently small ε. Construct a parameter-dependent rational approximation

wh(s) =
bh(s)
ah(s)

=
bq(hs)q + · · ·+ b1(hs) + b0

aq(hs)q + · · ·+ a1(hs) + a0
, (40)

such that

|φ(ω) + ε| ≤ |wh(jω) + ε| , ∀ω. (41)

Since ε can be selected to be arbitrarily small, condition (39) is satisfied whenever

inf
K(s)
‖T0(s)ωh(s)‖∞ < 1. (42)

We require that wh(s) be stable and has no nonminimum phase zero, excluding the origin where
wh(s) might have a zero, that is, wh(0) = 0. This latter condition may be imposed to ensure a close-fit of
|wh(jω)| to |φ(ω)| at low frequencies. Without losing any generality, we let ai > 0 for i = 0, 1, . . . , q,
and bi > 0 for i = 1, . . . , q. The following are some specific approximants obtained in, e.g., [21–23]:
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w1h(s) =
√

2
2− δ

hs, (43)

w2h(s) =
√

2
2− δ

hs
1 + hs/3.465

, (44)

w3h(s) =
√

2
2− δ

1.216hs
1 + hs/2

, (45)

w4h(s) =
√

2
2− δ

hs(2× 0.21522hs + 1)
(0.2152hs + 1)2 , (46)

w5h(s) =
√

2
2− δ

hs
1 + hs/2

0.1791(hs)2 + 0.7093hs + 1
0.1791(hs)2 + 0.5798hs + 1

, (47)

and

w6h(s) =
√

2
2− δ

hs
1 + hs/2

0.02952(hs)4 + 0.210172(hs)3 + 0.70763(hs)2 + 1.3188hs + 1
0.02952(hs)4 + 0.191784(hs)3 + 0.64174(hs)2 + 1.195282hs + 1

. (48)

The frequency responses of these candidates are shown in Figure 4, from which we can conclude
that wih(s) approximates better one after one with the higher function order. By solving the H∞

optimization problem in Label (42), a lower bound h on the delay margin can be derived that will
guarantee the existence of a stabilizing controller K(s) for system (1) with all subject to Labels (2)
and (3).

10-1 100 101 102

ω
10-1

100

101

102

A
m

pl
itu

de

100.6 100.7 100.8

100.3

100.31

?(!)

w1h

w2h

w3h

w4h

w5h

w6h

Figure 4. Rational approximation for φ(ω).

Since h corresponds to an optimal H∞ optimization problem, this robustly stabilizing controller
can be synthesized accordingly. Indeed, to synthesize this robustly stabilizing controller K(s), it suffices
to solve the standard H∞ control problem in Label (42), which gives rise an optimal controller
K(s) depending on h. In this vein, it is worth pointing out that a lower order ωh(s), such as
those given in Label (43)–(48), can be particularly desirable, since they potentially result in low-order
controllers. We shall demonstrate this point explicitly in the numerical example.

The following lemma, adopted from [24,25], is concerned with the Nevanlinna–Pick tangential
interpolation problem, providing an essential tool converting the H∞ computation into the
analytical interpolation.
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Lemma 3. Let zi ∈ C+, i = 1, . . . , l and pj ∈ C+, j = 1, . . . , k denote distinct points with zi 6= pj for any i
and j. Consider a rational matrix function G(s), satisfying

mH
i G(zi) =nH

i , i = 1, . . . , l,

G(pj)uj =vj, j = 1, . . . , k,

for some vectors mi, ni, i = 1, . . . , l and uj, vj, j = 1, . . . , k with compatible dimensions. Then, G(s) is stable
and ‖G(s)‖∞ ≤ 1 if and only if

Q =

[
Q1 QH

12
Q12 Q2

]
≥ 0,

with

Q1 =

[
mH

i mj − nH
i nj

zi + z̄j

]
, Q2 =

[
uH

i uj − vH
i vj

p̄i + pj

]
, Q12 =

[
nH

i uj −mH
i vj

zi − pj

]
.

Theorem 2. Let pi ∈ C+, i = 1, . . . , l and zi ∈ C+, i = 1, . . . , k be the unstable poles and nonminimum
phase zeros of P0(s), respectively, with zi 6= pj for any i and j. Suppose that P0(s) has neither zero nor pole on
the imaginary axis, and can be stabilized by some K(s). Then, system (1) subject to Labels (2) and 3) can be
stabilized by some K(s) with (h, δ) is the solution of

λ̄
1
2

(
Q−

1
2

p DH
w ZDwQ−

1
2

p

)
= 1, (49)

with Z = Qp + QH
zpQ−1

z Qzp, Qz =

[
1

zi + z̄j

]
. Qp =

[
1

p̄i + pj

]
, Qzp =

[
1

zi − pj

]
, and

Dw = diag (wh(p1), . . . , wh(pl)) .

Proof. The proof follows directly from Lemma 3, together with Label (42).

To put it simply, analytical bounds can be obtained for some specific cases.

Corollary 1. Consider the delay free plant P0(s) with one unstable pole p ∈ C+ and one nonminimum phase
zero z ∈ C+. Let P0(s) be stabilized by some K(s). Then, for wh(s) satisfying Label (41), system (1) subject to
Labels (2) and (3) can be stabilized by some K(s) with (h, δ) is the solution of

wh(p) =
∣∣∣∣ z− p
z + p

∣∣∣∣ .

In particular, if wh(s) = wih(s) given in Labels (43)–(46), i = 1, ..., 4, for δ ∈ [0, 1), we have:

(1) h(1) =
∣∣∣∣ z− p
z + p

∣∣∣∣ √1− δ/2
p

,

(2) h(2) =
∣∣∣∣ z− p
z + p

∣∣∣∣ √
1− δ/2(

1−
√

1− δ/2/3.465
)

p
,

(3) h(3) =
∣∣∣∣ z− p
z + p

∣∣∣∣ √
1− δ/2(

1.216−
√

1− δ/2/2
)

p
,

(4) h(4) =
∣∣∣∣ z− p
z + p

∣∣∣∣ −0.0173
(
−625 + 269

√
1− δ/2 +

√
390625− 191528

√
1− δ/2

)
(√

1− δ/2− 2
)

p
.

Moreover, consider the delay free plant P0(s) with one unstable pole p ∈ C+, and distinct nonminimum phase
zeros zi ∈ C+, i = 1, ..., k. Let P0(s) be stabilized by some K(s). Then, for wh(s) satisfying (41), system (1)
subject to Labels (2) and (3) can be stabilized by some K(s) with (h, δ) is the solution of
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wh(p) =
k

∏
i=1

∣∣∣∣ zi − p
z̄i + p

∣∣∣∣ .

In particular, if wh(s) = wih(s) given in Labels (43)–(46), i = 1, ..., 4, for δ ∈ [0, 1), we have:

(1) h(1) =
k

∏
i=1

∣∣∣∣ zi − p
z̄i + p

∣∣∣∣ √1− δ/2
p

,

(2) h(2) =
k

∏
i=1

∣∣∣∣ zi − p
z̄i + p

∣∣∣∣ √
1− δ/2(

1−
√

1− δ/2/3.465
)

p
,

(3) h(3) =
k

∏
i=1

∣∣∣∣ zi − p
z̄i + p

∣∣∣∣ √
1− δ/2(

1.216−
√

1− δ/2/2
)

p
,

(4) h(4) =
k

∏
i=1

∣∣∣∣ zi − p
z̄i + p

∣∣∣∣ −0.0173
(
−625 + 269

√
1− δ/2 +

√
390625− 191528

√
1− δ/2

)
(√

1− δ/2− 2
)

p
.

Note that, for δ = 0, h recovers essentially the delay margin obtained for LTI systems with a
constant unknown delay [18].

4. Illustrative Example

Example 1. Consider the following system with a time-varying delay

ẋ(t) =

[
0.39 −0.038

1 0

]
x(t) +

[
1
0

]
u(t− τ(t)),

y(t) =
[

0 1
]

x(t).

(50)

The transfer function of the delay-free plant is

P0(s) =
1

(s− 0.2)(s− 0.19)
,

with two unstable poles, p1 = 0.2, and p2 = 0.19. Suppose that the input u(t) is a square wave signal, given by
u(t) = sgn (sin (t)), and the time-varying delay is

τ(t) = α (1− sin (βt)) . (51)

Then, the maximal delay range and variation rate are h = 2α, and δ = αβ. The upper bound of the delay
margin can be computed to be h̄ = 2.5 by Theorem 1, which means that there exists no controller K(s) that
can stabilize system (50) with time-varying delay (51) if α > 2.5. On the other hand, the lower bound can be
calculated according to Theorem 2. Figure 5 shows that our stabilizable region in terms of of (β, α) improves
that in [23].

Let us then consider a specific delay function with β = 0.1, α = 1.4; that is,

τ(t) = 1.4(1− sin (0.1t)).

Since (0.1, 1.4) lies in the stabilizability region, system (50) can be stabilized by some controller
K(s); indeed, the optimal H∞ controller can be found by solving the H∞ control problem in Label (42)
with rational approximant in Label (48), as

K(s) =
1.492× 107(s + 0.714)

(
s2 + 0.865s + 0.906

)
(s + 69.15)(s + 0.978) (s2 + 1.041s + 0.995)

(s− 0.0695)
(
s2 + 0.865s + 0.906

)
(s + 0.667) (s2 + 937.2s + 2.393× 105)

. (52)
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Figure 5. Stabilizability region of system (50).

Figure 6 exhibits a stable state response, where the system is excited by the unit step input u(t).

0 10 20 30 40 50 60

Time(sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pi
ltu

de

x
1
(t)

x
2
(t)

Figure 6. System states of system (50) with controller K.

5. Conclusions

In this paper, we develop readily computational upper and lower bounds on the robust
stabilization margin for LTI systems with time-varying delays. By employing a bilinear transformation,
the upper bounds for systems with constant delays are extended to systems with time-varying
delays, while the lower bounds are investigated by means of analytical interpolations and
rational approximations. Moreover, our results yield analytical expressions for more specific
plants, such as systems with unstable poles and nonminimum phase zeros, demonstrating the
significant dependencies of the upper and lower stabilization bounds on those poles and zeros.
Furthermore, the H∞ optimal stabilizing controller can be obtained directly from our stabilization
conditions. These results are efficiently computable, less conservative and conceptually appealing,
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which can be applied directly to SISO systems, while the delay region can be estimated by solving an
LMI problem for MIMO systems with time-varying delays.
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