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Abstract: We study lattices with a non-compact fundamental domain of small volume in hyperbolic
space Hn. First, we identify the arithmetic lattices in Isom+Hn of minimal covolume for even n
up to 18. Then, we discuss the related problem in higher odd dimensions and provide solutions
for n = 11 and n = 13 in terms of the rotation subgroup of certain Coxeter pyramid groups found
by Tumarkin. The results depend on the work of Belolipetsky and Emery, as well as on the Euler
characteristic computation for hyperbolic Coxeter polyhedra with few facets by means of the program
CoxIter developed by Guglielmetti. This work complements the survey about hyperbolic orbifolds of
minimal volume.
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1. Introduction

Let n ≥ 2 and consider a hyperbolic lattice, that is, a discrete group Γ ⊂ IsomHn whose orbit
space or orbifold Q = Hn/Γ is of finite volume. By a celebrated result of Kazhdan and Margulis, the set
of all volumes voln(Q) has a positive minimal element µn. In the work [1], we provided a survey about
the values µn and the volume minimising n-orbifolds for dimensions n satisfying 2 ≤ n ≤ 9 by taking
into account (non-)compactness, orientability, arithmeticity, and dimension parity.

In this work, we consider only the volumes of non-compact or cusped hyperbolic n-orbifolds and
study the corresponding volume spectrum

Vn := { voln(Q) | Q = Hn/Γ non-compact}

with minimal element νn. The set Vn contains the proper subset V a
n of volumes of orientable quotient

spaces of Hn by arithmetic lattices in Isom+Hn with corresponding minimal element νa
n. By deep

results of Belolipetsky and Emery (see [2–5]), the values νa
n are explicitly known for n ≥ 4. Our aim is

to describe the hyperbolic lattices whose covolumes equal νa
n for n ≥ 10.

In this context, hyperbolic lattices generated by finitely many reflections in hyperplanes of Hn,
called hyperbolic Coxeter groups, are of particular interest (see Section 2.3). In fact, for n ≤ 9, the smallest
covolume hyperbolic Coxeter n-simplex groups (generated by n + 1 reflections) are all arithmetic and
yield the unique non-compact volume minimisers (up to a factor of two, in the exceptional case n = 7;
for references, see [1], Section 3). In this way, the values νn and νa

n could be entirely specified. However,
in IsomHn, cofinite Coxeter simplex groups do not exist for n ≥ 10 and, apart from Borcherds’ example
[6] for n = 21, nothing is known about the existence of cofinite hyperbolic Coxeter groups for n ≥ 20.

In the sequel of our commensurability classification of Coxeter pyramid groups with n + 2
generators existing up to dimension 17 (see [7]), Guglielmetti [8] developed the software program
CoxIter testing various properties such as arithmeticity and providing invariants such as the Euler
characteristic of a hyperbolic Coxeter group. In Section 2.6, we give several instructive examples.
By a result of Emery [9], the covolume of the single Coxeter pyramid group Γ∗ ⊂ IsomH17 with
Coxeter graph given by Figure 1 yields the minimal value among all νa

n for n ≥ 2 (see also Section
3.1.2).
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Figure 1. The Coxeter pyramid P∗ ⊂ H17.

Based on these facts, we are able to identify the orientable cusped arithmetic hyperbolic n-orbifolds
as orbit spaces by the action of certain hyperbolic Coxeter groups for the even dimensions n with
10 ≤ n ≤ 18 and for the odd dimensions n = 11 and n = 13 (the proof for n = 13 is based on a
combinatorial argument due to S. Tschantz [10]). The results are presented in Proposition 1, Proposition
2 and Proposition 3 of Section 3.1. The work ends with a couple of remarks about the mysterious case
of dimension n = 15 and the non-arithmetic case.

2. Hyperbolic Lattices with Parabolic Elements

2.1. Hyperbolic n-Space

Denote by Xn one of the standard geometric spaces given by either the Euclidean space En, the
standard sphere Sn, or hyperbolic space Hn. View each space Xn in the context of a linear space
equipped with a suitable bilinear form 〈·, ·〉. In particular, Hn is interpreted as a connected component
Hn of the two-sheeted hyperboloid in Rn+1 according to:

Hn = { x = (x1, . . . , xn+1) ∈ Rn+1 | 〈x, x〉n,1 = x2
1 + . . . + x2

n − x2
n+1 = −1 , xn+1 > 0 } .

In this picture, the isometry group IsomHn is isomorphic to the group PO(n, 1) of positive
Lorentzian matrices leaving invariant the product 〈·, ·〉n,1 andHn (cf. [11] Chapter 3). By passing to
the upper half space model Un of Hn in En

+, the line element and the volume element are given by:

ds2 =
dx2

1 + . . . + dx2
n

x2
n

, dvoln =
dx1 · . . . · dxn

xn
n

.

Furthermore, a horizontal hyperplane S∞(a) = { x ∈ Un | xn = a }, where a > 0, carries a
Euclidean metric up to a distortion factor 1/a2. Such a subset is called a horosphere based at ∞ and
bounds the horoball B∞(a) = { x ∈ Un | xn > a } above it.

2.2. Cusped Hyperbolic Orbifolds of Finite Volume

Consider a discrete subgroup Γ ⊂ IsomHn with fundamental domain D ⊂ Hn, and suppose
that Γ is of finite covolume or cofinite for short. This means that the volume of the orbifold Q = Hn/Γ,
as given by the volume of D, is finite, and we call Γ a hyperbolic lattice, for short. In the sequel we
are particularly interested in lattices Γ giving rise to non-compact or cusped orbifolds Hn/Γ. Such a
group Γ contains at least one non-trivial subgroup Γq of parabolic type whose elements stabilise a point
q ∈ ∂Hn, say (see [12], Section 3.1). Associated to the fixed point q at infinity is a cusp neighborhood
Cq ⊂ V which is an embedded subset given by the quotient Bq/Γq of a Γq-precisely invariant horoball
Bq in Hn. The action of Γq on the boundary horosphere ∂Bq is by Euclidean isometries and with a
compact fundamental domain so that Γq can be interpreted as a crystallographic subgroup of IsomEn−1.
By Bieberbach’s theory, any crystallographic group in IsomEn−1 contains a finite index translational
lattice of rank n− 1. For n ≤ 9, it is known (see [13,14] and also Section 3) that small volume cusped
hyperbolic n-orbifolds are intimately related to dense lattice packings in En−1.

2.3. Hyperbolic Coxeter Polyhedra and Discrete Reflection Groups with Few Generators

Consider a geometric polyhedron P ⊂ Xn, that is, P is an n-dimensional convex polyhedron of
finite volume in Xn, bounded by N ≥ n + 1 hyperplanes Hi ⊂ Xn with unit normal vector ei directed
away from, say, P. Denote by G(P) = ( 〈ei, ej 〉)1≤i,j≤N , the Gram matrix of P. In [15,16], Vinberg



Mathematics 2017, 5, 43 3 of 16

developed a very satisfactory theory to conclude the existence and describe arithmetic, combinatorial,
and metrical properties of P in terms of G(P). There are explicit criteria by means of certain submatrices
of G(P) allowing one to decide whether P is compact or of finite volume. In this work, we are dealing
mainly with non-compact hyperbolic polyhedra of finite volume, being the convex hull of finitely
many ordinary points in Hn and at least one point in the boundary ∂Hn at infinity of Hn. In fact,
the fundamental group of a finite volume cusped hyperbolic n-orbifold admits a fundamental domain
whose closure is a hyperbolic polyhedron and any of its parabolic subgroups stabilises a vertex at
infinity of the fundamental polyhedron.

A geometric polyhedron P ⊂ Xn is a Coxeter polyhedron if all of its dihedral angles α = αF
formed by pairs H, H′ of intersecting hyperplanes in the boundary of P, and with associated ridge
F = H ∩ H′ ∩ P, are of the form π/m for an integer m ≥ 2. Coxeter polyhedra arise in a natural way as
building blocks in the context of regular polyhedra and as closures of fundamental regions of discrete
reflection groups. Denote by Γ = Γ(P) the group generated by the N reflections s = sH with respect
to the hyperplanes H bounding the Coxeter polyhedron P; the group Γ is called the geometric Coxeter
group associated to P. The group Γ is a discrete subgroup in IsomXn which admits a particularly
simple presentation with relations satisfying s2 = 1 and

(ss′)m = 1 for an integer m = m(s, s′) ≥ 2 , (1)

for distinct generators s = sH and s′ = sH′ , with hyperplanes H and H′ intersecting in Xn along a
ridge H ∩ H′ ∩ P where P has dihedral angle π/m.

Most conveniently, geometric Coxeter polyhedra of simple combinatorics (and Coxeter groups
with few generators) are described by their Coxeter graph Σ. Each node ν in Σ corresponds to a
hyperplane H (and the reflection s = sH) and is joined to another node ν′ by an edge with weight m
if the corresponding dihedral angle, formed by their hyperplanes H, H′ at the ridge F in P, equals
αF = π/m. Usually, edges with a weight 2 are omitted and edges with weight 3 (resp. 4) are drawn as
simple (resp. double edges). In the hyperbolic case, and for parallel hyperplanes H, H′ intersecting
in ∂Hn, the nodes ν, ν′ are connected by a bold edge; for hyperplanes H, H′ disjoint in Hn and of
hyperbolic distance l, the nodes ν, ν′ are connected by a dotted edge (and sometimes marked with the
weight l).

In contrast to the spherical and Euclidean cases, Coxeter polyhedra in Hn are classified only
very partially. There is a complete list for hyperbolic Coxeter simplices, characterised by N = n + 1,
and they exist for n ≤ 9, only. Hyperbolic Coxeter polyhedra with N = n + 2 are classified and they
exist for n ≤ 17. Notice that examples of compact Coxeter polyhedra in Hn are known just for n ≤ 8.
In higher dimensions, there are only single examples in Hn for n = 18, 19, and 21 whose discovery is
due to Kaplinskaja, Vinberg, and Borcherds, respectively. Notice that Coxeter polyhedra in Hn do not
exist for n > 995. For a survey, we refer to information and references collected on the webpage of
Felikson and Tumarkin [17].

As for even dimensions above 17, there are only the two Coxeter polyhedra P18 and PL
18 explicitly

known (for more details, see Example 7). The polyhedron P18 exists in H18 and is non-compact and
bounded by 37 hyperplanes only forming dihedral angles of π/2 and π/3. The polyhedron was
discovered by Kaplinskaja and Vinberg [18] and is associated with the maximal reflection group Γ18 in
the group PO(18, 1;Z) of integral positive linear transformations leaving invariant the unimodular
quadratic form qn = 〈x, x〉n,1 for n = 18. Observe that the quadratic forms qn are reflective in the
above sense, providing finite volume non-compact hyperbolic Coxeter polyhedra Pn, for n ≤ 19. More
precisely, the group PO(n, 1;Z) is the automorphism group PO(In,1) of the odd unimodular Lorentzian
lattice In,1 with quadratic form qn whose maximal reflection subgroup is of finite index equal to the
order of the symmetry group Sym(Pn) of its (fundamental) Coxeter polyhedron Pn. The order of
Sym(Pn) is different from 1 for 14 ≤ n ≤ 19 and equal to 2 (resp. 4) for n = 14, 15 (resp. n = 16, 17),
whereas the symmetric group Sn appears according Sym(P18) ∼= S4 and Sym(P19) ∼= S5. The results
can be found in [18,19] and ([16] part II, Chapter 6, §2).
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2.4. Arithmetic Hyperbolic Coxeter Groups

The group PO(18, 1;Z) is a model of an arithmetic group, a notion which will not be explained in
detail here (see [4,5], for example). One characterisation is —by using a result of Margulis (see [20],
Theorem 10.3.5, for example) —that a lattice G ⊂ IsomHn , n ≥ 3 , is non-arithmetic if and only if
its commensurator group Comm(G) is discrete in IsomHn (and containing G with finite index). Here,
the group Comm(G) is defined by:

Comm(G) = { γ ∈ IsomHn | G ∩ γGγ−1 has finite index in G and γGγ−1 } .

However, for hyperbolic Coxeter groups Γ ⊂ PO(n, 1) such as Γ18, Vinberg developed a
very useful criterion for arithmeticity. This criterion simplifies drastically when the group Γ has
a non-compact (fundamental) Coxeter polyhedron P ⊂ Hn. Consider the Gram matrix G = G(P) of P
and form the matrix H := 2 · G with coefficients hij for 1 ≤ i, j ≤ N. A cycle in H is a product of the
type hi1i2 · hi2i3 · . . . · hik−1ik · hik i1 .

Theorem (Vinberg’s Criterion). Let P ⊂ Hn be a non-compact hyperbolic Coxeter polyhedron with Coxeter
group Γ and Gram matrix G. Then, Γ is arithmetic if and only if all the cycles of the matrix 2 · G are
rational integers.

Example 1. The non-compact hyperbolic Coxeter simplices with graphs Ξn , 2 ≤ n ≤ 9 , given in Table 1 are
all arithmetic.

Table 1. Some non-compact hyperbolic Coxeter simplices.

dim n Ξn

2 b b b
3 b b b b6

4

b b b bb
5 b b b b b b
6

b b b b b bb
7

b b b b b bbb
8

b b b b b b b bb
9

b b b b b b b b bb
Example 2. The Coxeter polyhedron P∗ ⊂ H17 given by the graph in Figure 1 is bounded by 19 hyperplanes
and has precisely two vertices at infinity. It has the combinatorial type of a pyramid over a product of
two (eight-dimensional) simplices. Coxeter polyhedra of this type have been classified by Tumarkin [21].
The polyhedron P∗ yields an arithmetic reflection group Γ∗, as is easily checked by means of Vinberg’s criterion
above. The group Γ∗ is the maximal reflection in the automorphism group PO(II17,1) of the even unimodular
Lorentzian lattice II17,1. Due to the obvious two-fold symmetry of the graph, one can pass to the Z2-extension of
the group Γ∗, which is arithmetic of half the covolume of Γ∗.
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2.5. The Euler Characteristic and the Covolume of a Hyperbolic Coxeter Group

Let Γ ⊂ IsomHn be a Coxeter group with presentation 〈S | R〉 according to (1) and fundamental
polyhedron P ⊂ Hn of finite volume. Consider the growth series

fS(x) = ∑
γ∈Γ

xlS(γ) (2)

where lS(γ) is the word length of γ ∈ Γ with respect to the generating set S of Γ. Denote F = { T ⊂
S | ΓT < Γ finite } the set of all subsets T of S such that the group ΓT generated by the elements in T
is finite. Notice that the groups of type ΓT are spherical Coxeter groups with finite growth series. In
order to represent their growth polynomials, we use the standard notations [k] := 1 + x + · · ·+ xk−1 ,
[k, l] = [k] · [l] and so on, and denote by m1 = 1, m2, . . . , mt the exponents of the Coxeter group ΓT
(see [22], Section 9.7). For the list of irreducible finite Coxeter groups, see Table 2.

Table 2. Exponents and growth polynomials of irreducible finite Coxeter groups ΓT .

Graph Exponents Growth polynomial fT(x)

G(m)
2 1, m− 1 [2, m]

An 1, 2, . . . , n− 1, n [2, 3, . . . , n, n + 1]
Bn 1, 3, . . . , 2n− 3, 2n− 1 [2, 4, . . . , 2n− 2, 2n]
Dn 1, 3, . . . , 2n− 5, 2n− 3, n− 1 [2, 4, . . . , 2n− 2] · [n]
F4 1, 5, 7, 11 [2, 6, 8, 12]
E6 1, 4, 5, 7, 8, 11 [2, 5, 6, 8, 9, 12]
E7 1, 5, 7, 9, 11, 13, 17 [2, 6, 8, 10, 12, 14, 18]
E8 1, 7, 11, 13, 17, 19, 23, 29 [2, 8, 12, 14, 18, 20, 24, 30]
H3 1, 5, 9 [2, 6, 10]
H4 1, 11, 19, 29 [2, 12, 20, 30]

By a result of Steinberg [23], fS(x) is the power series of a rational function and satisfies the
following important formula.

1
fS(x−1)

= ∑
T∈F

(−1)|T|

fT(x)
, (3)

where Γ∅ = {1} . For the Euler characteristic χ(Γ), one obtains, for any abstract Coxeter group Γ,

χ(Γ) = ∑
T∈F

(−1)|T|

fT(1)
. (4)

In terms of the volume of P and therefore the quotient space Hn/Γ , one deduces the following
identity (see [24]).

χ(Γ) =


(−1)

n
2 2 voln(P)

voln(Sn)
, if n is even ,

0 , if n is odd .
(5)

The formulas (3) and (5) are very useful when computing the volume of an even-dimensional
hyperbolic Coxeter polyhedron. Since the list of irreducible finite Coxeter groups is known and
comparatively short (see Table 2), this volume computation can be realised by a computer program.

2.6. The Computer Program CoxIter

By means of the computer program CoxIter designed by Guglielmetti [8] in 2015 (freely accessible
online https://coxiter.rgug.ch/, https://coxiterweb.rafaelguglielmetti.ch/), different invariants of a
Coxeter group Γ acting by reflections on Hn can be computed. The input are the dimension n and the
Coxeter graph Σ with the number of its nodes and with the edge weights m > 2 (either 0 or −1 for

https://coxiter.rgug.ch/
https://coxiterweb.rafaelguglielmetti.ch/


Mathematics 2017, 5, 43 6 of 16

parallel or disjoint hyperplanes, respectively). Then, the program CoxIter answers questions such as
cocompactness, cofiniteness, arithmeticity, Euler characteristic and covolume of Γ, number of vertices
at infinity, and the f -vector (with components fi equal to the number of i-dimensional faces) of its
Coxeter polyhedron P.

Example 3. Consider the two Coxeter pyramids P10 ⊂ H10 and P12 ⊂ H12 with Coxeter graphs given by
Figures 2 and 3. By the tools mentioned in Sections 2.4 and 2.5, one can check easily that the associated
Coxeter groups Γ10 and Γ12 are arithmetic. By means of the webversion of CoxIter, one computes their
Euler characteristic as being equal to χ(Γ10) = −1/183936614400 (see also [14], Appendix A3) and
χ(Γ12) = 691/382588157952000 (see the output given in Figure 4).

b b bb b b b b b b b b
Figure 2. The Coxeter pyramid group Γ10 ⊂ IsomH10 of covolume π5

5431878144000 .

b b bb b b b b b b b bb b
Figure 3. The Coxeter pyramid group Γ12 ⊂ IsomH12 of covolume 691 π6

62140685967360000 .

Input
14 12
vertices labels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3
2 3 3
3 4 3
3 13 3
4 5 3
5 6 3
6 7 3
7 8 3
8 9 3
9 10 3
10 11 3
11 12 4
11 14 3

Invariants
Cocompact: no
Cofinite: yes
f-vector: (37, 234, 786, 1749, 2793, 3312, 2958, 1992, 1000, 364, 91, 14, 1)
Number of vertices at infinity: 2
Euler characteristic: 691/382588157952000
Covolume: pi^6 * 691/62140685967360000

Figure 4. Output of the webversion of CoxIter for the group Γ12.

Example 4. Consider the Coxeter group Γ14 generated by 17 reflections in IsomH14 with graph given in
Figure 5. It was discovered by Vinberg as being the maximal reflection subgroup of the group of units of the
unimodular quadratic form q14 of signature (14, 1). The program CoxIter yields the following information.
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17 14
1 2 3
2 3 3
3 4 3
4 5 3
5 6 3
6 7 3
7 8 3
8 9 3
9 10 3
10 11 3
11 12 3
12 13 3
13 14 4
14 17 0
17 1 4
11 16 3
3 15 3

Content of the text file Corresponding Coxeter graph

Figure 5. Vinberg’s hyperbolic lattice Γ14 ⊂ IsomH14.

Information
Cocompact: no
Finite covolume: yes
Arithmetic: yes
f-vector: (94, 704, 2695, 6825, 12579, 17633, 19215, 16425, 11009,
5733, 2275, 665, 135, 17, 1)
Number of vertices at infinity: 5
Alternating sum of the components of the f-vector: 0
Euler characteristic: -87757/289236647411712000
Covolume: pi^7 * 87757/305359330843607040000

Example 5. The Coxeter group Γ′16 ⊂ IsomH16 with Coxeter graph given by Figure 6, also discovered by
Vinberg, is the maximal reflection subgroup of the group of units of the unimodular quadratic form q16. Here,
CoxIter provides the following data (see also [8], Table 2).

Figure 6. Vinberg’s hyperbolic lattice Γ′16 ⊂ IsomH16.
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Information
Cocompact: no
Finite covolume: yes
Arithmetic: yes
f-vector: (325, 2804, 11914, 33164, 67410, 105462, 130646, 130062, 104670,
68042, 35490, 14658, 4690, 1122, 189, 20, 1)
Number of vertices at infinity: 12
Alternating sum of the components of the f-vector: 0
Euler characteristic: 642332179/2360171042879569920000
Covolume: pi^8 * 642332179/18687991047628750848000000

Example 6. The Coxeter group Γ16 ⊂ IsomH16 with 19 generators and with Coxeter graph given by Figure 7
was discovered by Tumarkin [25]. It is distinguished by the fact that it represents the single top-dimensional
cofinite hyperbolic Coxeter group in IsomHn with n + 3 generators. Furthermore, Γ16 is arithmetic and CoxIter
provides the following further details (see also [8], Table 2).

b b b b b b b b bb b b bb b b b bb

Figure 7. Tumarkin’s hyperbolic lattice Γ16 ⊂ IsomH16

Information
Cocompact: no
Cofinite: yes
f-vector: (128, 1087, 4768, 14000, 30352, 50960, 67960, 72908, 63204,
44200, 24752, 10948, 3740, 952, 170, 19, 1)
Number of vertices at infinity: 3
Euler characteristic: 2499347/2360171042879569920000
Covolume: pi^8 * 2499347/18687991047628750848000000

Example 7. In [26] Section 7, Vinberg constructed a particular quadratic form by considering the lattice
L = L0⊕Ze ⊂ (R19, 〈·, ·〉18,1), where L0 := II17,1 is the even unimodular quadratic lattice of signature (17, 1),
and e is a long root of norm two. Recall that the automorphism group of the lattice L0 yields the standard form
q17, which is reflective with maximal reflection subgroup Γ17 of index 2 (see Section 2.3 and Figure 1). By means
of an algorithm developed earlier by Vinberg, he proved that the lattice L yields a reflective quadratic form as
well, and this by construction of a finite volume Coxeter polyhedron PL

18 ⊂ IsomH18 with explicit description of
the Coxeter graph. The associated arithmetic Coxeter group ΓL

18 is given by Figure 8. In particular, by applying
Guglielmetti’s program CoxIter to the Coxeter group ΓL

18 ⊂ IsomH18, which is generated by 24 reflections, the
Euler characteristic equals − 109638854849

22600997906614761553920000 . Hence, the covolume can be computed as follows (see [8]
Table 5).

covol18(ΓL
18) =

691× 3617× 43867
223 × 316 × 56 × 74 × 112 × 132 × 172 × 19

π9 ≈ 2.148561× 10−15 . (6)

In an earlier work, together with Kaplinskaja, Vinberg [18] used the algorithm mentioned above to prove
that the unimodular quadratic forms qn are also reflective for n = 18 and n = 19 (while this is not the case for
n ≥ 20). Furthermore, they provided the corresponding Coxeter graphs. By CoxIter, Guglielmetti computed the
covolume of the Coxeter group Γ18 ⊂ IsomH18, related to q18, which is generated by 37 reflections, and found
that χ(Γ18) = − 109638854849

1482580623111880900608000000 so that the covolume is ≈ 2.204424× 10−12 (see [8] Table 4).
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Observe that the numerator 109638854849 = 691× 3617× 43867 of χ(Γ18) is identical to the one of χ(ΓL
18), a

direct consequence of the formula (4) and the fact that both Coxeter graphs have integer weights 2 and 3, only.

Figure 8. Vinberg’s hyperbolic lattice ΓL
18 ⊂ IsomH18.

Remark 1. In the sequel of the two hyperbolic Coxeter groups Γ18 and ΓL
18, there are, up until now, no such

reflection groups in IsomH2m known with explicit presentation and covolume for m > 9. In [27], Ratcliffe
and Tschantz considered arithmetic n-space forms Mn

k given as quotients of Hn by the principal congruence
subgroups ∆k ⊂ PO(n, 1;Z) of level k ≥ 1. The spaces Mn

k are smooth manifolds for k ≥ 3. The orbifolds
Mn

1 , which are closely related to the quadratic form qn, are well understood for n ≤ 19 (see examples above).
By means of Theorems 6, 8 and 25 in [27],Ratcliffe and Tschantz provide an explicit volume formula for Mn

p for
all n ≥ 2 and odd prime numbers p, by exploiting a result of Siegel related to the case Mn

1 .

3. Minimal Volume Cusped Hyperbolic Orbifolds

Let Γ ⊂ IsomHn be a lattice with fundamental polyhedron P ⊂ Hn such that the n-orbifold Hn/Γ
is non-compact. This implies that P is the convex hull of finitely many vertices, with at least one vertex
q belonging to ∂Hn, whose stabiliser Γq ⊂ Γ is a crystallographic group (see Section 2.2). Consider the
volume spectrum:

Vn = { voln(Q) | Q = Hn/Γ non-compact}

of all cusped hyperbolic n-orbifolds together with its minimal element νn ∈ Vn for each n ≥ 2.
In [12], a universal lower volume bound for cusped hyperbolic n-manifolds has been established

that also holds in the singular case (see [28] Section 2, [13] Section 2 and [14] Chapter 5). It provides a
lower bound for νn in terms of (lattice) packing densities and orders of maximal point groups.

More precisely, denote by vol◦k the Euclidean k-volume functional and by B(r) a Euclidean r-ball.
Let ϕk be the maximal point group order of elements in a fixed Q-class of maximal, finite, absolutely
irreducible subgroups of GL(k,Z), and let δk be the maximal lattice packing density in Euclidean
k-space. In particular, one has that ϕ24 = 222 × 39 × 54 × 72 × 11× 13× 23 = 8315553613086720000,
which is equal to twice the order of the Conway group Co1, and that δ8 = π4/384 ≈ 0.25367 and
δ24 = π12/12! ≈ 0.00193 (see [29]). Notice that for n ≤ 8, the densest lattice packings are known and
intimately related to root lattices. Moreover, by a recent fundamental result of Viazovska [30], the E8

root lattice yields the densest sphere packing in E8, leading to a proof of similar flavour, by Cohn,
Kumar, Miller, Radchenko and Viazovska [31], showing that the Leech lattice is an optimal sphere
packing in E24.

The value dn(∞) denotes the simplicial horoball density, that is, the density of n + 1 horoballs based
at the vertices of an ideal regular simplex in Hn. By means of the volume ωn of an ideal regular
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n-simplex with its representation as an infinite series given by Milnor, dn(∞) can be expressed as
follows (see [12], Theorem 2.1).

dn(∞) =
n + 1
n− 1

· n
2n−1 ·

n−1

∏
k=2

(
k− 1
k + 1

) n−k
2

· 1
ωn

=
n + 1
n− 1

·
√

n
2n−1 ·

n−1
∏

k=2

( k−1
k+1

) n−k
2

∞
∑

k=0

β(β+1)···(β+k−1)
(n+2k)! An,k

, (7)

where

β =
1
2
(n + 1) and An,k = ∑

i0+...+in=k
il≥0

(2i0)! · . . . · (2in)!
i0! · . . . · in!

.

The first ten values of dn(∞) and d25(∞) are given in Table 3.

Table 3. The simplicial horoball density.

n dn(∞) ≈
2 0.95493
3 0.85328
4 0.73046
5 0.60695
6 0.49339
7 0.39441
8 0.31114
9 0.24285

10 0.18789
25 0.00238

Theorem (Kellerhals [12,28]). Let n ≥ 2, and let Q = Hn/Γ be a hyperbolic n-orbifold with m ≥ 1
cusps. Then,

voln(Q) ≥ m · cn , where cn =
vol◦n−1(B( 1

2 ))

(n− 1) · ϕn−1 · δn−1 · dn(∞)
. (8)

As an example, by using the data of the Leech lattice in (8), the volume of a 25-dimensional
hyperbolic orbifold with m ≥ 1 cusps can be bounded from below as follows.

vol25(Q) ≥ m · 1
249 × 310 × 54 × 72 × 11× 13× 23

· 1
d25(∞)

≈ m · 1.25488× 10−25 . (9)

The questions about the explicit value and the realisation of the minimal volume νn as
voln(Hn/Γ◦) have only partial answers so far. By the above theorem, one deduces the bound νn ≥ cn

for n ≥ 2, which is a key ingredient in answering the question for n ≤ 9. In fact, the classical
results for the dimensions n = 2, due to Siegel, and n = 3, due to Meyerhoff, were extended by
Hild-Kellerhals [28] for n = 4 and by Hild [13,14] for n ≤ 9, with the consequence that, for these
dimensions, the unique covolume minimising groups Γ◦ ⊂ IsomHn are given by certain hyperbolic
Coxeter groups (up to index two in dimension n = 7). For a survey, see [1]. It turns out that all these
groups Γ◦ ⊂ IsomHn , n ≤ 9 , are arithmetic and related to a tessellation of Hn by a 1-cusped Coxeter
simplex.

3.1. The Arithmetic Case

In view of the situation just described and when looking to dimensions n ≥ 10, it makes sense to
study the (proper) subset V a

n ⊂ Vn of all volumes of orientable cusped hyperbolic n-orbifolds with
arithmetic fundamental groups and to ask corresponding questions about the minimal element in V a

n,
denoted by νa

n > 0.
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For an arbitrary dimension n, there is the standard arithmetic group PO(In,1) of automorphisms
that leave the form qn invariant. This group provides a first candidate for small volume. As already
mentioned, for n ≤ 19, the group PO(In,1) is reflective and can be written as the semi-direct product
of its cofinite maximal reflection subgroup and the symmetry group Sym(Pn) of its (fundamental)
Coxeter polyhedron Pn. For the covolume of PO(In,1), one has the following result for n even.

Theorem (Ratcliffe-Tschantz [27], Theorem 22).

|χ(PO(In,1))| =
(
1± 2−

n
2
) n

2

∏
k=1
|ζ(1− 2 k)| (10)

with a plus sign if n ≡ 0, 2 mod 8 and the minus sign if n ≡ 4, 6 mod 8.

3.1.1. Even Dimensions

In a much more general context, Belolipetsky and Emery (see [2–5] and [9]) successfully exploited
a relevant structural result of Prasad and determined the explicit value of νa

n for the cases of orientable
cusped arithmetic orbifolds of even dimensions n ≥ 4 and of odd dimensions n ≥ 5, respectively
(notice that non-compactness is not a constraint in their works). In particular, for even dimensions,
there is the following result in terms of the Euler characteristic.

Theorem (Belolipetsky [2,3]). For each dimension n = 2r ≥ 4 there is a unique orientable cusped arithmetic
hyperbolic n-orbifold Qn of minimal volume. It has Euler characteristic:

|χ(Qn)| =
α(r)
2r−2

r

∏
k=1
|ζ(1− 2 k)| ,

where α(r) = 1 if r ≡ 0, 1 (mod 4), and α(r) = (2r − 1)/2 if r ≡ 2, 3 (mod 4).

While the evaluation of Belolipetsky’s theorem for even dimensions 4 ≤ n ≤ 8 coincides with the
previously mentioned (and more explicit) results of Kellerhals and Hild (see [28] and [14]), it yields the
following Table 4 for even dimensions 10 ≤ n ≤ 18.

Table 4. The values |χ(Qn)| for even dimensions 10 ≤ n ≤ 18.

n ≥ 10 10 12 14 16 18

|χ(Qn)| 10−2

919683072
691×10−3

191294078976
87757×10−3

289236647411712
2499347×10−4

236017104287956992
109638854849×10−4

6780299371984428466176

Let us compare the results in Belolipetsky’s theorem with the values χ(Γn) , 10 ≤ n = 2r ≤ 18 ,
and χ(ΓL

18) obtained in Section 2.6. Some of the Coxeter group examples presented in Section 2.3 have
Coxeter graphs admitting a non-trivial symmetry group Sk of order k, say, which corresponds to the
symmetry group of the same order of the associated Coxeter polyhedron. By extending the Coxeter
group by Sk, we pass to a group of 1/k-times the covolume of the original group. Furthermore, since
reflections are orientation reversing isometries, we need to pass to the index two orientation preserving
subgroup. By taking into account the uniqueness property in Belolipetsky’s result, we can deduce the
following explicit volume minimality result.

Proposition 1. Let n be even with n ∈ {10, 12, 14, 16, 18}. Then, the unique orientable cusped arithmetic
hyperbolic n-orbifold Qn = Hn/∆n is given by the action on Hn of the index two orientation preserving
subgroup ∆n of the group Θn ⊂ IsomHn given by Table 5.
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Table 5. The groups Θn.

n Group Θn |χ(Θn)| Related Coxeter Graph

10 Γ10
10−2

1839366144 Figure 2

12 Γ12
691×10−3

38258815752 Figure 3

14 Γ14 ? S2
87757×10−3

578473294823424 Figure 5

16 Γ16 ? S2
2499347×10−4

472034208575913984 Figure 7

18 ΓL
18 ? S6

109638854849×10−4

13560598743968856932352 Figure 8

3.1.2. Odd Dimensions

For odd dimensions n ≤ 9, the results of Hild provide a complete picture about minimal
volume cusped hyperbolic n-orbifolds, arithmetically defined or not, including proofs for uniqueness,
a presentation of the fundamental group, and the value of νn. The orbifolds are closely related
to Coxeter simplices, which do not exist for dimensions n ≥ 10 (see Example 1 and Table 1).
Combinatorially very close are pyramids over a product of two simplices of positive dimensions,
which have been studied and classified in the Coxeter case by Tumarkin (see Section 2.3). These groups
are generated by n + 2 reflections, they are all non-compact and exist in IsomHn for all 4 ≤ n ≤ 17
with n 6= 14, 15, 16. By Vinberg’s arithmeticity criterion (see Section 2.4), one verifies easily their
arithmeticity when n ≥ 11. According to the corresponding commensurability classification performed
in [7], one has five Coxeter pyramid groups in IsomH11 falling into two commensurability classes,
three Coxeter pyramid groups in IsomH13 forming one commensurability class, and finally the single
Coxeter pyramid group Γ∗ ⊂ IsomH17 that is closely related to the automorphism group of the even
unimodular group PO(II17,1) (see Example 2). Among the five arithmetic Coxeter pyramid groups
IsomH11, which fall into two commensurability classes, the group Γ11 given by the graph in Figure 9
has smallest covolume, and among the three commensurable Coxeter pyramid groups in IsomH13,
the group Γ13 given by Figure 11 has smallest covolume (see [7] and [32]).

b b bb b b b b b b b b b6

Figure 9. The Coxeter pyramid group Γ11 ⊂ IsomH11.

In order to identify explicitly—if possible—the minimal volume orientable cusped arithmetic
hyperbolic n-orbifolds for n ≥ 11 odd, we provide details of the corresponding result of Belolipetsky
and Emery (see Section 3.1.1).

Theorem (Belolipetsky, Emery [4,5]). For each dimension n = 2r − 1 ≥ 5, there is a unique orientable
arithmetic cusped hyperbolic n-orbifold Qn of minimal volume. Its volume is given by the following formula.

(1) If r ≡ 1 (mod 4):

voln(Qn) =
1

2r−2 ζ(r)
r−1

∏
k=1

(2k− 1)!
(2π)2k ζ(2k) ;

(2) If r ≡ 3 (mod 4):

voln(Qn) =
(2r − 1)(2r−1 − 1)

3 · 2r−1 ζ(r)
r−1

∏
k=1

(2k− 1)!
(2π)2k ζ(2k) ;
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(3) If r is even:

voln(Qn) =
3r−1/2

2r−1 L`1|Q(r)
r−1

∏
k=1

(2k− 1)!
(2π)2k ζ(2k) , where `1 = Q(

√
−3) .

In [9], Emery described in more detail the fundamental group ∆n of the orientable arithmetic
cusped orbifold Qn of minimal volume as follows. For n ≡ 1 (mod 8), the group PSO(IIn,1) is conjugate
to ∆n in IsomHn, while for n ≡ 5 (mod 8) the group PSO(In,1) is conjugate to a subgroup of index 3 of
∆n in IsomHn. For n ≡ 3 (mod 4), the group ∆n is commensurable to the group PO( f3;Z) of integral
automorphisms of the Lorentzian form of signature (n, 1) given by:

f3(x) = x2
1 + . . . + x2

n − 3 x2
n+1 . (11)

By a result of Mcleod [33], the group PO( f3;Z) is reflective for n ≤ 13. As an extension of their
work for PO(n, 1;Z) to the group PO( fd;Z), Ratcliffe and Tschantz determined the covolumes of the
groups PO( f3;Z) and, for each n ≡ 3 (mod 4), they computed furthermore the commensurability ratio
κn ∈ Q of ∆n and PO( f3;Z) showing that κn 6= 1 (see [34], (35)).

In view of these results and the knowledge of hyperbolic Coxeter group candidates in IsomHn for
n = 11, 13 and n = 17, we provide the following new characterisation of Qn = Hn/∆n for n = 11, 13
and mention briefly the known result of Emery [9] in the case n = 17.

The case n = 11. Since 11 ≡ 3 (mod 4), the group ∆11 of minimal covolume is commensurable to
the group PO( f3;Z), whose cofinite maximal reflection subgroup Γ was described by Mcleod. More
precisely, the Coxeter graph of Γ, given by Figure 10, has 15 nodes and shows a two-fold symmetry.
Denote by P ⊂ IsomH11 the Coxeter polyhedron of Γ.

b b b b b
b
b

b
b b b

bb b
b
b

6

6

σ

Figure 10. Mcleod’s Coxeter group Γ ⊂ IsomH11.

In particular, by the result ([34], Table 1), one gets the value

covol11(PO( f3;Z)) = 13× 31
225 × 5× 7× 11×

√
3
· L(6,−3) , (12)

where L(s, D) is Dirichlet’s L-function according to ([34], (12)), as well as κ11 = 1
4 (2

5 − 1) (26 + 1) =
2015

4 (see [34], Section 7). This implies that vol11(P) = 2 · covol11(PO( f3;Z)) and that covol11(∆11) =
2

2015 vol11(P).
Now, consider the group Γ11 which has smallest covolume among all Coxeter pyramid groups

in H11 and let P11 be its Coxeter pyramid. Based on an observation of Tschantz [10] when comparing
the corresponding Coxeter graphs, there is a close combinatorial relation between the polyhedron P
associated to Mcleod’s Coxeter group Γ and the Coxeter pyramid P11. In fact, pass to the double Pσ of
the polyhedron P by reflecting it in the bounding hyperplane depicted by σ in the graph of Figure 10.
Then, the polyhedron Pσ is bounded by 16 hyperplanes. Reflect recursively the pyramid P11 in its
facets while staying inside the polyhedron Pσ. The image pyramids match along their facets or line up
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with the facets of Pσ. It takes exactly 4030 copies of the pyramid P11 to fill Pσ. As a consequence and
by (12), one obtains:

vol11(P11) =
2

4030
vol11(P) =

4
4030

covol11(PO( f3;Z)) (13)

=
1

224 × 52 × 7× 11×
√

3
· L(6,−3) ≈ 1.760074651× 10−11 .

Putting everything together, one deduces that covol11(∆11) = 2 · covol11(Γ11). By passing to the
index two subgroup Γ+

11 of orientation preserving isometries in the Coxeter pyramid group Γ11, one
finally obtains the following result.

Proposition 2. The orientable arithmetic cusped hyperbolic orbifold Q11 of minimal volume is the quotient of
H11 by the rotation subgroup Γ+

11 of Γ11. The value 2 νa
11 is given by (13).

The case n = 13. Since 13 satisfies n ≡ 5 (mod 8), the fundamental group ∆n of the orientable
arithmetic cusped orbifold Qn of minimal volume is commensurable to the special unimodular group
PSO(I13), with ratio of their covolumes equal to 3 (see [9], Proposition 5). By the result [27], Theorem 6,
of Ratcliffe and Tschantz mentioned in Remark 1, the covolume of PSO(I13), being of index two in
PO(I13), can be expressed as follows.

covol13(PSO(I13,1)) = (27 − 1)× (26 − 1)
6

∏
k=1

|B2k|
8k
· ζ(7) (14)

=
127

228 × 36 × 53 × 7× 11× 13
ζ(7) ≈ 3.613942699× 10−12 .

Since the group PO(I13) is known to be reflective and equal to the Coxeter pyramid group Γ13,
with the graph given by Figure 11, we can deduce the following result.

b b bb b b b b b b b b b b b
Figure 11. The Coxeter pyramid group Γ13 ⊂ IsomH13.

Proposition 3. The orientable arithmetic cusped hyperbolic 13-orbifold Q13 of minimal volume is the quotient
of H13 by the rotation subgroup Γ+

13 of Γ13. Its volume νa
13 is given by (14).

The case n = 17. Let us finish by mentioning the result [9], Theorem 2, of Emery. It states that
for n ≡ 5 (mod 8), the minimal volume orientable arithmetic cusped hyperbolic n-orbifold Qn is the
quotient space Hn/PSO(IIn,1). For n = 17, the group PO(II17,1) is reflective and is the semi-direct
product of the reflection group Γ∗ with the symmetry group S2 of P∗, where P∗ is Tumarkin’s Coxeter
pyramid with graph given in Figure 1 and described in Example 2. By exploiting the theorem above,
one gets the following volume identification (see [9], Corollary 3, Corollary 4).

vol17(P∗) =
1
2
· covol17(PSO(I17,1)) =

691× 3617
238 × 310 × 54 × 72 × 11× 13 · 17

· ζ(9) (15)

≈ 2.072451981× 10−18 .

As mentioned by Emery in [9], Section 3, the space H17/PSO(II17,1) has minimal volume among
all orientable arithmetic hyperbolic n-orbifold Qn, compact or not, for n ≥ 2. This means that
νa

n > νa
17 = covol17(PSO(I17,1)) for all n ≥ 2 , n 6= 17.
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Final remarks.

(1) When looking at realisations of orbifolds with volumes equal to the minimal values νa
n for n ≤ 18, there

remains a need to study the case n = 15 and to look for a candidate in the commensurability class
of PO( f3;Z) that is conjugate to the fundamental group of the minimal volume hyperbolic orbifold of
dimension 15.

(2) It is an interesting but difficult question whether, and to what extent, non-arithmetic considerations can
perturb the picture described in Section 3 in such a way that νa

n > νn for some n > 3.
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