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Abstract: This research concentrates on the analysis of meromorphic mappings. We derived several
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1. Introduction

Let Ω be the set of finite linear measure of positive real numbers, which may not be the same at
every occurrence. Assume T(q, α) denotes the Nevanlinna characteristic of a nonconstant meromorphic
mapping α and S(q, α) represents any quantity fulfilling S(q, α) = o{T(q, α)}, as q → ∞ and q 6∈ Ω.
Consider a point c in the extended plane. Indicate two nonconstant meromorphic mappings by
α and β. The mappings α and β share the value c IM, if they have the same c-points ignoring
multiplicities [1]. Also, c is called a small mapping of α, provided that c is a meromorphic mapping
fulfilling T(q, c) = S(q, α) [1]. All through the current paper, we consider meromorphic mappings
in the complex plane and represent the order of α by ρ(α). Consider the following result which was
proved by Clunie [2] and Hayman [3]:

Theorem 1. Suppose k ≥ 1 be a positive integer. Let α(y) represents a transcendental entire mapping.
Then there are infinitely many zeros of αk(y)α′(y)− 1.

Reading Theorem 1, the following problem arises:

Problem 1. Let λ 6= 0 be a complex number. What will be the conclusion of Theorem 1 if αk(y)α′(y) of
Theorem 1 is replaced with αk(y)α(y + λ) or αk(y)∆λα(y) for a transcendental meromorphic mapping α(y)?

In this direction, Laine and Yang [4] derived the following result to deal with Problem 1:

Theorem 2. Let λ 6= 0 be a complex number and α(y) be a finite order transcendental entire mapping.
Then α(y)kα(y + λ) assumes every finite nonzero value c infinitely often for k ≥ 2.
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We now give the following two examples, for details see [4,5].

Example 1. Let α(y) = 1 + ey. Then α(y)α(y + πi)− 1 = −e2y has no zeros. This example shows that
Theorem 2 does not remain valid if k = 1.

Example 2. Let α(y) = e−ey
. Then α(y)2α(y + λ)− 2 = −1 and ρ(α) = ∞, where λ is a nonzero constant

satisfying eλ = −2. Evidently, α(y)2α(y + λ)− 2 have no zeros. This example shows that Theorem 2 does not
remain valid if α is of infinite order.

Recently Liu and Yang proved the following result [5]:

Theorem 3. Let k ≥ 2 be an integer and λ 6= 0 be a complex number. Assume that α(y) be a finite order
transcendental entire mapping. Let P(y) 6≡ 0 be a polynomial. Then there are infinitely many zeros of
αk(y)α(y + λ)− P(y).

We recall the following two examples from [5].

Example 3. Let α(y) = e−ey
. Then α(y)kα(y + λ) − P(y) = 1 − P(y) and ρ(α) = ∞, where η is a

nonzero constant satisfying eλ = −k, P(y) is a nonconstant polynomial, k is a positive integer. Evidently,
α(y)kα(y + λ) − P(y) has finitely many zeros. This example shows that the condition “ρ(α) < ∞” in
Theorem 3 is necessary.

In addition to Theorems 2 and 3 to deal with Problem 1 we will prove the following theorem:

Theorem 4. Let k ≥ 7 be an integer. Suppose that the order of a transcendental meromorphic mapping α

is given by ρ(α) = ρ < ∞. Let λ be a nonconstant complex number and ∆λα 6≡ 0 . Assume P 6≡ 0 be a
polynomial. Then as q −→ ∞ and q 6∈ Ω

(k− 6)T(q, α) ≤ N
(

q,
1

αk∆λα− P

)
+ o

(
T(q, α)

q1−ε

)
+ O(log q), (1)

where Ω ⊂ (1,+∞) is a subset of finite logarithmic measure.

The following definition is borrowed from [6] which will be used in the forthcoming work of
this article.

Definition 1. Let α be a nonconstant meromorphic function. We define difference operators as
∆λα(y) = α(y + λ)− α(y), ∆n

λα(y) = ∆n−1
λ (∆λα(y)), where λ is a nonzero complex number, n ≥ 2 is a

positive integer. If λ = 1, we denote ∆λα(y) = ∆α(y). Moreover,

∆n
λα(y) =

n

∑
j=0

(
n
j

)
(−1)n−jα(y + jλ). (2)

The proof of Theorem 4 yields the following interesting result, which will be proved in Section 3.

Theorem 5. Let k ≥ 3 be an integer. Suppose that the order of a transcendental entire mapping α is given by
ρ(α) = ρ < ∞. Let λ be a nonconstant complex number and ∆λα 6≡ 0. Assume that P 6≡ 0 be a polynomial.
Then as q −→ ∞ and q 6∈ Ω,

(k− 2)T(q, α) ≤ N
(

q,
1

αk∆λα− P

)
+ o

(
T(q, α)

q1−ε

)
+ O(log q), (3)

where Ω ⊂ (1,+∞) is a subset of finite logarithmic measure.
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Now consider the example given below, which indicates that the condition “ρ(α) < ∞” in
Theorems 4 and 5 is necessary.

Example 4. Let α(y) = e−ey
. Then ρ(α) = ∞ and α(y)k∆λα(y)− 1 = −e(k+1)ey

has no zeros, where k ∈ Z
and λ is a nonzero constant satisfying eλ = −k.

From Theorems 4 and 5 we can get the following results respectively.

Corollary 1. Let k ≥ 7 be an integer. Suppose that the order of transcendental meromorphic mapping α is
given by ρ(α) < ∞. Consider a nonconstant complex number such that ∆λα 6≡ 0. Assume that P 6≡ 0 be a
polynomial. Then there are infinitely many zeros of αk∆λα− P.

Corollary 2. Let k ≥ 3 be an integer. Suppose that the order of a transcendental entire mapping α is given by
ρ(α) < ∞. Let λ be a nonconstant complex number such that ∆λα 6≡ 0. Suppose that P 6≡ 0 be a polynomial.
Then there are infinitely many zeros of αk∆λα− P.

Corresponding to Theorem 2, the following uniqueness theorem was derived by Qi-Yang-Liu [7].

Theorem 6. Suppose that k ≥ 6 be an integer and λ 6= 0 be a complex number. Let the distinct transcendental
entire mappings α and β have finite orders. Assume that α(y)kα(y+λ)− y and β(y)kβ(y+λ)− y share 0 CM.
Then α = tβ, where t 6= 1 is a constant fulfilling tk+1 = 1.

He further studied the following result [7].

Theorem 7. Let k ≥ 6 is an integer and λ 6= 0 is a complex number. Assume that the distinct transcendental
entire mappings α and β have finite orders. Let α(y)kα(y + λ) and β(y)kβ(y + λ) share 1 CM. Then α = tβ,
where t 6= 1 is a constant fulfilling tk+1 = 1.

From Theorem 4 we will prove the following uniqueness results for meromorphic mappings
associated to difference operators.

Theorem 8. Suppose that k ≥ 12 be an integer and P 6≡ 0 be a polynomial. Let the distinct transcendental
meromorphic mappings α and β have finite orders. Assume that λ 6= 0 be a complex number such that ∆λα 6≡ 0
and ∆λβ 6≡ 0. Suppose that αk∆λα− P and βk∆λβ− P share 0 CM. Then

(i) If k ≥ 12 and if αk∆λα/P is a Möbius transformation of βk∆λβ/P, then [αk∆λα][βk∆λβ] = P2 or
αk∆λα = βk∆λβ.

(ii) If k ≥ 16, then [αk∆λα][βk∆λβ] = P2 or αk∆λα = βk∆λβ.

Theorem 9. Let k ≥ 16 be an integer and λ 6= 0 be a complex number. Assume that the distinct nonconstant
meromorphic mappings α and β have finite order. Suppose that α and β share 0, ∞ CM, αk∆λα and βk∆λβ

share 1 CM. If

lim sup
q−→∞

N
(

q, 1
α(y)−1

)
+ N

(
q, 1

β(y)−1

)
T(q, α(y)) + T(q, β(y))

< 1− 3
k

, (4)

then one of the two cases given below holds:

(i) f = c1β, where c1 6= 1 is a constant fulfilling ck+1
1 = 1.

(ii) For all y ∈ C, α(y) = α(y + λ) and β(y) = β(y + λ).

Proving Theorem 9 in Section 3, we can obtain the following interesting uniqueness results. In the
complex plane, the difference polynomials of the following meromorphic mappings have the same
fixed points.
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Theorem 10. Suppose that k ≥ 16 be an integer and λ 6= 0 be a complex number. Let the distinct nonconstant
meromorphic mappings α and β have finite orders. Suppose that α and β share 0, ∞ CM, αk(y)∆λα(y)− y and
βk(y)∆λβ(y)− y share 0 CM. If the inequality (4) holds, then one of the conclusions (i) and (ii) of Theorem 9
can occur.

In view of Theorem 5 and Lemma 2.9, we will derive the following results for entire mappings.

Theorem 11. Assume that k ≥ 5 be an integer, λ 6= 0 be a complex number and P 6≡ 0 be a polynomial. Let the
distinct transcendental meromorphic mappings α and β have finite orders. Suppose that ∆λα 6≡ 0 and ∆λβ 6≡ 0.
Let αn∆λα− P and βk∆λβ− P share 0 CM. Then

(i) If k ≥ 5 and if αk∆λα/P is a Möbius transformation of βk∆λβ/P, then [αk∆λα][βk∆λβ] = P2 or
αk∆λα = βk∆λβ.

(ii) If n ≥ 7, then [αk∆λα][βk∆λβ] = P2 or αk∆λα = βk∆λβ.

The above theorem gives us the following two uniqueness theorems of entire mappings.
The difference polynomials of the mentioned mappings share a nonzero constant or have the same
fixed points in the plane.

Theorem 12. Suppose that k ≥ 7 be an integer, λ be a nonzero complex number. Let the distinct nonconstant
entire mappings α and β have finite order. Assume that α and β share 0, ∞ CM, αk∆λα and βk∆λβ share 1 CM.
Then one of the following arguments holds.

(i) α = c1β, where c1 6= 1 is a constant fulfilling ck+1
1 = 1.

(ii) For all y ∈ C, α(y) = α(y + λ) and β(y) = β(y + λ).
(iii) α(y) = ea1y+a0 and β(y) = e−a1y+b0 , where a1, a0 and b0 are complex numbers such that a1 6= 0 and

e(k+1)(a0+b0)(ea1η − 1)(e−a1η − 1) = 1.

Theorem 13. Suppose that k ≥ 7 be an integer and λ be a nonzero complex number. Let the distinct
nonconstant entire mappings α and β have finite orders. Assume that α and β share 0, ∞ CM, αk(y)∆λα(y)− y
and βk(y)∆λβ(y)− y share 0 CM. Then one of the conclusions (i) and (ii) of Theorem 12 holds.

2. Preliminaries

Building on the previous ideas of meromorphic mapping and Nevanlinna theory, this section
contains the fundamental definitions, notions and results required for the further study of the subject.
For more details on the concepts briefly discussed, readers are suggested to consult the papers [8–14].
Let c ∈ C ∪ {∞}, p ∈ Z+ and α be meromorphic mapping, which is not a constant. Then we give the
following three definitions [15,16].

Definition 2. The counting mapping of those c-points of α whose multiplicities are not greater than p
is denoted Np)(q, 1/(α − c)). The corresponding reduced counting mapping (ignoring multiplicities) is
indicated by Np)(q, 1/(α − c)). N(p(q, 1/(α − c)) represents the counting mapping of those c-points of
α (counted with proper multiplicities) whose multiplicities are not less than p. By N(p(q, 1/(α − c)) we
present the corresponding reduced counting mapping (ignoring multiplicities), where Np)(q, 1/(α − c)),
Np)(q, 1/(α − c)), N(p(q, 1/(α − c)) and N(p(q, 1/(α − c)) mean Np)(q, α), Np)(q, α), N(p(q, α) and
N(p(q, α) respectively, if c = ∞.

Definition 3. Assume that k is a nonnegative integer. Let α be a meromorphic mapping, which is not constant.
Suppose that c be any value in the extended complex plane. Then we set

Nk

(
q,

1
α− c

)
= N

(
q,

1
α− c

)
+ N(2

(
q,

1
α− c

)
+ · · ·+ N(k

(
q,

1
α− c

)
.
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Definition 4. Let k ≥ 2 be an integer. Assume that α is a meromorphic mapping, which is not constant.
The difference operators are defined by ∆λα(y) = α(y + λ)− α(y), ∆k

λα(y) = ∆k−1
λ (∆λα(y)), where λ is a

nonzero complex number. If λ = 1, we represent ∆λα(y) = ∆α(y). Also,

∆k
λα(y) =

k

∑
j=0

(
k
j

)
(−1)k−jα(y + jλ). (5)

Now we state some important lemmas. These lemmas will be used in the proof of our forthcoming
results. The following first lemma is borrowed from [13] while second and third lemmas can be
found in [17].

Lemma 1. In the complex plane, consider a nonconstant meromorphic mapping α. Let c0, c1, · · · , ck−1, ck be
arbitrary constants and

P(α) = ckα(y)k + ck−1α(y)k−1 + · · ·+ c1α(y) + c0, (6)

where ck 6= 0. Then
m(q, P(α)) = km(q, α) + O(1).

Lemma 2. Let λ ∈ C. Consider a meromorphic mapping α, which is not constant. If α is of finite order, then

m
(

q,
α(y + λ)

α(y)

)
= O

(
T(q, α(y)) log q

q

)
for every q outside of a set Ω fulfilling

lim sup
q−→∞

∫
Ω∩[1,q) dt/t

log q
= 0,

i.e., outside of a set Ω of zero logarithmic density. If ρ2(α) = ρ2 < 1 and ε > 0. Then for every q outside of a
finite logarithmic measure

m
(

q,
α(y + λ)

α(y)

)
= o

(
T(q, α(y))

q1−ρ2−ε

)
,

where ε is a positive number.

Lemma 3. Let s ∈ R+. Consider a continuous mapping T : [0,+∞) −→ [0,+∞), which is nondecreasing. If

lim sup
q→∞

log log T(q)
log q

= ζ < 1,

and δ ∈ (0, 1− ζ), i.e., the hyper-order of T is strictly less than one. Then

T(q + s) = T(q) + o
(

T(q)
qδ

)
,

where outside of a set of finite logarithmic measure, q runs to infinity.

For the next four lemmas see [1,18].
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Lemma 4. Consider two meromorphic mappings F and G, which are nonconstant and G is a Möbius
transformation of F. Assume that a subset I ⊂ R+ with its linear measure mesI = +∞ exists and

N
(

q,
1
F

)
+ N(q, F) + N

(
q,

1
G

)
+ N(q, G) < (η + o(1))T(q, F),

as q ∈ I and q −→ ∞, where λ < 1. If a point y0 ∈ C exists in such a way that F(y0) = G(y0) = 1,
then F = G or FG = 1.

Lemma 5. Consider two meromorphic mappings F and G, which are nonconstant. Let F and G share 1 CM.
Assume that a subset I ⊂ R+ with its linear measure mesI = ∞ exists and

N2(q, F) + N2(q, G) + N2

(
q,

1
F

)
+ N2

(
q,

1
G

)
< (µ + o(1))T(q),

where µ < 1, T(q) = max{T(q, F), T(q, G)}. Then F = G or FG = 1.

Lemma 6. Consider two meromorphic mappings F and G, which are nonconstant. Let F and G share 1, ∞ CM.
Assume that a subset I ⊂ R+ with its linear measure mesI = +∞ exists and

N2

(
q,

1
F

)
+ N2

(
q,

1
G

)
+ 2N(q, F) < λT(q) + S(q),

as q ∈ I and q −→ ∞, where λ < 1, T(q) = max{T(q, F), T(q, G)} and S(q) = o{T(q)}, as q ∈ I and
q −→ ∞. Then F = G or FG = 1.

Lemma 7. Consider the nonconstant meromorphic mappings α1, α2, · · · , αn. Let αk+1 6≡ 0 be a meromorphic

mapping such that
k+1
∑

j=1
f j = 1. If a subset I ⊆ R+ fulfilling mesI = ∞ exists and

k+1

∑
i=1

N
(

q,
1
αi

)
+ k

k+1

∑
i=1, i 6=j

N(q, αi) < {λ + o(1)}T(q, αj), j = 1, 2, · · · , k,

as q −→ ∞ and q ∈ I, where λ < 1, then αk+1 = 1.

The following lemma can be found in [19].

Lemma 8. Consider two rational mapping α and β, which are nonconstant. Let they share 0, 1, ∞ CM.
Then α = β. Now let P(y) = (a + ib)yk + · · · be a polynomial of degree k ≥ 1, where a and b are real numbers
such that a + ib 6= 0, and let y = qeiθ . Then Re{(a + ib)ekθi} = a cos kθ − b sin kθ =: δ(P, θ).

The following results will be utilized to prove Theorem 9. For its proof see [20].

Lemma 9. Let P(y) be a polynomial of degree k ≥ 1, and let ε > 0 be a given constant. Then we have

(i) If δ(P, θ) > 0, then there exists an q(θ) > 0 such that for any q > q(θ), we have

|eP(qeiθ)| ≥ exp
(
(1− ε)δ(P, θ)qk

)
.

(ii) If δ(P, θ) < 0, then there exists an q(θ) < 0 such that for any q > q(θ), we have

|eP(qeiθ)| ≤ exp
(
(1− ε)δ(P, θ)qk

)
.

The proof of the following lemma can be found on page 177 of [21].
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Lemma 10. Assume that α(y) be an analytic mapping of y = qiθ , regular in the region D between two straight
lines making an angle π/a at the origin and on the lines themselves. Let | f (y)| ≤ M on the lines, where M > 0
be some constant, and that, as |y| → ∞, |α(y)| = O(eqβ

), where b < a, uniformly in the angle. Then actually
the inequality |α(y)| ≤ M holds throughout the region D.

3. Proof of Results

In this section, we provide the proof of theorems, stated in first section.

Proof. (Theorem 4): In view of Lemmas 1 and 2 we obtain

(k + 1)T(q, α(y))

= T(q, αk+1(y)) + O(1)

= T
(

q,
α(y)

∆ηα(y)
· αk(y)∆λα(y)

)
+ O(1)

≤ T
(

q,
∆λα(y)

α(y)

)
+ T

(
q, αk(y)∆λα(y)

)
+ O(1)

= m
(

q,
α(y + λ)

α(y)
− 1
)
+ N

(
q,

α(y + λ)

α(y)
− 1
)
+ T

(
q, αk(y)∆λα(y)

)
+ O(1)

≤ N
(

q,
1

α(y)

)
+ N (q, α(y + λ)) + T

(
q, αk(y)∆ηα(y)

)
+ o

(
T(q, α(y))

q1−ε

)
,

(7)

as q 6∈ Ω and q −→ ∞. Noting that

lim sup
q−→∞

log log N (q, α(y))
log q

≤ ρ2(α) = 0.

By virtue of Lemma 3 as q −→ ∞ and q 6∈ Ω

N (q, α(y + λ)) ≤ N (q + |λ|, α(y)) = N (q, α(y)) + o
(

T(q, α(y))
q1−ε

)
, (8)

where Ω ⊂ (1, ∞) indicates a subset with logarithmic measure log mesΩ < ∞. Similarly

N (q, β(y + λ)) ≤ N (q, β(y)) + o
(

T(q, β(y))
q1−ε

)
, (9)

T (q, α(y + λ)) ≤ T(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
(10)

and

N (q, α(y + λ)) ≤ N(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
, (11)

as q 6∈ Ω and q −→ ∞. By virtue of (7) and (8) we get

(k + 1)T(q, α(y)) + O(1) ≤ N
(

q,
1

α(y)

)
+ N (q, α(y)) + T

(
q, αk(y)∆λα(y)

)
+ o

(
T(q, α(y))

q1−ε

)
≤ 2T(q, α(y)) + T

(
q, αk(y)∆λα(y)

)
+ o

(
T(q, α(y))

q1−ε

)
,

i.e.,

(k− 1)T(q, α(y)) ≤ T
(

q, αk(y)∆λα(y)
)
+ o

(
T(q, α(y))

q1−ε

)
, (12)
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as q 6∈ Ω and q −→ ∞. On the other hand, by (10), (11) and Theorem 1.36 of [1] we get

T
(

q, αk(y)∆λα(y)
)

≤N
(

q, αk(y)∆λα(y)
)
+ N

(
q,

1
αk(y)∆λα(y)

)
+ N

(
q,

1
αk(y)∆λα(y)− P(y)

)
+ O(log q)

≤ N(q, α(y)) + N(q, α(y + λ)) + N
(

q,
1

α(y)

)
+ N

(
q,

1
α(y + λ)− α(y)

)
+ N

(
q,

1
αk(y)∆λα(y)− P(y)

)
+ O(log q)

≤ 2N(q, α(y)) + N
(

q,
1

α(y)

)
+ N

(
q,

1
α(y + λ)− α(y)

)
+ N

(
q,

1
αk(y)∆λα(y)− P(y)

)
+ o

(
T(q, α(y))

q1−ε

)
+ O(log q),

≤ 4T(q, α(y)) + T(q, α(y + λ)) + N
(

q,
1

αk(y)∆λα(y)− P(y)

)
+ o

(
T(q, α(y))

q1−ε

)
+ O(log q)

≤ 5T(q, α(y)) + N
(

q,
1

αk(y)∆λα(y)− P(y)

)
+ o

(
T(q, α(y))

q1−ε

)
+ O(log q),

(13)

as q 6∈ Ω and q −→ ∞. From (12) and (13) we can get the conclusion of Theorem 1.1. Thus the proof
stands completed.

Proof. (Theorem 8): To prove this theorem let us set

F1(y) =
α(y)k∆λα(y)

P(y)
, G1(y) =

β(y)k∆λα(y)
P(y)

. (14)

Applying similar arguments as used in the proof of Theorem 4 one can derive (8)–(12). From (12) and
the left equality of (14) yields

(k− 1)T(q, α(y)) ≤ T (q, F1(y)) + o
(

T(q, α(y))
q1−ε

)
+ O(log q), (15)

as q 6∈ Ω and q −→ ∞. Similarly

(k− 1)T(q, g(y)) ≤ T (q, G1(y)) + o
(

T(q, β(y))
q1−ε

)
+ O(log q), (16)

From the condition k ≥ 16 and the condition that α, β are transcendental meromorphic functions,
we can deduce from (15), (16) and Lemma 3 that F1, G1 are transcendental meromorphic mappings.
Suppose that y0 ∈ C is a zero of F1 − 1 of multiplicity µ. Then, by the condition that P(y) 6≡ 0 is a
polynomial we can see that y0 is a zero of α(y)nα(y + λ)− P(y) of multiplicity µ + ν, where ν ≥ 0 is
the multiplicity of y0 as a zero of P(y). Hence y0 is a zero of g(y)kg(y + λ)− P(y) of multiplicity µ + ν

by the value sharing assumption. Now one sees that y0 is a zero of G1 − 1 of multiplicity µ. This also
works in the other direction. Therefore, F1 and G1 indeed share 1 CM. As the order of α as well as β

is finite, so (14) and Lemma 3 yields that the same is true for F1 and G1 as well. We now study the
following two cases:
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Case 1. Consider a Möbius transformation F1 of G1. By virtue of the Valiron-Mokhon’ko lemma [22]
and (3.8) we obtain

T(q, F1(y)) = T(q, α(y)k∆λα(y)) + O(log q)

= T(q, β(y)k∆λβ(y)) + O(log q)

= T(q, G1(y)) + O(1).

(17)

From Theorem 4 we get

(k− 6)T(q, α) ≤ N
(

q,
1

αk∆λα− P

)
+ o

(
T(q, α)

q1−ε

)
+ O(1). (18)

The inequality (18) together with Lemma 3 and the condition that α(y)k∆λα(y) − P(y) and
β(y)k∆λβ(y)− P(y) share 0 CM gives

(k− 6) T(q, α(y))

≤ N
(

q,
1

βk(y)∆λβ(y)− P(y)

)
+ o

(
T(q, α(y))

q1−ε

)
+ O(1)

≤ T(q, G1(y)) + o
(

T(q, α(y))
q1−ε

)
+ O(log q)

(19)

as q −→ ∞ and q 6∈ Ω. In a similar way

(k− 6) T(q, β(y))

≤ N
(

q,
1

αk(y)∆λα(y)− P(y)

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(1)

≤ T(q, F1(y)) + o
(

T(q, β(y))
q1−ε

)
+ O(log q),

(20)

as q 6∈ Ω and q −→ ∞. From Lemma 2 and the left equality of (14) we have

m(q, G1) ≤ m
(

q, β(y)k∆λβ(y)
)
+ m

(
q,

1
P(y)

)
≤ m

(
q, β(y)k+1

(
β(y + λ)

β(y)
− 1
))

+ O(1)

≤ m
(

q, β(y)k+1
)
+ m

(
q,

β(y + λ)

β(y)
− 1
)
+ O(1)

≤ (k + 1)m(q, β(y)) + m
(

q,
β(y + λ)

β(y)

)
+ O(1)

≤ (k + 1)m(q, β(y)) + o
(

T(q, β(y))
q1−ε

)
,

(21)

as q 6∈ Ω and q −→ ∞. By similar arguments as used in the proof of Theorem 4 we derive (9). From (9)
and the left equality of (14) we obtain

N(q, G1) ≤ N
(

q, β(y)k∆λβ(y)
)
+ N

(
q,

1
P(y)

)
≤ kN(q, β(y)) + N(q, β(y + λ)− β(y)) + O(log q)

≤ (k + 2)N(q, β(y)) + o
(

T(q, β(y))
q1−ε

)
+ O(log q),

(22)
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as q −→ ∞ and q 6∈ Ω. Equations (21) and (22) yield

T(q, G1(y)) ≤ kT(q, β(y)) + N(q, β(y)) + o
(

T(q, β(y))
q1−ε

)
+ O(log q)

≤ (k + 1)T(q, β(y)) + o
(

T(q, β(y))
q1−ε

)
+ O(log r),

(23)

as q −→ ∞ and q 6∈ Ω. Similarly

T(q, F1(y)) ≤ (k + 1)T(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
+ O(log q), (24)

as q 6∈ Ω and q −→ ∞. From (23), (24), the condition k ≥ 16, Definition 2 and Lemma 1.1.2 of [23]
we obtain

ρ(α) ≤ ρ(G1) ≤ ρ(β). (25)

Similarly, from (20) and (25) we have

ρ(β) ≤ ρ(F1) ≤ ρ(α). (26)

From (25) and (26) we get
ρ(α) = ρ(β) = ρ(F1) = ρ(G1). (27)

From (10) and (14) we derive

N(q, F1(y)) + N
(

q,
1

F1(y)

)
≤ N (q, α(y)) + N (q, α(y + λ)) + N

(
q,

1
α(y)

)
+ N

(
q,

1
α(y + λ)− α(y)

)
+ O(log q)

≤ 3T(q, α(y)) + 2T(q, α(y + λ)) + O(log q)

≤ 5T(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
+ O(log q),

(28)

as q 6∈ Ω and q −→ ∞. Similarly

N(q, G1(y)) + N
(

q,
1

G1(y)

)
≤ 5T(q, β(y)) + o

(
T(q, β(y))

q1−ε

)
+ O(log q), (29)

as q 6∈ Ω and q −→ ∞. Applying similar arguments as utilized in the proof of Theorem 1.1 we can
derive (13). From (15) and (16) we get

T(q, α(y)) ≤ 1
k−1 T(q, F1(y)) + o

(
T(q,α(y))

q1−ε

)
(30)

and
T(q, β(y)) ≤ 1

k−1 T(q, G1(y)) + o
(

T(q,β(y))
q1−ε

)
, (31)

as q 6∈ Ω and q −→ ∞. From (21), (27)–(31) we derive

N
(

q,
1
F1

)
+ N(q, F1) + N

(
q,

1
G1

)
+ N(q, G1)

≤ 5
k− 1

{T(q, F1) + T(q, G1)}+ o
(

T(q, α(y))
q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(log q)

=
10

k− 1
T(q, F1)(1 + o(1)),

(32)
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as q 6∈ Ω and q −→ ∞. This together with (32), Lemma 4 and the condition k ≥ 12 gives F1G1 = 1 or
F1 = G1. This proves the conclusion (i) of Theorem 8

Case 2. Suppose that k ≥ 16. In the same manner as in the proof of Case 1 we can get (30) and (31).
From (10) and (14) we have

N2(r, F1(y)) + N2

(
q,

1
F1(y)

)
≤ 2N (q, α(y)) + N (q, α(y + λ)) + 2N

(
q,

1
α(y)

)
+ N

(
q,

1
α(y + λ)− α(y)

)
+ O(log q)

≤ 5T(q, α(y)) + 2T(q, α(y + λ)) + O(log q)

≤ 7T(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
+ O(log q)

(33)

and

N2(r, G1(y)) + N2

(
q,

1
G1(y)

)
≤ 7T(q, β(y)) + o

(
T(q, β(y))

q1−ε

)
+ O(log q), (34)

as q 6∈ Ω and q −→ ∞. From (30), (31), (33) and (34) we have

N2(q, F1(y)) + N2

(
q,

1
F1(y)

)
≤ 7

k− 1
T(q, F1(y)) + o

(
T(q, α(y))

q1−ε

)
+ O(log r) (35)

and

N2(q, G1(y)) + N2

(
q,

1
G1(y)

)
≤ 7

k− 1
T(q, G1(y)) + o

(
T(q, β(y))

q1−ε

)
+ O(log q), (36)

as q 6∈ Ω and q −→ ∞. From (27), (35) and (36) we have

N2(q, F1(y)) + N2

(
q,

1
F1(y)

)
+ N2(q, G1(y)) + N2

(
q,

1
G1(y)

)
≤ 14

k− 1
T1(q)(1 + o(1)), (37)

as q 6∈ Ω and q −→ ∞, where T1(q) = max{T(q, F1), T(q, G1)}. From (37), Lemma 5 and the condition
k ≥ 16 we have F1 = G1 or F1G1 = 1. This reveals the conclusion (ii) of Theorem 8. Thus the proof
stands completed.

Proof. (Theorem 9): This theorem is proved by considering the below two cases:

Case 1. Let one of α and β, say α, is a rational mapping. Then, β is a rational function. In fact, if β is a
transcendental meromorphic mapping, then, in the same manner as in the proof of (20) we can get
from the assumption of Theorem 9 that

(k− 6) T(q, β(y)) ≤ N
(

q,
1

αk(y)∆λα(y)− 1

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(1)

≤ o
(

T(q, β(y))
q1−ε

)
+ O(log q),

(38)

as q −→ ∞ and q 6∈ Ω. From k ≥ 16 and (38) we can deduce T(q, β(y)) = O(log q), as q 6∈ Ω
and q −→ ∞. This implies that β is a rational function, which is impossible. Therefore, by virtue of the
condition that α and β share 0, ∞ CM we derive

α = c1β, (39)
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where c is some nonzero complex number. Thus

αk∆λα = ck+1
1 βk∆λβ. (40)

Suppose that ∆λα = 0. Then, if α(y) has a zero at some point y0, then α(y) has a zero at y0 + λ

by ∆λα = 0. Continuing, α(y0 + 2λ) = 0, α(y0 + 3λ) = ∞, and so on. Therefore, α(y) would have
infinitely many zeros, which is impossible. Similarly, one can obtain a contradiction, if α(y) has a pole
at some point y1 ∈ C. Therefore, ∆λα 6≡ 0, and so ∆λβ 6≡ 0 by (40). Combining this with (40) and the
assumption that α and β share 0, ∞ CM, we find that αk∆λα and βk∆λβ share 0, ∞ CM. This together
with Lemma 8 and the assumption that αk∆λα and βk∆λβ share 1 CM gives

αk∆λα = βk∆λβ. (41)

From (40) and (41) we have ck+1
1 = 1. Together with (39), this proves the conclusion (i) of

Theorem 9.

Case 2. Consider two transcendental meromorphic mappings α and β. Then, from Theorem 8 we
have [αk∆λα][βk∆λβ] = 1 or αk∆λα = βk∆λβ. The present case is divided in the below two subcases:

Subcase 2.1. Let
[αk∆λα][βk∆λβ] = 1. (42)

One can derive (8) and (9) in a similar manner as in the proof of Theorem 4. Combining this with
Definition 4, Lemma 2 and the assumption that α and β share 0, ∞ CM we deduce

2nN
(

q,
1

α(y)

)
= kN

(
q,

1
α(y)

)
+ kN

(
q,

1
β(y)

)
≤ N(q, α(y + λ)) + N(q, β(y + λ))

= 2N(q, α(y + λ))

≤ 2N(q, α(y)) + o
(

T(q, α(y))
q1−ε

)
≤ 2T(q, α(y)) + o

(
T(q, α(y))

q1−ε

)
and

2kN (q, α(y)) = kN (q, α(y)) + kN (q, β(y))

≤ N
(

q,
1

α(y + λ)− α(y)

)
+ N

(
q,

1
β(y + λ)− β(y)

)
≤ T (q, α(y + λ)− α(y)) + T (q, β(y + λ)− β(y))

≤ m
(

q, α(y)
(

α(y + λ)

α(y)
− 1
))

+ N(q, α(y + λ)) + N(q, α(y))

+ m
(

q, β(y)
(

β(y + λ)

β(y)
− 1
))

+ N(q, β(y + λ)) + N(q, β(y))

≤ m(q, α(y)) + 2N(q, α(y)) + m(q, β(y)) + 2N(q, β(y))

+ o
(

T(q, α(y))
q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
≤ 2T(q, α(y)) + 2T(q, β(y)) + o

(
T(q, α(y))

q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
i.e.,

N
(

q,
1

α(y)

)
≤ 1

k
T(q, α(y)) + o

(
T(q, α(y))

q1−ε

)
(43)

N (q, α(y)) ≤ 1
k

T(q, α(y)) +
1
k

T(q, β(y)) + o
(

T(q, α(y))
q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
, (44)



Mathematics 2017, 5, 42 13 of 18

as q 6∈ Ω and q −→ ∞. By (43), (44) and the second fundamental theorem we obtain

T(q, α(y)) ≤ N(q, α(y)) + N (q, α(y)) + N
(

q,
1

α(y)− 1

)
+ O(log q)

≤ 2
k

T(q, α(y)) +
1
k

T(q, β(y)) + N
(

q,
1

α(y)− 1

)
+ O(log q)

+ o
(

T(q, α(y))
q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(log q),

(45)

as q 6∈ Ω and q −→ ∞. Similarly

T(q, β(y)) ≤ 2
k

T(q, β(y)) +
1
k

T(q, α(y)) + N
(

q,
1

β(y)− 1

)
+ o

(
T(q, α(y))

q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(log q),

(46)

as q 6∈ Ω and q −→ ∞. From (45) and (46) we have

T(q, α(y)) + T(q, β(y)) ≤ 3
k

T(q, β(y)) +
3
k

T(q, α(y)) + N
(

q,
1

α(y)− 1

)
+ N

(
q,

1
β(y)− 1

)
+ o

(
T(q, α(y))

q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(log q),

(47)

as q 6∈ Ω and q −→ ∞. Applying similar arguments as utilized in the proof of (27) we determine
ρ( f ) = ρ(β) < ∞. This together with (47) gives

lim sup
r−→∞

N
(

q, 1
α(y)−1

)
+ N

(
q, 1

β(y)−1

)
T(q, α(y)) + T(q, β(y))

≥ 1− 3
k

, (48)

which contradicts the assumption (4).

Subcase 2.2. Suppose that
αk∆λα = βk∆λβ. (49)

In view of the hypothesis that α and β share 0, ∞ CM we get

α

β
= eP1 , (50)

where α is an entire function. Noting that ρ(α) = ρ(β) := ρ < ∞, we can get from (50) that ρ(eP1) ≤ ρ,
and so P1 is a polynomial with degree ≤ ρ. Suppose that P1 is some constant, then eP1 is some nonzero
constant, say eP1 = c2. Thus from (49) and (50) we get

(ck+1
2 − 1)βk∆λβ = 0. (51)

If ∆λβ = 0, then we can get the conclusion (ii) from (49). Next we suppose that ∆λβ 6≡ 0, and so
we have from (51) that ck+1

2 = 1, which together with (50) and eP1 = c2 reveals the conclusion (ii) of
Theorem 9. Suppose that P1 is a nonzero polynomial. Then P1(y) = (a1 + ib1)yk + · · · be a polynomial
of degree k1 ≥ 1, where a1 and b1 are real numbers such that a1 + ib1 6= 0. By (49) and (50) we have

β(y + λ)

β(y)
=

e(k+1)P1(y) − 1
ekP1(y)+P1(y+η) − 1

. (52)
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Given a positive number ε, we set

Tε =
k1−1⋃
j=0

{y : | arg y− θj| < ε}, (53)

where

θj =

(
2j
k1

+
1

2k1

)
π −

θk1

k1
, 0 ≤ j ≤ k1 − 1, (54)

such that
α cos k1θj − β sin k1θj = 0, 0 ≤ j ≤ k1 − 1. (55)

By (52)–(55) and Lemma 9 we can find that

lim
|y|→∞,|y|6∈Tε

β(y + λ)

β(y)
= 0. (56)

Hence from (55), Lemma 10 and Liouville’s Theorem we can find that β(y + λ)/β(y) is a constant.
Therefore

β(y + λ)

β(y)
= c3, (57)

where c3 is a nonzero constant. Similarly

α(y + λ)

α(y)
= c4, (58)

where c4 is a nonzero constant. If one of c3 and c4 is equal to 1, then we can get the conclusion (ii)
from (57), (58) and (49). Next we suppose that c3 6= 1 and c4 6= 1. By substituting (57) and (58) into (49)
we have αk+1 = c3−1

c4−1 · βk+1, and so
α = c5β, (59)

where c5 is a constant satisfying ck+1
5 = c3−1

c4−1 . Again from (59) and (49) we deduce c5 6= 1 and ck+1
5 = 1,

which reveals the conclusion (i) of Theorem 9. The proof stands completed.

Proof. (Theorem 10): To prove the current theorem, we set

F2(y) =
α(y)k∆λα(y)

y
, G2(y) =

β(y)n∆λβ(y)
y

. (60)

Then, applying similar arguments as utilized in the proof of Theorem 9 we can find that F2 and
G2 share 1 CM. We consider the following two cases:

Case 1. Let one of α and β, say α is a nonconstant rational mapping. Then β is also a nonconstant
rational mapping. In fact, if β is a transcendental meromorphic mapping, then we can derive in the
same manner as in the proof of (20) that

(k− 6) T(q, β(y))

≤ N
(

q,
1

αk(y)∆λα(y)− y

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(1)

≤ T(q, F2(y)) + o
(

T(q, β(y))
q1−ε

)
+ log q + O(1)

= o
(

T(q, β(y))
q1−ε

)
+ O(log q),

(61)
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as q 6∈ Ω and q −→ ∞. From (61) and the the assumption k ≥ 16 we can deduce that β is a nonconstant
rational mapping, this is impossible. Therefore, from (60) we can see that F2 and G2 are rational
mapping. Next we prove that F2 and G2 are nonconstant rational mappings. In fact, if one of F2 and G2

is a constant, say F2 = c6, where c6 is a finite complex number, then we can get from the first equality
of (60) that

α(y)k∆λα(y) = c6y. (62)

Set
α(y) =

P2

P3
, (63)

where P2 and P3 are nonzero relatively prime polynomials. Noting that at least one of P2 and P3 is not
a constant. Applying similar arguments as used in the proof of Theorem 9, we determine ∆ηα(y) 6≡ 0.
Therefore, we can get from (62), (63) and the standard Valiron-Mokhonko lemma [22] that

k max{deg(P2(y)), deg(P3)(y))} log q + O(1)

= kT(q, α(y))

≤ T
(

q,
P2(y)
P3(y)

− P2(y + λ)

P3(y + η)

)
+ log r + O(1)

≤ T
(

q,
P2(y)
P3(y)

)
+ T

(
q,

P2(y + η)

P3(y + λ)

)
+ O(1)

= 2 max{deg(P2(y)), deg(P3)(y))} log q + O(1),

which implies that k ≤ 2, this contradicts the assumption k ≥ 16. Therefore, F2 and G2 are nonconstant
rational functions. Combining this with (60) and the assumption that α and β share 0, ∞ CM and the
assumption that F2 and G2 share 1 CM, we have (39) and (40). Thus the conclusion (i) of Theorem 9
is proved.

Case 2. Let α and β be transcendental meromorphic mappings. Then, by virtue of Theorems 8 and 10
we determine [αk∆λα][βk∆λβ] = 1 or αk∆λα = βk∆λβ. If αk∆λα = βk∆λβ. Then by using similar
arguments as utilized in Subcase 2.2 of the proof of Theorem 9 we can get the conclusions (i) and (ii).
Next we suppose that [αk∆λα][βk∆λβ] = 1. Noting that T(q, y) = o{T(q, α)} and T(q, y) = o{T(q, β)},
we can get in the same manner as in the proofs of (43) and (44) of Theorem 9 that

N
(

q,
1

α(y)

)
≤ 1

k
T(q, α(y)) + o

(
T(q, α(y))

q1−ε

)
+ O(log q) (64)

and

N (q, α(y)) ≤ 1
k

T(q, α(y)) +
1
k

T(q, β(y)) + o
(

T(q, α(y))
q1−ε

)
+ o

(
T(q, β(y))

q1−ε

)
+ O(log q), (65)

as q 6∈ Ω and q −→ ∞, and so we can get (45) and (46). From (45) and (46) we have (47), and so we
have (48), which contradicts (4). Thus the proof stands completed.

Proof. (Theorem 12): Let one of α and β are nonconstant polynomial. Then, by using similar
arguments as utilized in Case 1 of the proof of Theorem 9 we have the conclusion (i) of Theorem 9.
Now assume that α and β are transcendental entire functions. Then, by Theorem 11 and the
assumptions of Theorem 12 we have [αk∆λα][βk∆λβ] = 1 or αk∆λα = βk∆λβ. Suppose that
αk∆λα = βk∆λβ. Then, by using similar arguments as utilized in Case 1 and Subcase 2.2 of the
proof of Theorem 9 we can get the conclusions (i) and (ii) of Theorem 12. Suppose that

[αk∆λα][βk∆λβ] = 1. (66)



Mathematics 2017, 5, 42 16 of 18

Combining (66) with the assumption that α and β are entire functions sharing 0 CM, we have

α = e f , α = eg, (67)

where f and g are nonconstant polynomials. By substituting (67) into (66) we have

ek f (y)+kg(y)[e f (y+λ) − e f (y)][eg(y+λ) − eg(y)] = 1 (68)

for all y ∈ C. By (68) we have
e f (y+λ) − e f (y) = eγ(y) (69)

for all y ∈ C, where γ is a polynomial. By (69) and Lemma 7 we can find that e f (y+η)− f (y) 6= 1 is a
constant. Similarly eg(y+λ)−g(y) 6= 1 is also a constant. Set

f (y) = cmym + cm−1ym−1 + · · ·+ c1y + a0, (70)

where cm 6= 0, cm−1, · · · , c1, c0 are complex numbers. Suppose that m ≥ 2. Then

f (y + λ)− f (y) = mbmym−1 + bm−2ym−2 + · · · b1y + b0, (71)

where bm−2, bm−3, · · · , b1, b0 are complex numbers. Noting that cm 6= 0, we can find from (71) that
f (y + λ) − f (y) is not a constant, which contradicts the fact that e f (y+λ)− f c(y) 6= 1 is a constant.
Therefore m = 1. Combining this with (68) and (70), we can deduce the conclusion (iii) of Theorem 12.
This proves Theorem 12.

Proof. (Theorem 13): We set the equalities given in (60). Suppose that one of α and β are
nonconstant polynomial. Then, by using similar arguments as utilized in Case 1 of the proof of
Theorem 10 we have the conclusion (i) of Theorem 12 from (60). Next assume that α and β are
transcendental entire mappings. Then, by (60), Theorem 11 and the assumptions of Theorem 13
we have [αn∆λα][βn∆λβ] = z2 or αk∆λα = βk∆λβ. Suppose that αk∆λα = βk∆λβ. Then, in the same
manner as in Case 1 and Subcase 2.2 of Theorem 9 we can get the conclusions (i) and (ii) of Theorem 12.
Suppose that

[αk∆λα][βk∆λβ] = y2. (72)

Combining (71) with k ≥ 7 and the assumption that α and β are entire mappings sharing 0 CM,
we have (67). By substituting (67) into (72) we have

ek f (y)+kg(y)[e f (y+λ) − e f (y)][eg(y+λ) − eg(y)] = y2 (73)

for all y ∈ C. From (73) we can find that at least one of e f (y+λ)− f (y) − 1 and eg(y+λ)−g(y) − 1,
say e f (y+λ)− f (y) − 1 has a zero of y = 0, and so e f (y+λ)− f (y) is transcendental entire mapping, which
implies that e f (y+λ)− f (y) − 1 has infinitely many zeros in the complex plane. But, from (73) we can
find that e f (y+λ)− f (y) − 1 at most has one zero of y = 0, this is a contradiction. Thus the proof
stands completed.

4. Conclusions

In the present article, we have proved several important results for value distribution of
meromorphic mappings. It has been shown that the difference polynomials of the mentioned mappings
have the same fixed points or share nonzero values. We have provided examples that the previous
work of Laine and Yang need generalization. The results have been derived in more general domains.
Several uniqueness results of meromorphic mapping have been explored. The research work of
Qi, Yang and Liu has been generalized. The current work opens several new research directions.
For instance, from Corollary 1, Corollary 2 and Example 3 we give the following problem:
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Problem 1. What can be said about the conclusion of Corollary 1, if 2 ≤ n ≤ 6?

From Theorems 12 and 13 we pose the following problem.

Problem 2. What can be said about the conclusions of Theorems 12 and 13, if 2 ≤ n ≤ 6?

We hope the techniques used in the present paper will play a key role to provide a framework for
the concepts briefly discussed.
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