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Abstract: This paper proposes confidence intervals for a single mean and difference of two means
of normal distributions with unknown coefficients of variation (CVs). The generalized confidence
interval (GCI) approach and large sample (LS) approach were proposed to construct confidence
intervals for the single normal mean with unknown CV. These confidence intervals were compared
with existing confidence interval for the single normal mean based on the Student’s t-distribution
(small sample size case) and the z-distribution (large sample size case). Furthermore, the confidence
intervals for the difference between two normal means with unknown CVs were constructed based
on the GCI approach, the method of variance estimates recovery (MOVER) approach and the LS
approach and then compared with the Welch–Satterthwaite (WS) approach. The coverage probability
and average length of the proposed confidence intervals were evaluated via Monte Carlo simulation.
The results indicated that the GCIs for the single normal mean and the difference of two normal
means with unknown CVs are better than the other confidence intervals. Finally, three datasets are
given to illustrate the proposed confidence intervals.

Keywords: mean; coefficient of variation (CV); normal distribution; generalized confidence interval
(GCI) approach; method of variance estimates recovery (MOVER) approach

1. Introduction

It is well known that the sample mean, x̄, is the uniformly minimum variance unbiased (UMVU)
estimator of the normal population mean µ; see the paper by Sahai et al. [1]. Dropping the requirement
of unbiasedness, Searls [2] proposed the minimum mean squared error (MMSE) estimator for normal
mean with known coefficient of variation (CV). Khan [3] discussed the estimation of the mean
with known CV in one sample case. Gleser and Healy [4] proposed the minimum quadratic risk
scale-invariant estimator for the normal mean with known CV. Bhat and Rao [5] investigated the
tests for a normal mean with known CV. Niwitpong et al. [6] provided confidence intervals for the
difference between normal population means with known CVs. Niwitpong [7] presented confidence
intervals for the normal mean with known CV. Niwitpong and Niwitpong [8] proposed the confidence
interval for the normal mean with a known CV based on the best unbiased estimator, which was
proposed by Khan [3]. Niwitpong [9] proposed the confidence interval for the normal mean with a
known CV based on the t-test. Niwitpong and Niwitpong [10] constructed new confidence intervals
for the difference between normal means with known CV. Sodanin et al. [11] proposed confidence
intervals for the common mean of normal distributions with known CV.

In practice, the CV is unknown. Furthermore, the CV needs to be estimated. Therefore,
Srivastava [12] proposed a UMVU estimator for the estimation of the normal mean with unknown CV,
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θ̂ = x̄/(1 + (s2/(nx̄2))), where CV is defined as σ/µ. The UMVU estimator, estimated from the MMSE
estimator of Searls [2], is more efficient than the usual unbiased estimator sample mean x̄ whenever
σ2/(µσ2) is at least 0.5. Srivastava and Singh [13] provided a UMVU estimate of the relative efficiency
ratio of θ̂. Moreover, Sahai [14] developed a new estimator for the normal mean with unknown
CV. Sahai and Acharya [15] studied the iterative estimation of the normal population mean using
computational-statistical intelligence. However, a confidence interval provides more information about
a population value of the quantity than a point estimate. Therefore, it is of practical and theoretical
importance to develop procedures for confidence interval estimation of the mean of the normal
distribution with unknown CV. Hence, along similar lines as Srivastava [12], we construct the new
confidence intervals for the normal mean with unknown CV and compare with the standard confidence
intervals: the Student’s t-distribution and the z-distribution. The comparison can be based on coverage
probability, as well as the length of the confidence intervals. The average length of the confidence
intervals could also be analytically obtained and hence compared; see, e.g., Sodanin et al. [16], who
proposed the confidence intervals for the normal population mean with unknown CV based on the
generalized confidence interval (GCI) approach. This paper extends the work of Sodanin et al. [16] to
construct confidence intervals for the normal population mean with unknown CV based on the GCI
approach and the new confidence intervals based on the large sample (LS) approach. Furthermore,
three new confidence intervals for the difference between normal means with unknown CVs were also
proposed based on the GCI approach, the LS approach and the method of variance estimates recovery
(MOVER) approach and compared with the well-known Welch–Satterthwaite (WS) approach. For
more on confidence intervals on CV, we refer our readers to Banik and Kibria [17], Gulhar et al. [18]
and, recently, Albatineh et al. [19], among others.

This paper is organized as follows. In Section 2, the confidence intervals for the single normal
mean with unknown CV are presented. In Section 3, the confidence intervals for the difference between
normal means with unknown CVs are provided. In Section 4, simulation results are presented to
evaluate the coverage probabilities and average lengths in the comparison of the proposed approaches.
In Section 5, the proposed approaches are illustrated using three examples. Section 6 summarizes
this paper.

2. Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient
of Variation

Suppose that X = (X1, X2, . . . , Xn) are independent random variables each having the normal
distribution with mean µ and variance σ2. The CV is defined by τ = σ/µ. Let X̄ and S2 be the sample
mean and sample variance for X, respectively. Furthermore, let x̄ and s2 be the observed sample of X̄
and S2, respectively.

Searls [2] proposed the MMSE estimator for the normal population mean with variance,
θ, defined by:

θ =
µ

1 + (σ2/nµ2)
=

nµ

n + (σ2/µ2)
. (1)

However, the CV needs to be estimated. Srivastava [12] proposed an estimator of the mean with
unknown CV, which is defined by:

θ̂ =
X̄

1 + (S2/nX̄2)
=

nX̄
n + (S2/X̄2)

. (2)

Moreover, Sahai [14] proposed an alternative estimator of the normal population mean with
unknown CV, which is defined by:

θ∗ =
µ

1− (σ2/nµ2)
=

nµ

n− (σ2/µ2)
. (3)
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The estimator of θ∗ is defined by:

θ̂∗ =
X̄

1− (S2/nX̄2)
=

nX̄
n− (S2/X̄2)

. (4)

Theorem 1. Suppose that X = (X1, X2, . . . , Xn) is a random sample from N(µ, σ2). Suppose X̄ and S2 are a
sample mean and a sample variance, respectively. Let θ∗ be an estimator of the normal population mean with
unknown CV, and let θ̂∗ be an estimator of θ∗. The mean and variance of θ̂∗ are obtained by:

E
(
θ̂∗
)
=

 µ

1−
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)

1 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 (5)

and:

Var
(
θ̂∗
)
=

 µ

1−
(

σ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n +

2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 . (6)

Proof. Let θ∗ = nµ/(n− (σ2/µ2)) and θ̂∗ = nX̄/(n− (S2/X̄2)). Since X̄ ∼ N(µ, σ2/n). Then:

E (nX̄) = nE (X̄) = nµ and Var (nX̄) = n2Var (X̄) =
n2σ2

n
= nσ2.

According to Thangjai et al. [20], the mean of X̄2 is computed by the moment generating function,
and the variance of X̄2 is computed by Stein’s lemma. Therefore, the mean and the variance of X̄2 are
defined by:

E
(

X̄2
)
=

nµ2 + σ2

n
and Var

(
X̄2
)
=

2σ4 + 4nµ2σ2

n2 .

From Thangjai et al. [20], the mean and the variance of S2/X̄2 are defined by:

E
(

S2

X̄2

)
=

(
nσ2

nµ2 + σ2

)(
1 +

2σ4 + 4nµ2σ2

(nµ2 + σ2)
2

)

and:

Var
(

S2

X̄2

)
=

(
nσ2

nµ2 + σ2

)2( 2
n
+

2σ4 + 4nµ2σ2

(nµ2 + σ2)
2

)
.

Therefore, the mean and variance of n− (S2/X̄2) are defined by:

E
(

n− S2

X̄2

)
= n−

(
nσ2

nµ2 + σ2

)(
1 +

2σ4 + 4nµ2σ2

(nµ2 + σ2)
2

)

and:

Var
(

n− S2

X̄2

)
= Var

(
S2

X̄2

)
=

(
nσ2

nµ2 + σ2

)2( 2
n
+

2σ4 + 4nµ2σ2

(nµ2 + σ2)
2

)
.
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According to Blumenfeld [21], the mean and variance of θ̂∗ are obtained by:

E
(
θ̂∗
)

= E
(

nX̄
n− (S2/X̄2)

)
=

(
E (nX̄)

E (n− (S2/X̄2))

)(
1 +

Var
(
n−

(
S2/X̄2))

(E (n− (S2/X̄2)))
2

)

=

 nµ

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)

1 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2



=

 µ

1−
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)

1 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2


and:

Var
(
θ̂∗
)

= Var
(

nX̄
n− (S2/X̄2)

)
=

(
E (nX̄)

E (n− (S2/X̄2))

)2
(

Var (nX̄)

(E (nX̄))
2 +

Var
(
n−

(
S2/X̄2))

(E (n− (S2/X̄2)))
2

)

=

 nµ

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2
 nσ2

n2µ2 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2



=

 µ

1−
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2
 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 .

Hence, Theorem 1 is proven.

Proposition 1. Let X = (X1, X2, . . . , Xn) be a random sample from the normal distribution with the mean µ

and the variance σ2. Let X̄ and S2 be the corresponding point estimates of µ and σ2. Then:

√
n
(
θ̂∗ − τ∗1

)
≈
√

n
(
θ̂∗ − µ

) D→ N (0, nτ∗2 ) , (7)

where θ̂∗ = nX̄/(n− (S2/X̄2)), τ∗1 is E
(
θ̂∗
)

in Equation (5) and τ∗2 is Var
(
θ̂∗
)

in Equation (6).

Proof. Let θ∗ = nµ/(n − (σ2/µ2)) be an estimator of the mean with unknown CV, and let
θ̂∗ = nX̄/(n− (S2/X̄2)) be an estimator of θ∗. From Theorem 1, θ̂∗ is distributed normally with
mean τ∗1 and variance τ∗2 , which is defined by:

θ̂∗ ∼ N(τ∗1 , τ∗2 ),

where:

τ∗1 =

 µ

1−
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)

1 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2
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and:

τ∗2 =

 µ

1−
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2
 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 .

Applying the asymptotic theory, the estimator θ̂∗ is consistent. That is, θ̂∗ converges in probability
to τ∗1 and τ∗1 converges in probability to µ as n −→ ∞. The estimator is asymptotically normal and
is defined by:

√
n
(
θ̂∗ − τ∗1

)
≈
√

n
(
θ̂∗ − µ

) D→ N (0, nτ∗2 ) ,

where D→ represents that it converges in the distribution. Hence, Proposition 1 is proven.

Theorem 2. Suppose that X = (X1, X2, . . . , Xn) is a random sample from N(µ, σ2). Let θ be an estimator
of normal population mean with unknown CV, and let θ̂ be an estimator of θ. The mean and variance of θ̂ are
obtained by:

E
(
θ̂
)
=

 µ

1 +
(

σ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)

1 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n +
(

nσ2

nµ2+σ2

)(
1 + 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 (8)

and:

Var
(
θ̂
)
=

 µ

1+
(

σ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n +

2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n+
(

nσ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 . (9)

Proof. For the proof of the mean and variance of θ̂ is similarly to Theorem 1.

Proposition 2. Let X = (X1, X2, . . . , Xn) be a random sample from the normal distribution with the mean µ

and the variance σ2. Let X̄ and S2 be the corresponding point estimates of µ and σ2. Then:

√
n
(
θ̂ − τ1

)
≈
√

n
(
θ̂ − µ

) D→ N (0, nτ2) , (10)

where θ̂ = nX̄/(n + (S2/X̄2)), τ1 is E
(
θ̂
)

in Equation (8), and τ2 is Var
(
θ̂
)

in Equation (9).

Proof. For the proof of the distribution of θ̂ is similar to Proposition 1.

2.1. Generalized Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient
of Variation

Definition 1. Let X = (X1, X2, . . . , Xn) be a random sample from a distribution F (x|δ), which depends on
a vector of parameters δ = (θ, ϑ) where θ is the parameter of interest and ϑ is possibly a vector of nuisance
parameters. Weerahandi [22] defines a generalized pivot R (X, x, θ, ϑ) for confidence interval estimation, where x
is an observed value of X, as a random variable having the following two properties:

(i) R (X, x, θ, ϑ) has a probability distribution that is free of unknown parameters.
(ii) The observed value of R (X, x, θ, ϑ), X = x, is the parameter of interest.

Let R (α) be the 100α-th percentile of R (X, x, θ, ϑ). Then, (R (α/2) , R (1− α/2)) becomes a 100 (1− α)%
two-sided GCI for θ.



Mathematics 2017, 5, 39 6 of 23

Recall that:
(n− 1) S2

σ2 = V ∼ χ2
n−1, (11)

where V is chi-squared distribution with n− 1 degrees of freedom. Now, write:

σ2 =
(n− 1) S2

V
. (12)

The generalized pivotal quantity (GPQ) for σ2 is defined by:

Rσ2 =
(n− 1) s2

V
. (13)

Moreover, the mean is given by:

µ ≈ x̄− Z√
U

√
(n− 1) s2

n
, (14)

where Z and U denote the standard normal distribution and chi-square distribution with n− 1 degrees
of freedom, respectively. Thus, the GPQ for µ is defined by:

Rµ = x̄− Z√
U

√
(n− 1) s2

n
. (15)

Therefore, the GPQ for θ is defined by:

Rθ =
nRµ

n +
(

Rσ2 /R2
µ

) . (16)

Moreover, the GPQ for θ∗ is defined by:

Rθ∗ =
nRµ

n−
(

Rσ2 /R2
µ

) . (17)

Therefore, the 100 (1− α)% two-sided confidence intervals for the single normal mean with
unknown CV based on the GCI approach are obtained by:

CIGCI.θ = (Rθ (α/2) , Rθ (1− α/2)) (18)

and:
CIGCI.θ∗ = (Rθ∗ (α/2) , Rθ∗ (1− α/2)) , (19)

where Rθ (α) and Rθ∗ (α) denote the 100 (α)-th percentiles of Rθ and Rθ∗ , respectively.

Algorithm 1. For a given x̄, the GCI for θ and θ∗ can be computed by the following steps:

Step 1. Generate V ∼ χ2
n−1, and then, compute Rσ2 from Equation (13).

Step 2. Generate Z ∼ N(0, 1) and U ∼ χ2
n−1, then compute Rµ from Equation (15).

Step 3. Compute Rθ from Equation (16), and compute Rθ∗ from Equation (17).
Step 4. Repeat Steps 1–3 a total q times, and obtain an array of Rθ’s and Rθ∗ ’s.
Step 5. Compute Rθ (α/2), Rθ (1− α/2), Rθ∗ (α/2) and Rθ∗ (1− α/2).
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2.2. Large Sample Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient
of Variation

Again, from Equations (2) and (4), the estimators of the mean with unknown CV are defined by:

θ̂ =
nX̄

n + (S2/X̄2)
(20)

and:

θ̂∗ =
nX̄

n− (S2/X̄2)
. (21)

From Theorem 2, the variance of θ̂ is defined by:

Var
(
θ̂
)
=

 µ

1+
(

σ2

nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2
 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n + 2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n +
(

nσ2

nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 , (22)

with µ and σ2 replaced by x̄ and s2, respectively.
From Theorem 1, the variance of θ̂∗ is defined by:

Var
(
θ̂∗
)
=

 µ

1−
(

σ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

)


2 σ2

nµ2 +

(
nσ2

nµ2+σ2

)2
(

2
n+

2σ4+4nµ2σ2

(nµ2+σ2)
2

)
(

n−
(

nσ2
nµ2+σ2

)(
1+ 2σ4+4nµ2σ2

(nµ2+σ2)
2

))2

 , (23)

with µ and σ2 replaced by x̄ and s2, respectively.
Therefore, the 100 (1− α)% two-sided confidence intervals for the single normal mean with

unknown CV based on the LS approach are obtained by:

CILS.θ =

(
θ̂− z1−α/2

√
Var(θ̂), θ̂ + z1−α/2

√
Var(θ̂)

)
(24)

and:

CILS.θ∗ =

(
θ̂∗ − z1−α/2

√
Var(θ̂∗), θ̂∗ + z1−α/2

√
Var(θ̂∗)

)
, (25)

where z1−α/2 denotes the 1− α/2-th quantile of the standard normal distribution.

Algorithm 2. The coverage probability for θ and θ∗ can be computed by the following steps:

Step 1. Generate X1, X2, . . . , Xn from N
(
µ, σ2) and then compute x̄ and s2.

Step 2. Use Algorithm 1 to construct CIGCI.θ and record whether or not the value of θ falls in the
corresponding confidence interval.
Step 3. Use Algorithm 1 to construct CIGCI.θ∗ and record whether or not the value of θ∗ falls in the
corresponding confidence interval.
Step 4. Use Equation (24) to construct CILS.θ and record whether or not the value of θ falls in the
corresponding confidence interval.
Step 5. Use Equation (25) to construct CILS.θ∗ and record whether or not the value of θ∗ falls in the
corresponding confidence interval.
Step 6. Repeat Steps 1–5, a total M times. Then, for CIGCI.θ and CILS.θ , the fraction of times that all θ are
in their corresponding confidence intervals provides an estimate of the coverage probability. Similarly,
for CIGCI.θ∗ and CILS.θ∗ , the fraction of times that all θ∗ are in their corresponding confidence intervals
provides an estimate of the coverage probability.
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3. Confidence Intervals for the Difference between the Means of Normal Distributions with
Unknown Coefficients of Variation

Suppose that X = (X1, X2, . . . , Xn) are independent random variables each having a normal
distribution with mean µX and variance σ2

X. Additionally, suppose that Y = (Y1, Y2, . . . , Ym) are
independent random variables each having a normal distribution with mean µY and variance σ2

Y.
Furthermore, X and Y are independent. Let X̄ and S2

X be the sample mean and the sample variance for
X, respectively. Furthermore, let x̄ and s2

X be the observed sample of X̄ and S2
X, respectively. Similarly,

let Ȳ and S2
Y be the sample mean and the sample variance for Y, respectively. Furthermore, let ȳ and s2

Y
be the observed sample of Ȳ and S2

Y, respectively.
Let δ = θX − θY be the difference between means with unknown CVs. The estimators of δ are

defined by:

δ̂ = θ̂X − θ̂Y =
nX̄

n + (S2
X/X̄2)

− mȲ
m + (S2

Y/Ȳ2)
(26)

and:

δ̂∗ = θ̂∗X − θ̂∗Y =
nX̄

n− (S2
X/X̄2)

− mȲ
m− (S2

Y/Ȳ2)
, (27)

where θ̂X and θ̂∗X denote the estimator of θX and θ∗X, respectively, and θ̂Y and θ̂∗Y denote the estimator of
θY and θ∗Y, respectively.

Theorem 3. Suppose that X = (X1, X2, . . . , Xn) is a random sample from N
(
µX, σ2

X
)
, and suppose that

Y = (Y1, Y2, . . . , Ym) is a random sample from N
(
µY, σ2

Y
)
. Let X and Y be independent. Let X̄ and S2

X be the
sample mean and the sample variance for X, respectively. Furthermore, let Ȳ and S2

Y be the sample mean and the
sample variance for Y, respectively. Let θX and θY be the mean with unknown CV of X and Y, respectively. Let
δ be the difference between θX and θY. Let δ̂ be an estimator of δ. The mean and variance of δ̂ are obtained by:

E
(
δ̂
)
=

 µX

1+
(

σ2
X

nµ2
X+σ2

X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

)

1+

(
nσ2

X
nµ2

X+σ2
X

)2(
2
n +

2σ4
X+4nµ2

Xσ2
X

(nµ2
X+σ2

X)
2

)
(

n +

(
nσ2

X
nµ2

X+σ2
X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

))2



−

 µY

1+
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)

1+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m +

(
mσ2

Y
mµ2

Y+σ2
Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2

 (28)

and:

Var
(
δ̂
)
=

 µX

1+
(

σ2
X

nµ2
X+σ2

X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2




2
 σ2

X
nµ2

X
+

(
nσ2

X
nµ2

X+σ2
X

)2
 2

n+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2


n+

(
nσ2

X
nµ2

X+σ2
X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

2



+

 µY

1+
(

σ2
Y

mµ2
Y+σ2

Y

)1+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2




2
 σ2

Y
mµ2

Y
+

(
mσ2

Y
mµ2

Y+σ2
Y

)2
 2

m+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2


m+

(
mσ2

Y
mµ2

Y+σ2
Y

)1+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

2

 . (29)

Proof. Let δ = θX − θY be the difference between means with unknown CVs. Let δ̂ be an estimator of
δ, which is defined by:

δ̂ =
nX̄

n + (S2
X/X̄2)

− mȲ
m + (S2

Y/Ȳ2)
.
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Thus, the mean and variance of δ̂ are obtained by:

E
(
δ̂
)

= E

(
nX̄

n + (S2
X/X̄2)

− mȲ
m + (S2

Y/Ȳ2)

)

= E

(
nX̄

n + (S2
X/X̄2)

)
− E

(
mȲ

m + (S2
Y/Ȳ2)

)

=

 µX

1+
(

σ2
X

nµ2
X+σ2

X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

)

1+

(
nσ2

X
nµ2

X+σ2
X

)2(
2
n +

2σ4
X+4nµ2

Xσ2
X

(nµ2
X+σ2

X)
2

)
(

n +

(
nσ2

X
nµ2

X+σ2
X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

))2



−

 µY

1+
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)

1+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m +

(
mσ2

Y
mµ2

Y+σ2
Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2


and:

Var
(
δ̂
)

= Var
(

nX̄
n+(S2

X/X̄2)
− mȲ

m+(S2
Y/Ȳ2)

)
= Var

(
nX̄

n+(S2
X/X̄2)

)
+ Var

(
mȲ

m+(S2
Y/Ȳ2)

)

=

 µX

1+
(

σ2
X

nµ2
X+σ2

X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2




2
 σ2

X
nµ2

X
+

(
nσ2

X
nµ2

X+σ2
X

)2
 2

n+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2


n+

(
nσ2

X
nµ2

X+σ2
X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

2



+

 µY

1+
(

σ2
Y

mµ2
Y+σ2

Y

)1+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2




2
 σ2

Y
mµ2

Y
+

(
mσ2

Y
mµ2

Y+σ2
Y

)2
 2

m+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2


m+

(
mσ2

Y
mµ2

Y+σ2
Y

)1+
2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

2

 .

Hence, Theorem 3 is proven.

Theorem 4. Suppose that X = (X1, X2, . . . , Xn) is a random sample from N
(
µX, σ2

X
)

and suppose that
Y = (Y1, Y2, . . . , Ym) is a random sample from N

(
µY, σ2

Y
)
. Let X and Y be independent. Let X̄ and S2

X be the
sample mean and the sample variance for X, respectively. Furthermore, let Ȳ and S2

Y be the sample mean and the
sample variance for Y, respectively. Let θ∗X and θ∗Y be the mean with unknown CV of X and Y, respectively. Let
δ∗ be the difference between θ∗X and θ∗Y. Additionally, let δ̂∗ be an estimator of δ∗. The mean and variance of δ̂∗

are obtained by:

E
(
δ̂∗
)
=

 µX

1−
(

σ2
X

nµ2
X+σ2

X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

)

1+

(
nσ2

X
nµ2

X+σ2
X

)2(
2
n +

2σ4
X+4nµ2

Xσ2
X

(nµ2
X+σ2

X)
2

)
(

n−
(

nσ2
X

nµ2
X+σ2

X

)(
1+ 2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

))2



−

 µY

1−
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)

1+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m−
(

mσ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2

 (30)
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and:

Var
(
δ̂∗
)
=

 µX

1−
(

σ2
X

nµ2
X+σ2

X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2




2
 σ2

X
nµ2

X
+

(
nσ2

X
nµ2

X+σ2
X

)2
 2

n+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2


n−

(
nσ2

X
nµ2

X+σ2
X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

2



+

 µY

1−
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)


2
 σ2

Y
mµ2

Y
+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m−
(

mσ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2

 . (31)

Proof. For the proof of the mean and variance of δ̂∗ is similar to Theorem 3.

3.1. Generalized Confidence Intervals for the Difference between Means of Normal Distributions with Unknown
Coefficients of Variation

From the random variable X and Y, since:

(n− 1) S2
X

σ2
X

= VX ∼ χ2
n−1 and

(m− 1) S2
Y

σ2
Y

= VY ∼ χ2
m−1. (32)

The GPQs for σ2
X and σ2

Y are defined by:

Rσ2
X
=

(n− 1) s2
X

VX
and Rσ2

Y
=

(m− 1) s2
Y

VY
. (33)

Moreover, the means are given by:

µX ≈ x̄− ZX√
UX

√
(n− 1) s2

X
n

and µY ≈ ȳ− ZY√
UY

√
(m− 1) s2

Y
m

. (34)

Thus, the GPQs for µX and µY are defined by:

RµX = x̄− ZX√
UX

√
(n− 1) s2

X
n

and RµY = ȳ− ZY√
UY

√
(m− 1) s2

Y
m

. (35)

Therefore, the GPQ for δ is defined by:

Rδ = RθX − RθY =
nRµX

n +
(

Rσ2
X

/R2
µX

) − mRµY

m +
(

Rσ2
Y

/R2
µY

) . (36)

Moreover, the GPQ for δ∗ is defined by:

Rδ∗ = Rθ∗X
− Rθ∗Y

=
nRµX

n−
(

Rσ2
X

/R2
µX

) − mRµY

m−
(

Rσ2
Y

/R2
µY

) . (37)

Therefore, the 100 (1− α)% two-sided confidence intervals for the difference between normal
means with unknown CVs based on the GCI approach are obtained by:

CIGCI.δ = (Rδ (α/2) , Rδ (1− α/2)) (38)

and:
CIGCI.δ∗ = (Rδ∗ (α/2) , Rδ∗ (1− α/2)) , (39)
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where Rδ (α) and Rδ∗ (α) denote the 100 (α)-th percentiles of Rδ and Rδ∗ , respectively.

Algorithm 3. For a given x̄ and ȳ, the GCI for δ and δ∗ can be computed by the following steps:

Step 1. Generate VX ∼ χ2
n−1 and VY ∼ χ2

m−1, then compute Rσ2
X

and Rσ2
Y

from Equation (33).

Step 2. Generate ZX ∼ N(0, 1), ZY ∼ N(0, 1), UX ∼ χ2
n−1 and UY ∼ χ2

m−1, then compute RµX and RµY

from Equation (35).
Step 3. Compute Rδ from Equation (36), and compute Rδ∗ from Equation (37).
Step 4. Repeat Steps 1–3, a total q times, and obtain an array of Rδ’s and Rδ∗ ’s.
Step 5. Compute Rδ (α/2), Rδ (1− α/2), Rδ∗ (α/2) and Rδ∗ (1− α/2).

3.2. Large Sample Confidence Intervals for the Difference between Means of Normal Distributions with
Unknown Coefficients of Variation

Again, the estimators of the difference between means with unknown CVs are defined by:

δ̂ = θ̂X − θ̂Y =
nX̄

n + (S2
X/X̄2)

− mȲ
m + (S2

Y/Ȳ2)
(40)

and:

δ̂∗ = θ̂∗X − θ̂∗Y =
nX̄

n− (S2
X/X̄2)

− mȲ
m− (S2

Y/Ȳ2)
. (41)

From Theorem 3, the variance of δ̂ is defined by:

Var
(
δ̂
)
=

 µX

1+
(

σ2
X

nµ2
X+σ2

X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2




2
 σ2

X
nµ2

X
+

(
nσ2

X
nµ2

X+σ2
X

)2
 2

n+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2


n+

(
nσ2

X
nµ2

X+σ2
X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

2



+

 µY

1+
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)


2
 σ2

Y
mµ2

Y
+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m +

(
mσ2

Y
mµ2

Y+σ2
Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2

 , (42)

with µX, µY, σ2
X and σ2

Y replaced by x̄, ȳ, s2
X and s2

Y, respectively.
From Theorem 4, the variance of δ̂∗ is defined by:

Var
(
δ̂∗
)
=

 µX

1−
(

σ2
X

nµ2
X+σ2

X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2




2
 σ2

X
nµ2

X
+

(
nσ2

X
nµ2

X+σ2
X

)2
 2

n+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2


n−

(
nσ2

X
nµ2

X+σ2
X

)1+
2σ4

X+4nµ2
Xσ2

X

(nµ2
X+σ2

X)
2

2



+

 µY

1−
(

σ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

)


2
 σ2

Y
mµ2

Y
+

(
mσ2

Y
mµ2

Y+σ2
Y

)2(
2
m +

2σ4
Y+4mµ2

Yσ2
Y

(mµ2
Y+σ2

Y)
2

)
(

m−
(

mσ2
Y

mµ2
Y+σ2

Y

)(
1+ 2σ4

Y+4mµ2
Yσ2

Y

(mµ2
Y+σ2

Y)
2

))2

 , (43)

with µX, µY, σ2
X and σ2

Y replaced by x̄, ȳ, s2
X and s2

Y, respectively.
Therefore, the 100 (1− α)% two-sided confidence intervals for the difference between normal

means with unknown CVs based on the LS approach are obtained by:

CILS.δ =

(
δ̂− z1−α/2

√
Var(δ̂), δ̂ + z1−α/2

√
Var(δ̂)

)
(44)
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and:

CILS.δ∗ =

(
δ̂∗ − z1−α/2

√
Var(δ̂∗), δ̂∗ + z1−α/2

√
Var(δ̂∗)

)
, (45)

where z1−α/2 denotes the 1− α/2-th quantile of the standard normal distribution.

3.3. Method of Variance Estimates Recovery Confidence Intervals for the Difference between Means of Normal
Distributions with Unknown Coefficients of Variation

Since the difference between means is denoted by δ = θX − θY, where θX and θY are the means of
X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Ym), respectively, suppose that θ̂X and θ̂Y are estimators of
θX and θY, respectively. The confidence intervals for θX and θY are defined by:

(lX, uX) =

(
θ̂X − t1−α/2

√
Var(θ̂X), θ̂X + t1−α/2

√
Var(θ̂X)

)
(46)

and:

(lY, uY) =

(
θ̂Y − t1−α/2

√
Var(θ̂Y), θ̂Y + t1−α/2

√
Var(θ̂Y)

)
. (47)

Similarly, the difference between means is denoted by δ∗ = θ∗X − θ∗Y. The confidence intervals for
θ∗X and θ∗Y are defined by:

(l∗X, u∗X) =
(

θ̂∗X − t1−α/2

√
Var(θ̂∗X), θ̂∗X + t1−α/2

√
Var(θ̂∗X)

)
(48)

and:

(l∗Y, u∗Y) =
(

θ̂∗Y − t1−α/2

√
Var(θ̂∗Y), θ̂∗Y + t1−α/2

√
Var(θ̂∗Y)

)
. (49)

The MOVER approach, introduced by Donner and Zou [23], is used to construct the 100 (1− α)%
two-sided confidence interval (Lδ, Uδ) of θX − θY where Lδ and Uδ denote the lower limit and upper
limit of the confidence interval, respectively. The lower limit and upper limit for δ are given by:

Lδ = θ̂X − θ̂Y −
√(

θ̂X − lX
)2

+
(
uY − θ̂Y

)2
(50)

and:
Uδ = θ̂X − θ̂Y +

√(
uX − θ̂X

)2
+
(
θ̂Y − lY

)2
. (51)

Similarly, the lower limit and upper limit for δ∗ are given by:

Lδ∗ = θ̂∗X − θ̂∗Y −
√(

θ̂∗X − l∗X
)2

+
(
u∗Y − θ̂∗Y

)2
(52)

and:
Uδ∗ = θ̂∗X − θ̂∗Y +

√(
u∗X − θ̂∗X

)2
+
(
θ̂∗Y − l∗Y

)2
. (53)

Therefore, the 100 (1− α)% two-sided confidence intervals for the difference between normal
means with unknown CVs based on the MOVER approach are obtained by:

CIMOVER.δ =

(
θ̂X − θ̂Y −

√(
θ̂X − lX

)2
+
(
uY − θ̂Y

)2
, θ̂X − θ̂Y +

√(
uX − θ̂X

)2
+
(
θ̂Y − lY

)2
)

(54)

and:

CIMOVER.δ∗ =

(
θ̂∗X − θ̂∗Y −

√(
θ̂∗X − l∗X

)2
+
(
u∗Y − θ̂∗Y

)2
, θ̂∗X − θ̂∗Y +

√(
u∗X − θ̂∗X

)2
+
(
θ̂∗Y − l∗Y

)2
)

. (55)

Algorithm 4. The coverage probability for δ and δ∗ can be computed by the following steps:
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Step 1. Generate X1, X2, . . . , Xn from N
(
µX, σ2

X
)
, and then, compute x̄ and s2

X. Additionally, generate
Y1, Y2, . . . , Ym from N

(
µY, σ2

Y
)
, and then, compute ȳ and s2

Y.
Step 2. Use Algorithm 3 to construct CIGCI.δ, and record whether or not the values of δ fall in the
corresponding confidence interval.
Step 3. Use Algorithm 3 to construct CIGCI.δ∗ , and record whether or not the values of δ∗ fall in the
corresponding confidence interval.
Step 4. Use Equation (44) to construct CILS.δ, and record whether or not the values of δ fall in the
corresponding confidence interval.
Step 5. Use Equation (45) to construct CILS.δ∗ , and record whether or not the values of δ∗ fall in the
corresponding confidence interval.
Step 6. Use Equation (54) to construct CIMOVER.δ, and record whether or not the values of δ fall in the
corresponding confidence interval.
Step 7. Use Equation (55) to construct CIMOVER.δ∗ , and record whether or not the values of δ∗ fall in
the corresponding confidence interval.
Step 8. Repeat Steps 1–7, a total M times. Then, for CIGCI.δ, CILS.δ and CIMOVER.δ, the fraction of
times that all δ are in their corresponding confidence intervals provides an estimate of the coverage
probability. Similarly, for CIGCI.δ∗ , CILS.δ∗ and CIMOVER.δ∗ , the fraction of times that all δ∗ are in their
corresponding confidence intervals provides an estimate of the coverage probability.

4. Simulation Studies

To compare the performance of the confidence intervals, coverage probabilities and average
lengths, introduced in Sections 2 and 3, two simulation studies were conducted. Comparison studies
were also conducted using the Student’s t-distribution, the z-distribution and the WS approach. The
Student’s t-distribution was used to construct the confidence interval for the single mean of the
normal distribution when the sample size is small, whereas the z-distribution was used to construct
the confidence interval when the sample size is large. The WS approach was used for constructing
the confidence interval for the difference of the means of the normal distribution; see the paper by
Niwitpong and Niwitpong [24]. The nominal confidence level of 1− α = 0.95 was set. The confidence
interval, with the values of the coverage probability greater than or close to the nominal confidence
level and also having the shortest average length, was chosen.

Firstly, the performances of the confidence intervals for the single mean of the normal distribution
with unknown CV (θ and θ∗) were compared. The confidence intervals were constructed with the GCI
approach (CIGCI.θ and CIGCI.θ∗ ) and the LS approach (CILS.θ and CILS.θ∗ ). Furthermore, the standard
confidence interval for the single mean of the normal distribution (CIµ) was constructed based on the
Student’s t-distribution and the z-distribution. Algorithm 1 and Algorithm 2 were used to compute
coverage probabilities and average lengths with q = 2500 and M = 5000 of sample size n from N(µ, σ2)

for µ = 1.0, σ = 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 2.0 and n = 10, 20, 30, 50, 100. The CVs were
computed by σ/µ. Tables 1 and 2 show the coverage probabilities and average lengths of the 95%
two-sided confidence intervals for θ, θ∗ and µ. The results indicated that the GCIs are similar to
the paper by Sodanin et al. [16] in terms of coverage probability and average length. For the GCI
approach, CIGCI.θ provides better confidence interval estimates than CIGCI.θ∗ in almost all cases. This
is because the coverage probabilities of CIGCI.θ∗ are close to 1.00 when σ increases. Hence, CIGCI.θ∗ is a
conservative confidence interval when σ increases. For the LS approach, the coverage probabilities of
CILS.θ and CILS.θ∗ provide less than the nominal confidence level of 0.95 and are close to 1.00 when
σ increases. Therefore, the LS approach is not recommended to construct the confidence interval for
the single mean of the normal distribution with unknown CV. This is then compared with CIµ. For a
small sample size, the coverage probability of CIGCI.θ performs as well as that of CIµ. The length of
CIµ is a bit shorter than the length of CIGCI.θ . Hence, CIµ is better than CIGCI.θ in terms of the average
length when the sample size is small. For a large sample size, CIGCI.θ is better than CIµ in terms of
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coverage probability. Furthermore, the coverage probability of CIGCI.θ is more stable than that of CIµ

in all sample size cases.

Table 1. The coverage probabilities of 95% of the two-sided confidence intervals for the mean of the
normal distribution with the unknown coefficient of variation (CV).

n σ
θ θ∗

CIµ
CIGCI.θ CILS.θ CIGCI.θ∗ CILS.θ∗

10

0.3 0.9472 0.9126 0.9492 0.9204 0.9496
0.5 0.9486 0.9056 0.9546 0.9326 0.9500
0.7 0.9524 0.9060 0.9616 0.9526 0.9510
0.9 0.9528 0.8882 0.9726 0.9748 0.9518
1.0 0.9480 0.8802 0.9754 0.9686 0.9486
1.1 0.9512 0.8754 0.9768 0.9660 0.9496
1.3 0.9468 0.8464 0.9742 0.9248 0.9468
1.5 0.9474 0.8348 0.9796 0.8728 0.9482
1.7 0.9534 0.8142 0.9880 0.8166 0.9526
2.0 0.9536 0.7904 0.9956 0.7364 0.9540

20

0.3 0.9548 0.9408 0.9538 0.9430 0.9556
0.5 0.9456 0.9268 0.9464 0.9412 0.9462
0.7 0.9460 0.9264 0.9470 0.9504 0.9460
0.9 0.9488 0.9296 0.9576 0.9702 0.9480
1.0 0.9492 0.9330 0.9650 0.9824 0.9478
1.1 0.9510 0.9284 0.9688 0.9842 0.9506
1.3 0.9478 0.9178 0.9728 0.9858 0.9508
1.5 0.9524 0.9052 0.9760 0.9730 0.9522
1.7 0.9490 0.8834 0.9708 0.9460 0.9494
2.0 0.9524 0.8446 0.9752 0.8870 0.9524

30

0.3 0.9546 0.9424 0.9538 0.9432 0.9430
0.5 0.9502 0.9360 0.9496 0.9440 0.9390
0.7 0.9512 0.9382 0.9508 0.9520 0.9416
0.9 0.9494 0.9402 0.9518 0.9672 0.9414
1.0 0.9512 0.9464 0.9594 0.9778 0.9428
1.1 0.9488 0.9452 0.9616 0.9852 0.9370
1.3 0.9498 0.9482 0.9714 0.9968 0.9412
1.5 0.9508 0.9420 0.9732 0.9938 0.9406
1.7 0.9508 0.9194 0.9738 0.9840 0.9432
2.0 0.9456 0.8804 0.9710 0.9554 0.9342

50

0.3 0.9506 0.9456 0.9508 0.9474 0.9466
0.5 0.9490 0.9432 0.9496 0.9466 0.9450
0.7 0.9474 0.9378 0.9480 0.9492 0.9406
0.9 0.9530 0.9480 0.9502 0.9642 0.9474
1.0 0.9442 0.9444 0.9460 0.9700 0.9384
1.1 0.9488 0.9532 0.9496 0.9774 0.9428
1.3 0.9460 0.9620 0.9534 0.9930 0.9414
1.5 0.9482 0.9656 0.9642 0.9978 0.9436
1.7 0.9508 0.9564 0.9736 0.9984 0.9434
2.0 0.9502 0.9338 0.9778 0.9944 0.9446

100

0.3 0.9520 0.9490 0.9522 0.9504 0.9496
0.5 0.9470 0.9436 0.9472 0.9460 0.9446
0.7 0.9468 0.9410 0.9462 0.9478 0.9434
0.9 0.9484 0.9474 0.9482 0.9558 0.9480
1.0 0.9540 0.9546 0.9538 0.9648 0.9504
1.1 0.9482 0.9526 0.9472 0.9656 0.9460
1.3 0.9504 0.9658 0.9522 0.9846 0.9494
1.5 0.9484 0.9748 0.9492 0.9960 0.9468
1.7 0.9512 0.9790 0.9516 0.9994 0.9482
2.0 0.9512 0.9724 0.9638 1.0000 0.9484
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Table 2. The average lengths of 95% of two-sided confidence intervals for the mean of the normal
distribution with unknown CV.

n σ
θ θ∗

CIµ
CIGCI.θ CILS.θ CIGCI.θ∗ CILS.θ∗

10

0.3 0.4253 0.3608 0.4137 0.3687 0.4186
0.5 0.7245 0.6007 0.6744 0.6490 0.6963
0.7 1.0259 0.8642 1.1274 1.5207 0.9762
0.9 1.2803 1.1520 2.0372 11.1622 1.2454
1.0 1.3992 1.3011 2.7009 27.4894 1.3893
1.1 1.5259 1.4717 3.4517 64.8564 1.5438
1.3 1.7277 1.7115 4.9087 43.8045 1.8119
1.5 1.9375 1.9505 6.2964 110.1241 2.0860
1.7 2.1402 2.0783 7.7439 45.9743 2.3560
2.0 2.4683 2.3036 9.8795 22.8761 2.7808

20

0.3 0.2780 0.2580 0.2751 0.2605 0.2765
0.5 0.4709 0.4313 0.4556 0.4443 0.4632
0.7 0.6700 0.6141 0.6230 0.6627 0.6489
0.9 0.8737 0.8322 0.8079 1.3335 0.8338
1.0 0.9713 0.9546 0.9411 56.2417 0.9240
1.1 1.0682 1.0867 1.1468 24.2131 1.0175
1.3 1.2466 1.3373 1.7581 20.3697 1.2060
1.5 1.4052 1.5424 2.5559 20.0763 1.3916
1.7 1.5542 1.6978 3.4312 22.5032 1.5748
2.0 1.7605 1.8027 4.9410 19.9994 1.8496

30

0.3 0.2233 0.2125 0.2218 0.2139 0.2130
0.5 0.3743 0.3535 0.3670 0.3600 0.3551
0.7 0.5295 0.4998 0.5077 0.5211 0.4973
0.9 0.6859 0.6659 0.6339 0.7431 0.6361
1.0 0.7692 0.7680 0.6993 0.9611 0.7089
1.1 0.8508 0.8789 0.7764 2.0789 0.7795
1.3 1.0151 1.1182 1.0086 11.3310 0.9249
1.5 1.1552 1.3209 1.3581 26.2084 1.0586
1.7 1.2986 1.4784 1.9502 21.8649 1.2103
2.0 1.4842 1.6205 2.9085 14.7054 1.4206

50

0.3 0.1706 0.1657 0.1699 0.1663 0.1659
0.5 0.2842 0.2746 0.2811 0.2776 0.2755
0.7 0.3996 0.3859 0.3907 0.3947 0.3853
0.9 0.5201 0.5127 0.4998 0.5381 0.4978
1.0 0.5783 0.5823 0.5491 0.6310 0.5509
1.1 0.6397 0.6651 0.5992 0.7966 0.6067
1.3 0.7639 0.8559 0.6957 2.0416 0.7173
1.5 0.8875 1.0531 0.8086 24.8041 0.8267
1.7 1.0090 1.2198 0.9864 40.4766 0.9368
2.0 1.1799 1.3726 1.4258 15.3103 1.1031

100

0.3 0.1188 0.1172 0.1186 0.1174 0.1173
0.5 0.1981 0.1948 0.1971 0.1958 0.1951
0.7 0.2791 0.2742 0.2762 0.2771 0.2741
0.9 0.3595 0.3569 0.3532 0.3638 0.3519
1.0 0.3997 0.4024 0.3909 0.4137 0.3907
1.1 0.4410 0.4534 0.4291 0.4735 0.4299
1.3 0.5238 0.5745 0.5032 0.6547 0.5078
1.5 0.6089 0.7220 0.5747 1.4514 0.5864
1.7 0.6960 0.8757 0.6435 29.4149 0.6654
2.0 0.8270 1.0523 0.7472 26.8938 0.7831
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The second simulation study was to compare the performance of confidence intervals for the
difference between two means of normal distributions with unknown CVs (δ and δ∗). There are three
approaches; GCIs are defined as CIGCI.δ and CIGCI.δ∗ ; large sample confidence intervals are defined
as CILS.δ and CILS.δ∗ ; and MOVER confidence intervals are defined as CIMOVER.δ and CIMOVER.δ∗

compared with the WS confidence interval for the difference of the means of the normal distribution
(CIµX−µY ). Algorithm 3 and Algorithm 4 were used to compute coverage probabilities and average
lengths with q = 2500 and M = 5000. The sample sizes n from N(µX , σ2

X) and m from N(µY, σ2
Y) for the

sample sizes were (n, m) = (10,10), (10,20), (30,30), (20,30), (50,50), (30,50), (100,100) and (50,100). The
population means were µX = µY = µ = 1.0, and the population standard deviations were σX = 0.3,
0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 2.0 and σY = 1.0. The coefficients of variation were computed by
τX = σX/µX and τY = σY/µY; also, the ratio of τX to τY reduces to σX/σY when we set µX = µY.
Tables 3 and 4 show that the coverage probabilities and average lengths of 95% two-sided confidence
intervals for δ, δ∗ and µX − µY. For the GCI approach, the coverage probabilities of CIGCI.δ are close to
the nominal confidence level of 0.95 for all cases. For small sample sizes, CIGCI.δ∗ is the conservative
confidence interval because the coverage probabilities are in the range from 0.97–1.00. Moreover, the
coverage probabilities of CIGCI.δ∗ are close to the nominal confidence level of 0.95 when the sample
sizes (n and m) increase. For the LS approach, CILS.δ have the coverage probabilities under the nominal
confidence level of 0.95 and close to the nominal confidence level of 0.95 when the sample sizes are
large. Furthermore, CILS.δ∗ is a conservative confidence interval because the coverage probabilities are
close to 1.00. For the MOVER approach, the coverage probability of CIMOVER.δ is not stable, whereas
CIMOVER.δ∗ is a conservative confidence interval. In addition, CIGCI.δ is better than CIµX−µY in terms
of coverage probability.

Table 3. The coverage probabilities of 95% of two-sided confidence intervals for the difference between
the means of the normal distributions with unknown CVs.

n m σX
σY

δ δ∗
CIµX−µY

CIGCI.δ CILS.δ CIMOV ER.δ CIGCI.δ∗ CILS.δ∗ CIMOV ER.δ∗

10 10

0.3 0.9534 0.8890 0.9170 0.9744 0.9744 0.9838 0.9472
0.5 0.9568 0.8980 0.9262 0.9762 0.9758 0.9864 0.9474
0.7 0.9638 0.9158 0.9450 0.9840 0.9846 0.9906 0.9536
0.9 0.9646 0.9240 0.9496 0.9900 0.9844 0.9902 0.9524
1.0 0.9636 0.9206 0.9494 0.9928 0.9846 0.9908 0.9512
1.1 0.9624 0.9154 0.9468 0.9942 0.9796 0.9868 0.9488
1.3 0.9642 0.9186 0.9444 0.9968 0.9630 0.9750 0.9504
1.5 0.9604 0.9166 0.9454 0.9948 0.9374 0.9570 0.9506
1.7 0.9606 0.9138 0.9424 0.9970 0.9088 0.9360 0.9516
2.0 0.9624 0.9202 0.9466 0.9984 0.8472 0.8832 0.9508

10 20

0.3 0.9548 0.9370 0.9508 0.9672 0.9810 0.9878 0.9500
0.5 0.9582 0.9328 0.9520 0.9708 0.9794 0.9880 0.9500
0.7 0.9610 0.9298 0.9536 0.9702 0.9800 0.9898 0.9504
0.9 0.9562 0.9236 0.9466 0.9798 0.9866 0.9914 0.9470
1.0 0.9594 0.9204 0.9444 0.9838 0.9846 0.9910 0.9512
1.1 0.9618 0.9162 0.9362 0.9874 0.9772 0.9846 0.9548
1.3 0.9562 0.8992 0.9240 0.9856 0.9492 0.9676 0.9484
1.5 0.9556 0.8868 0.9086 0.9870 0.9056 0.9328 0.9462
1.7 0.9524 0.8810 0.9076 0.9892 0.8568 0.8966 0.9438
2.0 0.9560 0.8778 0.9074 0.9946 0.7704 0.8050 0.9506
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Table 3. Cont.

n m σX
σY

δ δ∗
CIµX−µY

CIGCI.δ CILS.δ CIMOV ER.δ CIGCI.δ∗ CILS.δ∗ CIMOV ER.δ∗

30 30

0.3 0.9524 0.9458 0.9552 0.9566 0.9804 0.9834 0.9528
0.5 0.9492 0.9400 0.9492 0.9548 0.9744 0.9806 0.9450
0.7 0.9530 0.9448 0.9544 0.9544 0.9756 0.9814 0.9492
0.9 0.9512 0.9474 0.9566 0.9548 0.9774 0.9818 0.9470
1.0 0.9560 0.9564 0.9630 0.9614 0.9860 0.9892 0.9514
1.1 0.9520 0.9508 0.9578 0.9604 0.9886 0.9910 0.9486
1.3 0.9542 0.9578 0.9646 0.9680 0.9946 0.9960 0.9498
1.5 0.9532 0.9550 0.9606 0.9714 0.9934 0.9940 0.9504
1.7 0.9496 0.9362 0.9398 0.9734 0.9852 0.9858 0.9472
2.0 0.9518 0.9176 0.9238 0.9726 0.9580 0.9584 0.9494

20 30

0.3 0.9502 0.9430 0.9514 0.9542 0.9758 0.9806 0.9472
0.5 0.9520 0.9438 0.9560 0.9548 0.9736 0.9794 0.9476
0.7 0.9486 0.9374 0.9488 0.9530 0.9766 0.9814 0.9434
0.9 0.9534 0.9452 0.9562 0.9622 0.9828 0.9866 0.9490
1.0 0.9566 0.9494 0.9578 0.9674 0.9894 0.9920 0.9502
1.1 0.9536 0.9422 0.9528 0.9700 0.9914 0.9938 0.9490
1.3 0.9556 0.9410 0.9494 0.9732 0.9904 0.9916 0.9512
1.5 0.9504 0.9266 0.9362 0.9766 0.9788 0.9796 0.9458
1.7 0.9558 0.9064 0.9160 0.9768 0.9498 0.9522 0.9534
2.0 0.9496 0.8770 0.8848 0.9792 0.8968 0.9010 0.9460

50 50

0.3 0.9490 0.9474 0.9512 0.9486 0.9658 0.9686 0.9472
0.5 0.9470 0.9480 0.9528 0.9494 0.9664 0.9700 0.9460
0.7 0.9510 0.9480 0.9526 0.9520 0.9652 0.9700 0.9480
0.9 0.9520 0.9514 0.9600 0.9522 0.9712 0.9756 0.9498
1.0 0.9516 0.9522 0.9586 0.9510 0.9750 0.9780 0.9504
1.1 0.9516 0.9566 0.9616 0.9524 0.9800 0.9828 0.9510
1.3 0.9510 0.9656 0.9684 0.9532 0.9940 0.9952 0.9480
1.5 0.9528 0.9670 0.9708 0.9666 0.9986 0.9990 0.9520
1.7 0.9510 0.9636 0.9678 0.9722 0.9990 0.9990 0.9514
2.0 0.9478 0.9402 0.9444 0.9716 0.9922 0.9922 0.9482

30 50

0.3 0.9492 0.9466 0.9524 0.9484 0.9664 0.9710 0.9466
0.5 0.9530 0.9510 0.9572 0.9530 0.9680 0.9714 0.9504
0.7 0.9482 0.9468 0.9522 0.9492 0.9646 0.9716 0.9460
0.9 0.9548 0.9518 0.9590 0.9558 0.9760 0.9802 0.9524
1.0 0.9544 0.9530 0.9598 0.9550 0.9802 0.9840 0.9510
1.1 0.9470 0.9486 0.9564 0.9554 0.9844 0.9870 0.9444
1.3 0.9536 0.9554 0.9610 0.9690 0.9960 0.9966 0.9508
1.5 0.9548 0.9480 0.9530 0.9732 0.9938 0.9942 0.9496
1.7 0.9498 0.9318 0.9374 0.9738 0.9846 0.9850 0.9490
2.0 0.9534 0.9056 0.9132 0.9746 0.9568 0.9568 0.9520

100 100

0.3 0.9484 0.9510 0.9536 0.9492 0.9626 0.9642 0.9484
0.5 0.9514 0.9510 0.9524 0.9510 0.9594 0.9624 0.9498
0.7 0.9512 0.9508 0.9536 0.9508 0.9584 0.9606 0.9504
0.9 0.9480 0.9496 0.9528 0.9480 0.9586 0.9608 0.9480
1.0 0.9494 0.9524 0.9544 0.9496 0.9614 0.9648 0.9504
1.1 0.9528 0.9558 0.9580 0.9538 0.9670 0.9674 0.9528
1.3 0.9482 0.9616 0.9642 0.9484 0.9782 0.9798 0.9456
1.5 0.9576 0.9774 0.9782 0.9584 0.9964 0.9968 0.9570
1.7 0.9542 0.9784 0.9802 0.9546 0.9994 0.9994 0.9536
2.0 0.9516 0.9762 0.9772 0.9602 0.9998 0.9998 0.9504

50 100

0.3 0.9504 0.9516 0.9544 0.9506 0.9590 0.9618 0.9512
0.5 0.9516 0.9498 0.9546 0.9516 0.9586 0.9614 0.9508
0.7 0.9596 0.9598 0.9624 0.9604 0.9662 0.9688 0.9600
0.9 0.9576 0.9560 0.9614 0.9590 0.9686 0.9718 0.9572
1.0 0.9496 0.9510 0.9542 0.9486 0.9690 0.9728 0.9488
1.1 0.9532 0.9570 0.9610 0.9550 0.9760 0.9798 0.9518
1.3 0.9508 0.9634 0.9676 0.9550 0.9924 0.9930 0.9514
1.5 0.9526 0.9672 0.9696 0.9644 0.9974 0.9982 0.9512
1.7 0.9492 0.9586 0.9614 0.9694 0.9996 0.9996 0.9486
2.0 0.9478 0.9352 0.9384 0.9710 0.9946 0.9946 0.9456
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Table 4. The average lengths of 95% of two-sided confidence intervals for the difference between the
means of the normal distributions with unknown CVs.

n m σX
σY

δ δ∗
CIµX−µY

CIGCI.δ CILS.δ CIMOV ER.δ CIGCI.δ∗ CILS.δ∗ CIMOV ER.δ∗

10 10

0.3 1.4718 1.3608 1.5706 2.7495 174.6926 201.6273 1.4236
0.5 1.5914 1.4527 1.6767 2.8520 174.7595 201.7044 1.4971
0.7 1.7571 1.6056 1.8532 3.1970 33.8930 39.1187 1.6166
0.9 1.9389 1.8005 2.0781 4.1762 26.1286 30.1572 1.7813
1.0 2.0215 1.9182 2.2139 4.8029 31.8030 36.7065 1.8667
1.1 2.0976 2.0093 2.3191 5.3971 42.2349 48.7468 1.9499
1.3 2.2818 2.2054 2.5454 6.9736 53.7877 62.0809 2.1712
1.5 2.4646 2.4389 2.8149 8.4225 45.4266 52.4306 2.3985
1.7 2.6356 2.6138 3.0168 9.9089 122.9135 141.8647 2.6292
2.0 2.9148 3.1079 3.5871 11.8712 69.6795 80.4229 2.9979

10 20

0.3 1.0621 1.0243 1.1061 1.0587 2.4146 2.5885 0.9930
0.5 1.2152 1.1368 1.2436 1.2119 3.8426 4.1307 1.1157
0.7 1.4160 1.3040 1.4448 1.5965 3.4517 3.7802 1.2893
0.9 1.6279 1.5328 1.7167 2.4886 44.2464 50.8401 1.5007
1.0 1.7222 1.6489 1.8530 3.0562 35.0240 40.1845 1.6063
1.1 1.8227 1.7801 2.0077 3.7729 47.6685 54.8935 1.7281
1.3 2.0132 2.0119 2.2794 5.1821 91.2530 105.0995 1.9692
1.5 2.2017 2.1958 2.4938 6.7121 39.5264 45.4867 2.2244
1.7 2.4089 2.4177 2.7518 8.0771 37.9031 43.5650 2.4918
2.0 2.6824 2.5396 2.8924 10.1815 26.2631 30.1053 2.8703

30 30

0.3 0.8027 0.8006 0.8354 0.7367 1.0259 1.0706 0.7697
0.5 0.8548 0.8481 0.8850 0.7937 1.0455 1.0910 0.8173
0.7 0.9352 0.9223 0.9624 0.8702 1.1191 1.1678 0.8906
0.9 1.0312 1.0236 1.0681 0.9503 1.2716 1.3269 0.9774
1.0 1.0899 1.0974 1.1451 1.0040 1.6832 1.7564 1.0298
1.1 1.1485 1.1760 1.2272 1.0627 2.1235 2.2159 1.0820
1.3 1.2722 1.3654 1.4248 1.2585 8.2640 8.6235 1.1953
1.5 1.3966 1.6270 1.6978 1.5903 27.1841 28.3667 1.3164
1.7 1.5139 1.6831 1.7563 2.1176 35.3634 36.9019 1.4409
2.0 1.6822 1.8095 1.8882 3.0681 21.9906 22.9473 1.6353

20 30

0.3 0.8187 0.8130 0.8505 0.7549 1.0180 1.0641 0.7827
0.5 0.9041 0.8867 0.9306 0.8386 1.0790 1.1310 0.8589
0.7 1.0223 0.9911 1.0438 0.9460 1.2008 1.2627 0.9640
0.9 1.1661 1.1438 1.2085 1.0920 1.8674 1.9735 1.0926
1.0 1.2419 1.2385 1.3106 1.2215 4.2819 4.5571 1.1617
1.1 1.3146 1.3381 1.4178 1.4014 7.5387 8.0317 1.2312
1.3 1.4642 1.5546 1.6505 1.9154 17.0820 18.2339 1.3827
1.5 1.6109 1.7381 1.8472 2.6707 19.0229 20.3057 1.5445
1.7 1.7539 1.8779 1.9969 3.5847 32.3002 34.4873 1.7187
2.0 1.9472 2.0091 2.1372 4.9841 19.0434 20.3310 1.9677

50 50

0.3 0.6034 0.6069 0.6223 0.5754 0.6541 0.6707 0.5886
0.5 0.6447 0.6461 0.6624 0.6177 0.6911 0.7086 0.6282
0.7 0.7038 0.7017 0.7195 0.6749 0.7477 0.7666 0.6841
0.9 0.7786 0.7791 0.7989 0.7433 0.8346 0.8557 0.7542
1.0 0.8194 0.8281 0.8490 0.7781 0.8994 0.9221 0.7917
1.1 0.8638 0.8895 0.9121 0.8145 1.0048 1.0302 0.8330
1.3 0.9584 1.0388 1.0651 0.8903 3.1159 3.1947 0.9186
1.5 1.0597 1.2056 1.2361 0.9939 12.1816 12.4899 1.0100
1.7 1.1659 1.3568 1.3912 1.1583 17.5067 17.9499 1.1079
2.0 1.3165 1.4928 1.5306 1.5863 15.3073 15.6948 1.2567
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Table 4. Cont.

n m σX
σY

δ δ∗
CIµX−µY

CIGCI.δ CILS.δ CIMOV ER.δ CIGCI.δ∗ CILS.δ∗ CIMOV ER.δ∗

30 50

0.3 0.6209 0.6224 0.6396 0.5931 0.6690 0.6873 0.6043
0.5 0.6903 0.6847 0.7054 0.6619 0.7306 0.7524 0.6688
0.7 0.7836 0.7695 0.7950 0.7472 0.8216 0.8484 0.7557
0.9 0.9015 0.8939 0.9258 0.8436 0.9923 1.0280 0.8637
1.0 0.9654 0.9729 1.0088 0.8944 1.1737 1.2182 0.9209
1.1 1.0300 1.0608 1.1009 0.9589 2.1593 2.2476 0.9791
1.3 1.1651 1.2625 1.3124 1.1732 32.7157 34.1355 1.1042
1.5 1.3020 1.4566 1.5155 1.5471 17.5557 18.3175 1.2389
1.7 1.4241 1.5969 1.6622 2.0171 35.1323 36.6591 1.3673
2.0 1.5982 1.7241 1.7952 2.9794 11.3044 11.7944 1.5689

100 100

0.3 0.4175 0.4195 0.4247 0.4090 0.4306 0.4359 0.4125
0.5 0.4470 0.4480 0.4535 0.4386 0.4588 0.4644 0.4412
0.7 0.4882 0.4877 0.4937 0.4792 0.4988 0.5050 0.4812
0.9 0.5380 0.5388 0.5455 0.5272 0.5520 0.5588 0.5298
1.0 0.5658 0.5704 0.5775 0.5534 0.5867 0.5940 0.5569
1.1 0.5957 0.6076 0.6151 0.5810 0.6305 0.6383 0.5855
1.3 0.6610 0.7056 0.7143 0.6392 0.7828 0.7925 0.6473
1.5 0.7286 0.8282 0.8385 0.6955 1.6204 1.6405 0.7106
1.7 0.8031 0.9658 0.9778 0.7534 36.5017 36.9534 0.7790
2.0 0.9168 1.1278 1.1417 0.8449 18.0070 18.2298 0.8820

50 100

0.3 0.4352 0.4361 0.4424 0.4267 0.4470 0.4533 0.4293
0.5 0.4912 0.4886 0.4967 0.4821 0.4998 0.5080 0.4834
0.7 0.5658 0.5595 0.5699 0.5534 0.5739 0.5845 0.5555
0.9 0.6548 0.6514 0.6647 0.6334 0.6786 0.6925 0.6396
1.0 0.7051 0.7120 0.7270 0.6762 0.7595 0.7757 0.6867
1.1 0.7558 0.7801 0.7971 0.7164 0.8804 0.9001 0.7332
1.3 0.8639 0.9477 0.9694 0.8013 2.4805 2.5415 0.8314
1.5 0.9734 1.1261 1.1528 0.9099 9.0286 9.2562 0.9311
1.7 1.0905 1.2906 1.3216 1.0872 36.8034 37.7344 1.0400
2.0 1.2480 1.4371 1.4719 1.5106 11.7799 12.0774 1.1961

5. An Empirical Application

Three examples are given to illustrate our proposed approaches.

Example 1. The dataset, previously considered by Niwitpong [9], is fitted by the normal distribution. The
data shows the cholesterol level of 15 participants who were given eight weeks of training to truly reduce the
cholesterol level. The n = 15 participants were 129, 131, 154, 172, 115, 126, 175, 191, 122, 238, 159, 156, 176,
175 and 126. The sample mean and sample variance of the data were 156.3333 and 1094.9520, respectively.
The sample CV was 0.2117. The GCIs for the mean with unknown CV θ and θ∗ were, respectively, (136.8439,
173.6214) and (137.9615, 174.5876) with interval lengths of 36.7775 and 36.6261. The large sample confidence
intervals for the mean with unknown CV θ and θ∗ were (−4679.6220, 4991.3580) and (−4709.2810, 5022.8840)
with interval lengths of 9670.9800 and 9732.1650, respectively. Finally, the confidence interval for the mean µ

based on the Student’s t-distribution was (138.0087, 174.6580) with an interval length of 36.6493.
The simulation results are presented in Table 5. The coverage probability of CIGCI.θ is as good as the

coverage probability of CIµ. The length of CIµ provides a bit shorter length of CIGCI.θ . Hence, the confidence
interval based on the Student’s t-distribution is better than the other confidence intervals when the sample size is
small. Therefore, these results confirm the simulation results for a small sample size in the previous section.
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Table 5. The coverage probability (average length) of 95% of two-sided confidence intervals for the
mean of the normal distribution with unknown CV when n = 15, µ = 156.3333 and σ2 = 1094.9520.

θ θ∗
CIµ

CIGCI.θ CILS.θ CIGCI.θ∗ CILS.θ∗

0.9566 1.0000 0.9548 1.0000 0.9560
(36.1795) (11,447.5700) (35.9020) (11,523.9500) (35.9821)

Example 2. The dataset, also provided by Niwitpong [9], is fitted by the normal distribution. The data show
the number of defects in 100,000 lines of code in a particular type of software program made in United States
and Japan. The n = 32 observations were as follows 48, 54, 50, 38, 39, 48, 48, 38, 42, 52, 42, 36, 52, 55, 40,
40, 40, 43, 43, 40, 48, 46, 48, 48, 52, 48, 50, 48, 52, 52, 46 and 45. The sample mean and sample variance of
the data were 45.9688 and 27.7732, respectively. The CV was 0.1146. The GCIs for the mean with unknown
CV θ and θ∗ were, respectively, (44.0826, 47.7486) and (44.1216, 47.7818) with interval lengths of 3.6660 and
3.6602. The large sample confidence intervals for the mean with unknown CV θ and θ∗ were (−1834.1070,
1926.0070) and (−8348.0830, 8440.0580) with interval lengths of 3760.1140 and 16,788.1410, respectively.
Finally, the confidence interval for the mean µ based on the z-distribution was (44.1428, 47.7947) with an
interval length of 3.6519.

The simulation results are presented in Table 6. The confidence interval based on the z-distribution yields
an interval length shorter than the other confidence intervals. However, the coverage probabilities of the GCI
are much closer to the nominal confidence level of 0.95 than those of other confidence intervals. Therefore, the
GCI approach provides the best confidence interval when the sample size is large. Hence, the results support the
simulation results for large sample size in the previous section.

Table 6. The coverage probability (average length) of 95% of two-sided confidence intervals for the
mean of the normal distribution with unknown CV when n = 32, µ = 45.9688 and σ2 = 27.7732.

θ θ∗
CIµ

CIGCI.θ CILS.θ CIGCI.θ∗ CILS.θ∗

0.9480 1.0000 0.9480 1.0000 0.9396
(3.7747) (3521.8090) (3.7713) (85,798.7900) (3.6227)

Example 3. The data example is taken from Lee and Lin [25] and was originally given by Jarvis et al. [26] and
Pagano and Gauvreau [27]. The data are fitted by the normal distribution, representing carboxyhemoglobin
levels for nonsmokers and cigarette smokers. The summary statistics of nonsmokers were n = 121, x̄ = 1.3000
and s2

X = 1.7040. For cigarette smokers, the summary statistics were m = 75, ȳ = 4.1000, and s2
Y = 4.0540.

The CVs of nonsmoker and cigarette smoker were 1.0041 and 0.4911, respectively. The difference between
x̄ and ȳ was −2.8000. The GCIs for the difference between two means with unknown CVs δ and δ∗ were,
respectively, (−3.3269,−2.2880) and (−3.3260,−2.2956) with interval lengths of 1.0389 and 1.0304. The large
sample confidence intervals for the difference between two means with unknown CVs δ and δ∗ were, respectively,
(−5.2288,−0.3664) and (−5.8213, 0.2167) with interval lengths of 4.8624 and 6.0380. The MOVER confidence
intervals for the difference between two means with unknown CVs δ and δ∗ were, respectively, (−5.2690,
−0.3262) and (−5.8714, 0.2668) with interval lengths of 4.9428 and 6.1382. Finally, the WS confidence interval
for the difference between two means µX − µY was (−3.3172, −2.2828) with an interval length of 1.0344.

Table 7 presents the simulation results. The GCI approach and the WS confidence interval have yielded
a minimum coverage probability at 0.95. The length of one of the GCI approach, CIGCI.δ∗ , is a bit shorter than
the length of CIµX−µY . The coverage probability of CIGCI.δ is better than that of CIµX−µY . Hence, the GCI
approach performs well in terms of the coverage probability. Therefore, these results confirm the simulation
results in the previous section.
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Table 7. The coverage probability (average length) of 95% of two-sided confidence intervals for the
difference between the means of the normal distributions with unknown CVs when n = 121, m = 75,
µX = 1.3000, µY = 4.1000, σ2

X = 1.7040 and σ2
Y = 4.0540.

δ δ∗
CIµX−µY

CIGCI.δ CILS.δ CIMOV ER.δ CIGCI.δ∗ CILS.δ∗ CIMOV ER.δ∗

0.9512 1.0000 1.0000 0.9506 1.0000 1.0000 0.9502
(1.0416) (4.9047) (4.9858) (1.0321) (6.4812) (6.5886) (1.0325)

6. Discussion and Conclusions

Sodanin et al. [16] constructed the GCIs for the mean of the normal distribution with unknown CV.
This paper provides generalized confidence intervals (CIGCI.θ and CIGCI.θ∗) and proposes large sample
confidence intervals (CILS.θ and CILS.θ∗ ) for the single mean of the normal distribution with unknown
CV (θ and θ∗). Comparison studies were also conducted using the standard confidence interval for
the normal mean (CIµ) based on the Student’s t-distribution and the z-distribution, which are much
more simple and easier to implement. Moreover, the new confidence intervals were proposed for
the difference between two means of the normal distributions with unknown CVs (δ and δ∗). The
confidence intervals for δ and δ∗ were constructed based on the GCI approach (CIGCI.δ and CIGCI.δ∗),
the LS approach (CILS.δ and CILS.δ∗ ) and the MOVER approach (CIMOVER.δ and CIMOVER.δ∗ ), compared
with the standard confidence interval, using the WS approach to construct the confidence interval
for the difference of two means of the normal distribution (CIµX−µY ). The coverage probabilities and
average lengths of the proposed confidence intervals were evaluated through Monte Carlo simulations.

For the single mean with unknown CV, the results are similar to the paper by Sodanin et al. [16]
in terms of coverage probability and average length for all cases. The coverage probabilities of CIGCI.θ
were satisfactorily stable around 0.95. Therefore, CIGCI.θ was preferred for the single mean of the
normal distribution with unknown CV. CILS.θ and CILS.θ∗ have the coverage probabilities under the
nominal confidence level of 0.95 and close to 1.00 when σ increases. Therefore, the LS approach is not
recommended to construct the confidence interval for the mean with unknown CV. Furthermore, CIµ

is better than CIGCI.θ in terms of the average length when the sample size is small, whereas CIGCI.θ is
better than CIµ in terms of coverage probability when the sample size is large. However, the coverage
probability of CIGCI.θ is more stable than that of CIµ in all sample size cases. Therefore, the GCI
approach is recommended as an interval estimator for the mean with unknown CV.

For the difference of two means with unknown CVs, the coverage probabilities of CIGCI.δ satisfy
the nominal confidence level of 0.95 for all cases. Therefore, CIGCI.δ was preferred for the difference of
the means with unknown CVs. The LS and MOVER approaches are not recommended to construct the
confidence interval for the difference of means with unknown CVs. Furthermore, CIGCI.δ is better than
CIµX−µY in terms of the coverage probability. Therefore, the GCI approach can be used to estimate the
confidence interval for the difference of means with unknown CVs.

Hence, it can be seen in this paper that the new estimator of Srivastava [12] is utilized and well
established both in constructing the single mean confidence interval and the difference of means of
normal distributions when the CVs are unknown.

Acknowledgments: This research was funded by King Mongkut’s University of Technology North Bangkok.
Grant No. KMUTNB-60-GOV-013.

Author Contributions: All authors contributed significantly to the study and preparation of the article. They
have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2017, 5, 39 22 of 23

References

1. Sahai, A.; Acharya, M.R.; Ali, H. Efficient estimation of normal population mean. J. Appl. Sci. 2006,
6, 1966–1968.

2. Searls, D.T. The utilization of a known coefficient of variation in the estimation procedure. J. Am. Stat. Assoc.
1964, 59, 1225–1226.

3. Khan, R.A. A note on estimating the mean of a normal distribution with known coefficient of variation.
J. Am. Stat. Assoc. 1968, 63, 1039–1041.

4. Gleser, L.J.; Healy, J.D. Estimating the mean of a normal distribution with known coefficient of variation.
J. Am. Stat. Assoc. 1976, 71, 977–981.

5. Bhat, K.K.; Rao, K.A. On tests for a normal mean with known coefficient of variation. Int. Stat. Rev. 2007, 75,
170–182.

6. Niwitpong, S.; Koonprasert, S.; Niwitpong, S. Confidence interval for the difference between normal
population means with known coefficients of variation. Appl. Math. Sci. 2012, 6, 47–54.

7. Niwitpong, S. Confidence intervals for the normal mean with known coefficient of variation. World Acad. Sci.
Eng. Technol. 2012, 6, 1365–1368.

8. Niwitpong, S.; Niwitpong, S. On simple confidence intervals for the normal mean with a known coefficient
of variation. World Acad. Sci. Eng. Technol. 2013, 7, 1444–1447.

9. Niwitpong, S. Confidence intervals for the normal mean with a known coefficient of variation. Far East J.
Math. Sci. 2015, 97, 711–727.

10. Niwitpong, S.; Niwitpong, S. Confidence intervals for the difference between normal means with known
coefficients of variation. Ann. Oper. Res. 2016, 247, 1–15.

11. Sodanin, S.; Niwitpong, S.; Niwitpong, S. Confidence intervals for common mean of normal distributions
with known coefficient of variation. In Integrated Uncertainty in Knowledge Modelling and Decision Making;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9978, pp. 574–585.

12. Srivastava, V.K. A note on the estimation of mean in normal population. Metrika 1980, 27, 99–102.
13. Srivastava, V.K.; Singh, R.S. Uniformly minimum variance unbiased estimator of efficiency ratio in estimation

of normal population mean. Stat. Probab. Lett. 1990, 10, 241–245.
14. Sahai, A. On an estimator of normal population mean and UMVU estimation of its relative efficiency.

Appl. Math. Comput. 2004, 152, 701–708.
15. Sahai, A.; Acharya, R.M. Iterative estimation of normal population mean using computational-statistical

intelligence. Compos. Sci. Technol. 2016, 4, 500–508.
16. Sodanin, S.; Niwitpong, S.; Niwitpong, S. Generalized confidence intervals for the normal mean with

unknown coefficient of variation. AIP Conf. Proc. 2016, 1175, 030043. doi:10.1063/1.4965163.
17. Banik, S.; Kibria, B.M.G. Estimating the population coefficient of variation by confidence intervals.

Commun. Stat. Simul. Comput. 2011, 40, 1236–1261.
18. Gulhar, M.; Kibria, B.M.G.; Albatineh, A.N.; Ahmed, N.U. A comparison of some confidence intervals for

estimating the population coefficient of variation: A simulation study. Stat. Oper. Res. Trans. 2012, 36, 45–68.
19. Albatineh, A.N.; Kibria, B.M.G.; Wilcox, M.L.; Zogheib, B. Confidence interval estimation for the population

coefficient of variation using ranked set sampling: A simulation study. J. Appl. Stat. 2014, 41, 733–751.
20. Thangjai, W.; Niwitpong, S.; Niwitpong, S. Confidence intervals for the common mean of several normal

populations with unknown coefficients of variation. Commun. Stat. Simul. Comput. 2017, submitted.
21. Blumenfeld, D. Operations Research Calculations Handbook; CRC Press: Boca Raton, FL, USA; New York, NY,

USA, 2001.
22. Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905.
23. Donner, A.; Zou, G.Y. Closed-form confidence intervals for function of the normal mean and standard

deviation. Stat. Methods Med. Res. 2010, 21, 347–359.
24. Niwitpong, S.; Niwitpong, S. Confidence interval for the difference of two normal population means with

a known ratio of variances. Appl. Math. Sci. 2010, 4, 347–359.
25. Lee, J.C.; Lin, S.H. Generalized confidence intervals for the ratio of means of two normal populations. J. Stat.

Plan. Inference 2004, 123, 49–60.



Mathematics 2017, 5, 39 23 of 23

26. Jarvis, M.J.; Tunstall-Pedoe, H.; Feyerabend, C.; Vesey, C.; Saloojee, Y. Comparison of tests used to distinguish
smokers from nonsmokers. Am. J. Public Health 1987, 77, 1435–1438.

27. Pagano, M.; Gauvreau, K. Principles of Biostatistics; Duxbury: Pacific Grove, CA, USA, 1993.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient of Variation
	Generalized Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient of Variation
	Large Sample Confidence Intervals for the Mean of the Normal Distribution with Unknown Coefficient of Variation

	Confidence Intervals for the Difference between the Means of Normal Distributions with Unknown Coefficients of Variation
	Generalized Confidence Intervals for the Difference between Means of Normal Distributions with Unknown Coefficients of Variation
	Large Sample Confidence Intervals for the Difference between Means of Normal Distributions with Unknown Coefficients of Variation
	Method of Variance Estimates Recovery Confidence Intervals for the Difference between Means of Normal Distributions with Unknown Coefficients of Variation

	Simulation Studies
	An Empirical Application
	Discussion and Conclusions

