
Article

F -Harmonic Maps between Doubly Warped
Product Manifolds

Seyed Mehdi Kazemi Torbaghan and Morteza Mirmohammad Rezaii *

Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of
Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran; mehdikazemi@aut.ac.ir
* Correspondence: mmreza@aut.ac.ir; Tel.: +98-912-148-8625

Academic Editor: Lokenath Debnath
Received: 7 January 2017; Accepted: 21 March 2017; Published: 23 March 2017

Abstract: In this paper, some properties of F -harmonic and conformal F -harmonic maps between
doubly warped product manifolds are studied and new examples of non-harmonic F -harmonic
maps are constructed.

Keywords: harmonic maps; F -harmonic maps; doubly warped product manifolds

1. Introduction

Let φ : (M, g)→ (N, h) be a smooth map between Riemannian manifolds. The map φ is called
harmonic if it is a critical point of the energy functional:

E(φ) =
∫

K
e(φ)dυg (1)

for any compact sub-domain K ⊆ M, where e(φ) := 1
2 | dφ |2 is the energy density of φ. Here, | dφ |

denotes the Hilbert–Schmidt norm of the differential dφ ∈ Γ(T∗M⊗ φ−1TN) with respect to g and h.
The Euler–Lagrange equation corresponding to the energy functional is given by vanishing of

the tension field τ(φ) := traceg∇dφ. Many researchers have been studying this topic extensively (see,
for instance, [1–3]).

F -harmonic maps as a generalization of harmonic maps, geodesics and minimal surfaces were first
studied by Ara [4]. Let F : [0, ∞) −→ [0, ∞) be a C2-function such that F′ > 0 on (0, ∞). The map φ is
said to be F -harmonic if φ is a critical point of the F -energy functional:

EF (φ) =
∫

M
F ( | d(φ) |2

2
)dυg (2)

F -energy functional can be considered as energy , p-energy or exponential energy when F (t)
is equal to t, (2t)

p
2 /p (p ≥ 4) or et, respectively. The Euler–Lagrange equation associated with the

F -energy functional is given by:

τF (φ) := F ′( | dφ |2
2

)τ(φ) + dφ(gradg(F ′(
| dφ |2

2
))) = 0 (3)

The operator τF (φ) is called the F -tension field of the map φ.
In view of physics, harmonic maps have been studied in various fields of physics, such as super

conductor, ferromagnetic material, liquid crystal, etc. [5–8]. Additionally, p-harmonic maps have been
extensively applied in image processing for denoising color images [9,10]. Furthermore, exponential
harmonic maps have been studied on gravity [11]. The concept of F -harmonic maps, as an extension
of harmonic, p-harmonic and exponential harmonic maps, have an important role in physics and

Mathematics 2017, 5, 20; doi:10.3390/math5020020 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/journal/mathematics


Mathematics 2017, 5, 20 2 of 13

physical cosmology. For instance, instead of the scalar field in the Lagrangian, some of the F -harmonic
maps, such as the trigonometric functions, are studied in order to reproduce the inflation. Moreover,
there are other F -harmonic maps, such as exponential harmonic maps, are investigated in order to
depict the phenomenon of the quintessence [12,13].

Since 2000, many scholars have done research in this regard. In [14], Ara extended two stability
theorems due to Howard and Okayasu to F -harmonic maps. He also showed that every stable
F -harmonic map into sufficiently pinched simply-connected Riemannian manifolds is constant.
In [15], several Liouville theorems for F -harmonic maps between Riemannian manifold are proved.
In [16], the researchers studied new geometric techniques to deal with the Dirichlet problem for
p-harmonic maps and F -harmonic maps. In [17], Li studied F -harmonic maps from a complete
Riemannian manifold M and F -Yang–Mills fields on M. He showed that, under some conditions,
every F -Yang–Mills field with finite F -Yang–Mills energy vanishes on M.

It is worth noting that F -harmonic maps should not be confused with f -harmonic maps between
Riemannian manifolds. The notion of f -harmonic maps was first studied by Lichnerowicz [18] in 1970.
Let f ∈ C∞(M) be a positive smooth function on M. The map φ is called f -harmonic if φ is a critical
point of the f -energy functional:

E f (φ) :=
1
2

∫
M

f | dφ |2 dυg

In view of physics, these maps can be considered as the stationary solutions of an inhomogeneous
Heisenberg spin system. For more details [19].

On the other hand, the notion of warped product manifolds generalizes that of a surface of
revolution. It was studied by Bishop and O’Neill for constructing negative curvature manifolds [20].
These products play an important role in many branches of physics, especially in general relativity,
string and super gravity theories [21]. For instance, in gravity theories, the best model of space-time
that describes the outer space near black holes with large gravitational force is given as a warped
product manifold [22]. Due to the role of these products in construction of examples with negative
curvature, warped product manifolds have an important role in geometry [20,23].

The notion of doubly warped product manifolds can be considered as an extension of warped
product manifolds. These products are studied for Lorentzian manifolds by Beem and Powell
in [24]. In [25,26], global hyperbolicity and null pseudocovexity of Lorentzian doubly warped product
manifolds are investigated. In [27], the author investigates conformal properties of doubly warped
products manifolds. In [28], globally hyperbolicity of generalized Robertson–Walker space-times with
doubly warped product fiber is studied.

One of the important examples of doubly warped product manifolds is a doubly warped
space-time. This is mainly because this space-time produces many exact solutions to Einstein’s
field equations. The Gibbons-Maeda-Garfinkle-Horowitz-Strominger solutions of the Einstein field
equations represent the geometry exterior to a spherically symmetric static charged black hole and
GMGHS metric in the doubly warped product space-time have the same form as the Kantowski–Sachs
solution [29]. In [30], Choi studied the GMGHS space-time in order to analyze the anisotropic
cosmological model, which represents homogeneous but anisotropically expanding or contracting
cosmology. He also investigated the solution of GMGHS space-time in the form of doubly warped
products and obtained the Ricci curvature associated with three phases in the evolution of the universe.

In this paper, following the ideas in [31], F -harmonic and conformally F -harmonic maps between
doubly warped product manifolds are studied. More precisely, the methods provided in [3,31] are
used to investigate the F -harmonicity of these maps. Sections 3–5 contain our main results. Owing to
the importance of F -harmonic maps and doubly warped product space in physics and physical
cosmology [5–13,24–30], the results of this paper can provide benefits for studying the F -harmonicity
of the maps from or into the doubly warped product manifolds in research on various fields of physical
cosmology, such as the phenomena of the quintessence and the inflation.
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This paper is organized as follows. In Section 2, some results on warped product manifolds are
reviewed. In Section 3, the F -harmonicity conditions of smooth maps from a Riemannian manifold
P into a doubly warped product manifold M µ×λ N are analyzed. Especially, it is shown that both
of the leaves {x0} × N and M× {y0} are never non-harmonic F -harmonic maps as submanifolds of
a doubly warped product manifold M µ×λ N. In Section 4, some characterizations for F -harmonicity
of smooth maps from a doubly warped product manifold M µ×λ N into a Riemannian manifold P are
given. Particularly, it is shown that the projection maps from a doubly warped product manifolds
M µ×λ N, whose warping functions λ and µ are non-constant functions, are not F -harmonic. In the
last section, new classes of F -harmonic maps between doubly warped product maps are constructed.

2. Some Results on Doubly Warped Product Manifolds

Let (M, g) and (N, h) be Riemannian manifolds and let λ ∈ C∞(M) and µ ∈ C∞(N) be positive
smooth functions. The doubly warped product manifold M µ×λ N is the product manifold M× N
equipped with the Riemannian metric:

ḡ(X, Y) = (µ ◦ π2)
2g(dπ1(X), dπ1(Y)) + (λ ◦ π1)

2h(dπ2(X), dπ2(Y)) (4)

for any X, Y ∈ Γ(T(M× N)), where π1 : M µ×λ N −→ M and π2 : M µ×λ N −→ N are canonical
projection maps. A doubly warped product manifold M µ×λ N is called direct product manifold if λ

and µ are constant. The relationship between the Levi–Civita connections on direct product manifold
M× N and doubly warped product manifold M µ×λ N is given as follows:

Theorem 1. Let (M, g) and (N, h) be Riemannian manifolds with the Levi–Civita connections ∇M and ∇N ,
respectively, and let ∇ and ∇ denote the Levi–Civita connections of direct product manifold M× N and doubly
warped product manifold M µ×λ N , respectively. Then, the Levi–Civita connection of doubly warped product
manifold is given as follows [19]:

∇(X1,Y1)
(X2, Y2)

= (∇M
X1

X2 +
1

2µ2 Y1(µ
2)X2 +

1
2µ2 Y2(µ

2)X1 −
1
2

h(Y1, Y2)gradgλ2, 02)

+ (01,∇N
Y1

Y2 +
1

2λ2 X1(λ
2)Y2 +

1
2λ2 X2(λ

2)Y1 −
1
2

g(X1, X2)gradhµ2) (5)

for any (X1, Y1), (X2, Y2) ∈ Γ(T(M× N)), where X1, X2 ∈ Γ(TM) and Y1, Y2 ∈ Γ(TN). Here, (Xi, Yi) is
identified with (Xi, 02) + (01, Yi), i = 1, 2, and 01 ∈ Tp M and 02 ∈ TqN.

Doubly warped product manifolds M µ×λ N, whose warping functions λ and µ are harmonic
functions, have been interesting for researchers in mathematical physics. For instance, the following
results were proved in [32].

Theorem 2. Let M µ×λ N be a doubly warped product manifold whose warping functions λ and µ are
harmonic functions. Then, there exists no isometric minimal immersion of a doubly warped product M µ×λ N
into a Riemannian manifold of negative curvature [32].

Theorem 3. If M is a compact Riemannian manifold and µ is a harmonic function on N, then [32]:

(1) Every doubly warped product M µ×λ N does not admit an isometric minimal immersion into any
Riemannian manifold of negative curvature.

(2) Every doubly warped product M µ×λ N does not admit an isometric minimal immersion into
a Euclidean space.
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Next, the F -harmonicity of some special maps from or into a doubly warped product manifold
are studied.

3. F -Harmonicity Conditions of Φ : (P, ρ) −→ (M µ×λ N, ḡ)

In this section, the F -harmonicity conditions of smooth maps from a Riemannian manifold (P, ρ)

into a doubly warped product manifold M µ×λ N are studied. Particularly, it is shown that both of
the leaves {x0} × N and M × {y0} are never non-harmonic F -harmonic maps as submanifolds of
a doubly warped product manifold M µ×λ N.

Let (Mm, g), (Nn, h) and (Pp, ρ) be Riemannian manifolds of dimensions m, n and p, respectively.
Let λ ∈ C∞(M) and µ ∈ C∞(N) be two positive smooth functions and (M µ×λ N, ḡ) be the doubly
warped product manifold. Denote the Levi–Civita connection on the doubly warped product manifold
M µ×λ N by ∇. In the sequel, the following convention of index ranges are used:

1 6 i, j, k, ... 6 m, 1 6 α, β, γ, ... 6 n, 1 6 a, b, c, ... 6 p.

According to the above notations, we have the following.

Theorem 4. Let (Mm, g), (Nn, h) and (Pp, ρ) be Riemannian manifolds. Let φ : (P, ρ) −→ (M, g) and
ψ : (P, ρ) −→ (N, h) be smooth maps. Then, the F -tension field of :

Φ : (Pp, ρ) −→ (Mm
µ×λ Nn, ḡ)

x −→ (φ(x), ψ(x)) (6)

is given by:

τF (Φ) = F ′(k)
{
(τ(φ), τ(ψ)) +

(
dφ(gradρ ln(µ2 ◦ ψ)), dψ(gradρ ln(λ2 ◦ φ)))

− (e(ψ)(gradgλ2) ◦ φ, e(φ)(gradhµ2) ◦ ψ)

}
+F ′′(k)(dφ(gradρk), dψ(gradρk)) (7)

where k := e(φ)µ2 ◦ ψ + e(ψ)λ2 ◦ φ.

Proof. Let {ea} be an orthogonal frame with respect to ρ on P. By means of Equation (5) and definition
of tension field, we have:

τ(Φ) = traceρ∇dΦ

=
p

∑
a=1

{
∇(dφ(ea),dψ(ea))(dφ(ea), dψ(ea))− (dφ(∇P

ea ea), dψ(∇P
ea ea))

}
=

p

∑
a=1

{(
∇M

dφ(ea)
dφ(ea)− dφ(∇P

ea ea) + 2dψ(ea)(ln µ)dφ(ea)−
1
2
| dψ |2 (gradgλ2) ◦ φ, 02

)
+

(
01,∇N

dψ(ea)
dψ(ea)− dψ(∇P

ea ea) + 2dφ(ea)(ln λ)dψ(ea)−
1
2
| dφ |2 (gradhµ2) ◦ ψ

)}
(8)

Due to the fact that dψ(ea)(ln µ) = ea(ln µ ◦ ψ) (resp. dφ(ea)(ln λ) = ea(ln λ ◦ φ)) and
considering Equation (8), we get:

τ(Φ) = (τ(φ), τ(ψ)) + (dφ(gradρ ln(µ2 ◦ ψ)), dψ(gradρ ln(λ2 ◦ φ)))

− (e(ψ)(gradgλ2) ◦ φ, e(φ)(gradhµ2) ◦ ψ) (9)

By means of Equations (3) and (9), the F -tension field of Φ can be obtained as follows:
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τF (Φ) = F ′( | dΦ |2
2

)τ(Φ) + dΦ(gradρ(F ′(
| dΦ |2

2
)))

= F ′′( | dΦ |2
2

)(dφ(gradρ(
| dΦ |2

2
)), dψ(gradρ(

| dΦ |2
2

)))

+F ′( | dΦ |2
2

)

{
(τ(φ), τ(ψ)) + (dφ(gradρ ln(µ2 ◦ ψ)), dψ(gradρ ln(λ2 ◦ φ)))

− (e(ψ)(gradgλ2) ◦ φ, e(φ)(gradhµ2) ◦ ψ)

}
(10)

By calculating the energy density of Φ, we get:

e(Φ) =
1
2
| dΦ |2 =

1
2

p

∑
a=1

ḡ(dΦ(ea), dΦ(ea))

=
1
2

p

∑
a=1

{
µ2 ◦ ψ g(dφ(ea), dφ(ea)) + λ2 ◦ φ h(dψ(ea), dψ(ea))

}
= e(φ)µ2 ◦ ψ + e(ψ)λ2 ◦ φ (11)

Substituting Equation (11) into (10) yields Equation (7) and hence completes the proof.

F -Harmonicity of the Inclusion Maps

Let (M µ×λ N, ḡ) be a doubly warped product manifold. Denote by:

iy0 : (M, g) −→ (M µ×λ N, ḡ)

x −→ (x, y0) (12)

the inclusion map of M at the point y0 ∈ N level in M µ×λ N, and:

ix0 : (N, h) −→ (M µ×λ N, ḡ)

y −→ (x0, y) (13)

the inclusion map of N at the point x0 ∈ M level in M µ×λ N. Now, the F -harmonicity conditions for
both of the leaves {x0} × N and M× {y0} as submanifolds of a non-trivial doubly warped product
manifold M µ×λ N are studied .

Proposition 1. Let M µ×λ N be a doubly warped product manifold whose warping functions λ and µ are
non-constant functions. The inclusion map iy0 defined by Equation (12) is never a non- harmonic F -harmonic
map.

Proof. By means of Equations (7) and (9), the tension and F -tension field of iy0 are given by:

τ(iy0) = −
m
2
(01, gradhµ2) ◦ iy0 (14)

and:
τF (iy0) = −

m
2
F ′(m

2
µ2(y0))(01, gradhµ2) ◦ iy0 (15)

By Equations (14) and (15), the inclusion map iy0 is non-harmonic F -harmonic map if and only if
F ′(m

2 µ2(y0)) = 0. However, this is in contradiction with the fact that F′ > 0 on (0, ∞). This completes
the proof.

For the inclusion map ix0 : N −→ M µ×λ N, defined by Equation (13), a similar proof gives:
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Proposition 2. Let M µ×λ N be a doubly warped product manifold whose warping functions λ and µ

are non-constant functions. The inclusion map ix0 , defined by Equation (13), is never a non- harmonic
F -harmonic map.

4. F -Harmonicity Conditions of Φ̃ : (M µ×λ N, ḡ) −→ (P, ρ)

In this section, the F -harmonicity conditions of some special maps from a doubly warped product
manifold into a Riemannian manifold are studied and an example is given. Finally, it is obtained
that the projection maps from a non-trivial doubly warped product manifolds M µ×λ N can not be
F -harmonic.

First, we study the F -harmonicity conditions of the map:

Φ̃ : (M µ×λ N, ḡ) −→ (Pp, ρ)

(x, y) −→ φ(x) (16)

where φ : M −→ P is a smooth map. We have the following.

Theorem 5. Let φ : (M, g) −→ (P, ρ) be a smooth map. Then, the map Φ̃ defined by Equation (16) is
F -harmonic if and only if:

F ′( e(φ)
µ2 )dφ(gradg ln λn) +

1
µ2 {F

′(
e(φ)
µ2 )τ(φ) +

1
µ2F

′′(
e(φ)
µ2 )dφ(gradg(e(φ)))} = 0 (17)

Proof. Let {ei} be an orthogonal frame on (M, g) and { fα} be an orthogonal frame on (N, h).
An orthogonal frame on a doubly warped product manifold M µ×λ N is given by { 1

µ (ei, 02), 1
λ (01, fα)}.

From the expression of tension field, we have:

τ(Φ̃) = traceḡ∇dΦ̃

=
m

∑
i=1

{
1
µ
∇P

dΦ̃(ei ,02)
dΦ̃(

1
µ

ei, 02)− dΦ̃(
1
µ
∇(ei ,02)

(
1
µ

ei, 02))

}
+

n

∑
α=1

{
1
λ
∇(01, fα)dΦ̃(01,

1
λ

fα)− dΦ̃(
1
λ
∇(01, fα)(01,

1
λ

fα))

}
(18)

By Equation (5), we get:

∇(ei ,02)
(ei, 02) = (∇M

ei
ei, 02)−

1
2

g(ei, ei)(01, gradh µ2) (19)

and:

∇(01, fα)(01, fα) = (01,∇N
fα

fα)−
1
2

h( fα, fα)(gradgλ2, 02) (20)

By substituting Equations (19) and (20) into (18), we have:

τ(Φ̃) =
1

µ2 τ(φ) + dφ(gradg ln λn) (21)

Let us now compute the F -tension field of Φ̃. First, by Equation (4), we write down the energy
density of Φ̃. We get:
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e(Φ̃) =
1
2
| dΦ̃ |2

=
1
2

m

∑
i=1

ρ
(
dΦ̃(

1
µ

ei, 02), dΦ̃(
1
µ

ei, 02)
)
+

n

∑
α=1

ρ
(
dΦ̃(01,

1
λ

fα), dψ̃(01,
1
λ

fα)
)

=
1

2µ2

n

∑
α=1

ρ(dφ(ei), dφ(ei))

=
e(φ)
µ2 (22)

By Equations (3), (21) and (22), the F -tension field of Φ̃ can be obtained as follows:

τF (Φ̃) = F ′( | dΦ̃ |2
2

)τ(Φ̃) + dΦ̃(gradgF ′(
| dΦ̃ |2

2
))

= F ′( e(φ)
µ2 )τ(Φ̃) + dΦ̃

( m

∑
i=1

(
1
µ

ei, 02)(F ′(
e(φ)
µ2 ))(

1
µ

ei, 02)

+
n

∑
α=1

(01,
1
λ

fα)(F ′(
e(φ)
µ2 ))(01,

1
λ

fα)

)
= F ′( e(φ)

µ2 )(
1

µ2 τ(φ) + dφ(gradg ln λn)) +
1

µ4F
′′(

e(φ)
µ2 )dφ(gradg(e(φ))) (23)

Thus, F -harmonicity of Φ̃ implies that:

F ′( e(φ)
µ2 )dφ(gradg ln λn) +

1
µ2

{
F ′( e(φ)

µ2 )τ(φ) +
1

µ2F
′′(

e(φ)
µ2 )dφ(gradg(e(φ)))

}
= 0 (24)

This completes the proof.

From Theorem 5, we obtain the following result.

Corollary 1. Let Mm
µ×λ Nn be a doubly warped product manifold whose warping functions λ and µ are

non-constant functions. The projection map π1 : (Mm
µ×λ Nn, ḡ) −→ (Mm, g), π1(x, y) = x is never

an F -harmonic map.

Proof. By means of Equation (23), the F -tension field of π1 is given by:

τF (π1) = F ′(
m

2µ2 )gradg ln λn (25)

Due to the fact that F′ > 0 on (0, ∞) and considering Equation (25), the F -harmonicity of π1

implies that λ is constant on M. However, this is in contradiction with M µ×λ N being a non-trivial
doubly warped product manifold. This completes the proof.

Finally, we consider the map:

Ψ̃ : M µ×λ N −→ N

(x, y) −→ ψ(y) (26)

where ψ : (Nn, h) −→ (Nn, h) is a smooth map. By calculating similarly to Equations (21) and (23),
we get:
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τF (Ψ̃) =
1

λ2

{
F ′( e(ψ)

λ2 )τ(ψ) +
1

λ2F
′′(

e(ψ)
λ2 )dψ(gradh(e(ψ)))

}
+F ′( e(ψ)

λ2 )dψ(gradh ln µm) (27)

Thus, we have the following.

Theorem 6. Let (Mm, g), (Nn, h) and (Pp, ρ) be Riemannian manifolds. Let ψ : (Nn, h) −→ (Pp, ρ) be
a smooth map. Then, the map Ψ̃ defined by Equation (35) is F -harmonic if and only if:

1
λ2 {F

′(
e(ψ)
λ2 )τ(ψ) +

1
λ2F

′′(
e(ψ)
λ2 )dψ(gradh(e(ψ))}+F ′(

e(ψ)
λ2 )dψ(gradh ln µm) = 0 (28)

As a similar proof of Corollary 1 and considering Equation (28), we get the following.

Corollary 2. Let Mm
µ×λ Nn be a doubly warped product manifold whose warping functions λ and µ

are non-constant functions. The projection map π2 : (M µ×λ N, ḡ) −→ (Mm, g), π2(x, y) = y is never
an F -harmonic map.

According to the proofs of Corollaries 1 and 2, we have the following.

Proposition 3. Let M = Mm
µ×λ Nn be a doubly warped product manifold. Then, the F -harmonicity of the

projection maps π1 : M −→ M and π2 : M −→ N implies that M is a direct product manifold.

Proof. By Equations (17) and (28), it is obtained that the F -harmonicity of the projection maps π1 and
π2 implies that λ and µ are constant functions on M and N, respectively. This completes the proof.

Definition 1. A smooth map φ : (M, g) −→ (N, h) is said to be conformal if there exists a positive real
function σ on M such that φ∗h = σ2g. The function σ is called the dilation of φ [33].

Proposition 4. The tension field of a conformal map φ : (Mm, g)→ (Nn, h) with dilation σ, is given by [33]:

τ(φ) = (2− n) dφ(grad ln σ)− (m− n)dφ(H) (29)

where H is the mean curvature vector field of the fibers.

Note that any conformal map φ : (Mn, g)→ (Nn, h) between manifolds of the same dimension
(n > 2) is a local conformal diffeomorphism [3].

Now, an example of non-harmonic F -harmonic maps is given.

Example 1. Let N = R4 − {0} be an Euclidean manifold and ψ : N −→ N be a smooth map defined by:

ψ(y) =
y
| y |2 (30)

and the map ψ is conformal with dilation:

σ =
1
| y |2 =

1
r2 (31)

where r :=| y |. Due to the fact that ψ is a conformal map between manifolds of the same dimension and using
Equations (29) and (31), one can easily check that:

τ(ψ) = 4dψ(grad ln r) (32)
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and:
e(ψ) =

2
r4 (33)

Let S3 be the three-dimensional Euclidean unit sphere and:

Ψ̃ : S3
µ×λ N −→ N

(x, y) 7−→ ψ(y) (34)

where µ = r
4
3 e

2
3r4 and λ = 1. By setting F (t) = et and substituting Equations (32) and (33) in (28), it could

be concluded that Ψ̃ is F -harmonic.

5. F -Harmonicity Conditions of φ : (M µ×λ N, ḡ) −→ (P β×α Q, g̃)

In this section, we study F -harmonic and conformal F -harmonic maps between doubly warped
product manifolds. Let (Mm, g), (Nn, h), (Pp, ρ) and (Qq, ρ) be Riemannian manifolds, the functions
λ ∈ C∞(M), µ ∈ C∞(N), α ∈ C∞(P) and β ∈ C∞(Q) are positive and (M µ×λ N, ḡ) and (P β×α Q, g̃)
are doubly warped product manifolds. We consider the map:

Φ̂ : (M µ×λ N, ḡ) −→ (P β×α Q, g̃)

(x, y) −→ (φ(x), ψ(y)) (35)

where φ : (M, g) −→ (P, ρ) and ψ : (N, h) −→ (Q, ρ) are smooth maps.

Theorem 7. Let φ : (M, g) −→ (P, ρ) and ψ : (N, h) −→ (Q, ρ) be smooth maps and let (M µ×λ N, ḡ)
and (P β×α Q, g̃) be doubly warped product manifolds. Then, the F -tension field of the map Φ̂, defined by
Equation (35), is given by:

τF (Φ̂) = F ′(l){( 1
µ2 τ(φ) + dφ(gradg ln λn)− 1

λ2 e(ψ)(gradρα2) ◦ φ, 02)

+ (01,
1

λ2 τ(ψ) + dψ(gradh ln µm)− 1
µ2 e(φ)(gradρβ2) ◦ ψ)}

+F ′′(l){( β2 ◦ ψ

µ4 dφ(gradge(φ)) +
e(ψ)
µ2 dφ(gradg(

α2 ◦ φ

λ2 )), 02)

+ (01,
α2 ◦ φ

λ4 dψ(gradhe(ψ)) +
e(φ)
λ2 dψ(gradh(

β2 ◦ ψ

µ2 )))} (36)

where e(φ) and e(ψ) are energy densities of φ and ψ, respectively, and l := β2◦ψ
µ2 e(φ) + α2◦φ

λ2 e(ψ).

Proof. Let {ei} be an orthogonal frame on (M, g) and { fα} be an orthogonal frame on
(N, h). An orthogonal frame on the doubly warped product manifold M µ×λ N is given by
{ 1

µ (ei, 02), 1
λ (01, fα)}. Denote the Levi–Civita connections on (Mm

µ×λ Nn, ḡ) and (Pp
β×α Qq, g̃) by

∇ and ∇̃, respectively. By using the expression of tension field, we get:
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τ(Φ̂) = traceḡ∇dΦ̂

=
m

∑
i=1

{
1
µ
∇̃dΦ̂(ei ,02)

dΦ̂(
1
µ

ei, 02)− dΦ̂(
1
µ
∇(ei ,02)

(
1
µ

ei, 02))

}
+

n

∑
γ=1

{
1
λ
∇̃dΦ̂(01, fγ)

dΦ̂(01,
1
λ

fγ)− dΦ̂(
1
λ
∇(01, fγ)(01,

1
λ

fγ))

}

=
1

µ2

m

∑
i=1

{(
∇P

dφ(ei)
dφ(ei)− dφ(∇M

ei
ei), 02

)
− 1

2

(
01, ρ(dφ(ei), dφ(ei))(gradρβ2) ◦ ψ− g(ei, ei)dψ(gradhµ2)

)}
+

1
λ2

n

∑
γ=1

{(
01,∇Q

dψ( fγ)
dψ( fγ)− dψ(∇N

fγ
fγ)

)
− 1

2

(
ρ(dψ( fγ), dψ( fγ))(gradρα2) ◦ φ

− h( fγ, fγ)dφ(gradgλ2), 02

)}
= (

1
µ2 τ(φ) + dφ(gradg ln λn)− 1

λ2 e(ψ)(gradρα2) ◦ φ, 02)

+ (01,
1

λ2 τ(ψ) + dψ(gradh ln µm)− 1
µ2 e(φ)(gradρβ2) ◦ ψ) (37)

Moreover, the energy density of Φ̂ can be calculated as follows:

e(Φ̂) =
| dΦ̂ |2

2

=
1

2µ2

m

∑
i=1

g̃(dΦ̂(ei, 02), dΦ̂(ei, 02)) +
1

2λ2

n

∑
γ=1

g̃(dΦ̂(01, fγ), dΦ̃(01, fγ))

=
β2 ◦ ψ

µ2 e(φ) +
α2 ◦ φ

λ2 e(ψ) (38)

Furthermore:

dΦ̂(gradḡF ′(
| dΦ̂ |2

2
))

= F ′′( | dΦ̂ |2
2

)dΦ̂(gradḡ(
| dΦ̂ |2

2
))

= F ′′( β2 ◦ ψ

µ2 e(φ) +
α2 ◦ φ

λ2 e(ψ))
{(

β2 ◦ ψ

µ4 dφ(gradge(φ)) +
e(ψ)
µ2 dφ(gradg(

α2 ◦ φ

λ2 )), 02

)
+

(
01,

α2 ◦ φ

λ4 dψ(gradhe(ψ)) +
e(φ)
λ2 dψ(gradh(

β2 ◦ ψ

µ2 ))

)}
(39)

By Equations (3), (37), (38) and (39), we have:
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τF (Φ̂) = F ′( | dΦ̂ |2
2

)τ(Φ̂) + dΦ̂(gradḡF ′(
| dΦ̂ |2

2
))

= F ′(l){( 1
µ2 τ(φ) + dφ(gradg ln λn)− 1

λ2 e(ψ)(gradρα2) ◦ φ, 02)

+ (01,
1

λ2 τ(ψ) + dψ(gradh ln µm)− 1
µ2 e(φ)(gradρβ2) ◦ ψ)}

+F ′′(l){( β2 ◦ ψ

µ4 dφ(gradge(φ)) +
e(ψ)
µ2 dφ(gradg(

α2 ◦ φ

λ2 )), 02)

+ (01,
α2 ◦ φ

λ4 dψ(gradhe(ψ)) +
e(φ)
λ2 dψ(gradh(

β2 ◦ ψ

µ2 )))} (40)

This completes the proof.

From Theorem 7, we get the following:

Remark 1. Let ψ : N −→ N be a harmonic map. The F -tension fields of:

Ψ̂ : (Mm
µ×λ Nn, ḡ) −→ (M× N, g⊕ h)

(x, y) −→ (x, ψ(y)) (41)

is given by:

τF (Ψ̂) = F ′(s1)(gradg ln λn, dψ(gradh ln µm))

+
F ′′(s1)

λ2 (01, dψ(gradh(
e(ψ)
λ2 +

m
2µ2 ))) (42)

where s1 := m
2µ2 +

1
λ2 e(ψ).

According to the above Remark, we have the following.

Proposition 5. Let (Mm, g) and (Nn, h) be Riemannian manifolds of dimension m and n (n > 2), respectively,
and let λ ∈ C∞(M) and µ ∈ C∞(N) be non-constant positive functions. Let ψ : N −→ N be a conformal map
with dilation σ. Then, the map Ψ̂, defined by Equation (41), is an F -harmonic map if and only if λ, µ and σ are
non constant solutions of the following equations:

F ′(s)λ2µ2 −F ′′(s)σ2 = 0 (43)

and:

F ′(s)gradh ln(σ
2−n
λ2 µm) +F ′′(s)gradh(

nσ2

2λ4 +
m

2λ2µ2 ) = 0 (44)

where s := m
2µ2 +

nσ2

2λ2 .

Proof. By calculating similarly to Equation (37) and considering Equation (29), we have:

τ(Ψ̂) =
1
µ

m

∑
i=1

{
∇IdTM×dψ( 1

µ ei ,02)
IdTM × dψ(

1
µ

ei, 02)− IdTM × dψ(∇( 1
µ ei ,02)

(
1
µ

ei, 02))

}
+

n

∑
γ=1

{
∇IdTM×dψ(01, 1

λ fγ)
IdTM × dψ(01,

1
λ

fγ)− IdTM × dψ(∇(01, 1
λ fγ)

(01,
1
λ

fγ))

}
= (gradg ln λn, dψ(gradh ln(σ

2−n
λ2 µm))) (45)
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One can easily check that the energy density of Ψ̂ can be obtained as follows:

e(Ψ̂) =
m

2µ2 +
nσ2

2λ2 (46)

From Equations (3), (45) and (46), the F -tension field of Ψ̂ can be calculated as follows:

τF (Ψ̂) = F ′( | dΨ̂ |2
2

)(gradg ln λn, dψ(gradh ln(σ
2−n
λ2 µm)))

+F ′′( | dΨ̂ |2
2

)dΨ̂(gradḡ(
| dΨ̂ |2

2
))

= F ′( m
2µ2 +

nσ2

2λ2 )(gradg ln λn, dψ(gradh ln(σ
2−n
λ2 µm)))

+F ′′( m
2µ2 +

nσ2

2λ2 )(−
σ2

λ2µ2 gradg ln λn, dψ(gradh(
nσ2

2λ4 +
m

2λ2µ2 ))) (47)

Therefore, the F -harmonicity of Ψ̂ implies that:

(F ′( m
2µ2 +

nσ2

2λ2 )λ
2µ2 −F ′′( m

2µ2 +
nσ2

2λ2 )σ
2)gradg ln λn = 0 (48)

and:

F ′( m
2µ2 +

nσ2

2λ2 )gradh ln(σ
2−n
λ2 µm) +F ′′( m

2µ2 +
nσ2

2λ2 )gradh(
nσ2

2λ4 +
m

2λ2µ2 ) ∈ Ker(dψ) (49)

Due to the fact that ψ is a conformal map between equidimensional manifolds and λ is non
constant, the last two equations imply Equations (43) and (44). This completes the proof.
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