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Abstract: In this paper, the author proposes a new SEIRS model that generalizes several classical
deterministic epidemic models (e.g., SIR and SIS and SEIR and SEIRS) involving the relationships
between the susceptible S, exposed E, infected I, and recovered R individuals for understanding
the proliferation of infectious diseases. As a way to incorporate the most important features of
the previous models under the assumption of homogeneous mixing (mass-action principle) of the
individuals in the population N, the SEIRS model utilizes vital dynamics with unequal birth and
death rates, vaccinations for newborns and non-newborns, and temporary immunity. In order to
determine the equilibrium points, namely the disease-free and endemic equilibrium points, and study
their local stability behaviors, the SEIRS model is rescaled with the total time-varying population
and analyzed according to its epidemic condition R0 for two cases of no epidemic (R0 ≤ 1) and
epidemic (R0 > 1) using the time-series and phase portraits of the susceptible s, exposed e, infected
i, and recovered r individuals. Based on the experimental results using a set of arbitrarily-defined
parameters for horizontal transmission of the infectious diseases, the proportional population of the
SEIRS model consisted primarily of the recovered r (0.7–0.9) individuals and susceptible s (0.0–0.1)
individuals (epidemic) and recovered r (0.9) individuals with only a small proportional population
for the susceptible s (0.1) individuals (no epidemic). Overall, the initial conditions for the susceptible
s, exposed e, infected i, and recovered r individuals reached the corresponding equilibrium point for
local stability: no epidemic (DFE XDFE) and epidemic (EE XEE).
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1. Introduction

Over the past decades, mathematical models have been developed and implemented to
study the spread of infectious diseases since the early 20th century in the field of mathematical
epidemiology [1–4]. The stochastic and deterministic epidemic models allow researchers to gain
valuable insights into numerous infectious diseases and investigate strategies for combating them.
For deterministic epidemic models, the populations of individuals are assigned to one of several
different compartments, where each compartment represents a specific stage of the epidemic.
The transition rates from one compartment to another compartment are mathematically expressed with
derivatives. Based on the assorted compartments for the population and derivatives for the transition
rates, the system of ordinary differential equations serves to describe the changes in population as a
function of time.

From the seminal work in 1927, Kermack and McKendrick constructed a simple deterministic
compartment model that still today acts as the fundamental model for developing and implementing
even more complicated mathematical epidemic models [5]. In Kermack and McKendrick’s SIR
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classical compartmental model, the population N was divided into three compartments: susceptible S
compartment, in which all the individuals are susceptible if they have contact with a disease; infected
I compartment, in which all the individuals are infected by the disease and infectious to spread the
disease; and recovered R compartment, in which all the individuals are recovered from the infection.
For the SIR model, Kermack and McKendrick made three assumptions: (1) the disease spreads in a
closed environment (i.e., no births or deaths) with constant population N; (2) the number of susceptibles
S who are infected by an infected I individual per unit of time is proportional to the total number of
susceptibles with the proportional (transmission) coefficient β, where total number of newly infectives
is βSI; and (3) the number of recovered R individuals from the infected I compartment per unit time
is γI, where γ is the recovery rate coefficient, with the recovered individuals gaining permanent
immunity from the infectious disease. While the SIR model was accurate for describing the spread of
viral diseases (e.g., influenza, measles, and chickenpox), the SIR model was inappropriate for dealing
with bacterial diseases (e.g., encephalitis and gonorrhea), where the recovered individuals gained no
immunity and could be re-infected by the disease again at a future time period. As a spinoff of the
SIR model, Kermack and McKendrick proposed the SIS model 5 years later to study the dynamics of
bacterial diseases [6]. In both the classical SIR and SIS models, the models assume a negligible disease
incubation period, where the susceptible S individuals could become infected and later recovery to
acquire permanent or temporary immunity.

For more general models than SIR and SIS models, the SEIR and SEIRS models assume that
the susceptible S individuals—after infection—first proceed through the latent period as exposed E
individuals before becoming infected I individuals and then eventually recovered R individuals [7,8].
In the exposed E compartment, the individuals are infected by the disease but do not have the visible
symptoms of the disease and cannot communicate the disease to susceptible S individuals. In such
a latent period, the disease takes a certain time for the infection to multiple inside the body of the
susceptible S individuals to reach the critical level to become infected I individuals. After the incubation
period of the disease, the exposed E individuals soon become infected I individuals and then either
acquire permanent immunity (SEIR) or temporary immunity (SEIRS). As with the SIR and SIS models,
the SEIR and SEIRS models assume homogeneous mixing (mass-action principle) of the individuals in
the population.

With the SIR and SIS models along with the SEIR and SEIRS models, the models all assumed that
the disease spreads in a closed environment. For such models, the population N is always a constant
value since the models do not incorporate any births or deaths. In order to develop and implement
more realistic mathematical models to mimic reality, Anderson and May investigated the use of vital
dynamics to vary the size of the population [9,10]. By assuming a birth rate b and death rate d, the
SEIR and SEIRS models with vital dynamics now have a time-varying population N(t) that more
appropriately models the spread of the disease. Fundamentally, the total population increases by birth
at a rate b and decreases at a rate of d. From the different compartments of susceptible S compartment,
exposed E compartment, infected I compartment, and recovered R compartment, the total population
N(t) adheres to the conversation law as the sum of the populations of the different compartments that
all vary as a function of time.

In the presence of infectious diseases, the ideal goal is to fully eradicate them through either
preventive measures or establishment of a mass immunization program. As an extension to the SEIR
and SEIRS models with vital dynamics, Anderson and May studied vaccinations applied to newborns
(i.e., babies) and non-newborns (i.e., children and adults) [11,12]. For mass immunization programs,
newborns or susceptible S individuals receive the vaccines and proceed directly to the recovered R
compartment. By providing the proper vaccines to the public, the mass immunization program serves
to reduce the basic reproduction value R0 to less than unity, which causes the infectious disease to
die out eventually. For R0 greater than unity, the infectious disease does not die out eventually and
actually causes the occurrence of an epidemic. Due to successful immunization programs occasionally
creating health problems to individuals since vaccinations offer some associated risks, the infected
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I individuals may become too fearful of the risks and then not receive the necessary vaccines until
they have spread the infectious disease to many other susceptible S individuals. Before reaching an
epidemic, legislation is sometimes passed to enforce vaccinations.

As a way to merge the significant features of the foundational and more advanced SIR and SIRS
models [13,14] along with the SEIR and SEIRS models [15–34], the focus of the work is to develop and
implement an extension of the SEIRS model. Fundamentally, the new SEIRS model is now a more
advanced generalization of the previous models and incorporates vital dynamics with unequal birth
and death rates, vaccinations for both newborns and non-newborns, and temporary immunity for
describing the spread of infectious diseases. The SEIRS model with vital dynamics, vaccinations, and
temporary immunity is rescaled using the total time-varying population and analyzed to determine
its equilibrium points and corresponding local stabilities of the equilibrium points. In order to test
the SEIRS model, numerical simulations are run involving a set of arbitrarily-defined parameters for
horizontal transmission of the infectious disease in the new SEIRS model.

The remainder of this paper is organized into the following sections: epidemiological model
(Section 2), local stability (Section 3), experimental methodology (Section 4), experimental results
(Section 5), and conclusion (Section 6).

2. Epidemiological Model

In epidemiology, the new SEIRS model with vital dynamics (birth and death rates), vaccinations
(newborns and non-newborns), and temporary immunity provides a mathematical description of
infectious diseases and corresponding spread in biology. Figure 1 shows the block diagram of the SEIRS
model with compartments (classes) consisting of susceptible S, exposed E, infected I, and recovered R
individuals from the total population N.
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The four classes of the model, S, E, I, R, are described in further detail in Table 1.

Table 1. Classes.

Parameter Name Units Meaning

S Susceptible
Individuals

Number of
Individuals

Individuals susceptible to infection who can contract the
disease if they are exposed to it

E Exposed
Individuals

Number of
Individuals

Individuals exposed to infection who are infected but
have not yet become infectious and cannot pass the
infection to other susceptible individuals

I Infected
Individuals

Number of
Individuals

Individuals infected by infection who are capable of
transmitting the infection to any susceptible individuals

R Recovered
Individuals

Number of
Individuals

Individuals recovered from infection who are
temporarily immune from the infection



Mathematics 2017, 5, 7 4 of 19

For the SEIRS model, the model allows for vital dynamics with unequal birth and death rates,
vaccinations of both newborns and non-newborns, and temporary immunity from the infectious
disease. With the population, the newborns are all susceptible without vaccination. In specific terms,
the newborns are not born with any maternally-derived immunity. At a later time period, the newborns
(i.e., babies) who were not initially vaccinated and non-newborns (i.e., children and adults) who were
not around during the inception of the infectious disease as newborns both compromise the susceptible
class and have the ability to receive vaccines. Based on the interaction of susceptible individuals and
infected individuals, the infectious disease transmission causes the susceptible individuals to now
leave the susceptible class and enter the exposed class. After a specific time period, the incubating
infection eventually causes the exposed individuals to obtain the infectious disease and then spread
it to susceptible individuals. Without any vaccines to temporarily cure the exposed individuals and
infected individuals, the infected individuals will recover from the infectious disease and enter the
recovered class. Unfortunately, the recovered individuals experience only temporary immunity from
the infectious disease and can potentially transition back into the susceptible class. Table 2 summarizes
the interpretations of the different positive parameters embedded in the SEIRS model for each of the
four classes.

Table 2. Description of Model Parameters.

Parameter Name Units Meaning

b Birth Rate
births
person
day

Birth rate of newborns each year

d Death Rate
deaths
person
day

Death rate of susceptible, exposed,
infected, and recovered individuals
each year

ν
Vaccination Proportion

(Newborns) Dimensionless Proportion of vaccinated newborns

ρ
Vaccination Rate

(Susceptible) days−1

Rate at which susceptible individuals are
vaccinated and leave susceptible class
and enter recovered class to gain
temporary immunity

α
Transmission Rate

(Recovered to Susceptible) days−1
Rate at which recovered individuals lose
temporary immunity and leave recovered
class and enter susceptible class

β
Transmission Rate

(Susceptible to Infected) days−1

Rate at which susceptible individuals
become exposed by infected individuals
and leave susceptible class and enter
exposed class

σ
Transmission Rate

(Exposed to Infected) days−1

Rate at which exposed individuals
become infected by incubating infection
and leave exposed class and enter
infected class

γ
Recovery Rate

(Infected to Recovered) days−1 Rate at which infected individuals leave
infected class and enter recovered class

From the positive parameters, the rates ρ (vaccination rate of non-newborns), α (transmission rate
of recovered to susceptible), β (transmission rate of susceptible to infected), σ (transmission rate of
exposed to infected), and γ (recovery rate of infected to recovered) are numerically interpreted in terms
of their inverses. Table 3 explains the interpretations of the positive inverse parameters embedded in
the SEIRS model.

Based on the model parameters and inverse model parameters in Tables 2 and 3, the SEIRS model
is transformed into mathematical system for analysis and evaluation.
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Table 3. Description of Inverse Model Parameters.

Parameter Name Units Meaning

1
ρ

Mean Susceptibility Period
(Pre-Vaccination of

Susceptible Individuals)
days Time for susceptible individuals to become

recovered individuals

1
α

Mean Temporary
Immunity Period days Time for recovered individuals to become

susceptible individuals

1
β

Mean Susceptibility Period
(Pre-Exposed Individuals) days Time for susceptible individuals to become

exposed individuals

1
σ

Mean Latency Period days Time for exposed individuals to become
infected individuals

1
γ Mean Infectious Period days Time for infected individuals to become

recovered individuals

Mathematically, the SEIRS model is expressed as a system of ordinary differential equations
given as:

dS
dt = b(1− ν)N − β SI

N − dS + αR− ρS
dE
dt = β SI

N − σE− dE
dI
dt = σE− γI − dI

dR
dt = bνN + γI − dR− αR + ρS

(1)

with population:
S(t) + E(t) + I(t) + R(t) = N(t) (2)

or:
S′(t) + E′(t) + I′(t) + R′(t) = N′(t) =

dN
dt

(3)

where β SI
N is the incidence rate at which the susceptible S become infected I by a disease. By substitution

of the ordinary differential equation system in (1) into the relationship of (3), the population N is
governed by the ordinary differential equation:

dN
dt

= (b− d)N (4)

Since (4) does not depend on any of the other variables in the system in (1), the population N is
computed using separation of variables:

1
N

dN = (b− d)dt (5)

or: ∫ 1
N

dN = (b− d)
∫

dt (6)

to yield:
ln(N) = (b− d)t (7)

As a result of solving (7) through exponentiation, the population N is given as:

N = e(b−d)t (8)

with time-varying population N(t).
Instead of solving the ordinary differential equation system in (1) with known population N

from (8), the transformations:
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s =
S
N

(9)

and:
e =

E
N

(10)

and:
i =

I
N

(11)

and:
r =

R
N

(12)

are applied to the system in (1), where s, e, i, and r denote the fractions of the number of individuals
in classes S, E, I, and R with population N. Now, the transformed system (see Appendix A for more
details) is formulated as:

ds
dt = b(1− ν)− βsi + αr− (b + ρ)s

de
dt = βsi− (b + σ)e
di
dt = σe− (b + γ)i

dr
dt = bν+ γi + ρs− (b + α)r

(13)

which is equivalent to the system in (1). By substitution of the transformations in (9)–(12), (2) is
written as:

s + e + i + r = 1 (14)

or:
s′ + e′ + i′ + r′ = 0 (15)

With manipulation of (14) to produce:

r = 1− s− e− i (16)

(16) is substituted into the transformed system in (13) to eliminate r and yield the
simplified subsystem:

ds
dt = α+ b(1− ν)− αe− αi− βsi− (b + ρ+ α)s

de
dt = βsi− (b + σ)e
di
dt = σe− (b + γ)i

(17)

or:
ds
dt = A− αe− αi− βsi− Bs

de
dt = βsi− Ce
di
dt = σe− Di

(18)

with positive constants:
A = α+ b(1− ν) (19)

B = b + ρ+ α (20)

C = b + σ (21)

and:
D = b + γ (22)

Based on the solutions of the subsystem in (18), s, e, and i are utilized to solve for r in:

dr
dt

= bν+ γi + ρs− Fr (23)
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or (16), where:
F = b + α (24)

is a positive constant. In order to transform the system in (13) back to the original system in (1), the
solutions s, e, i, and r and N in (8) are inserted into the transformations in (9)–(12).

3. Local Stability

From the transformed subsystem in (18), the local stability is analyzed to determine the
disease-free equilibrium (DFE):

XDFE = (s, e, i) = (s∗, 0, 0) (25)

and endemic equilibrium (EE):
XEE = (s, e, i) = (s∗, e∗, i∗) (26)

Specifically, the equilibrium points are computed by setting ds
dt = 0, de

dt = 0, and di
dt = 0 and

solving for s, e, and i in (18) to compute the two equilibrium points. From the equilibrium points, the
Jacobian matrix J is calculated from: G

H
K

 =

 ds/dt
de/dt
di/dt

 =

 A− αe− αi− βsi− Bs
βsi− Ce
σe− Di

 (27)

as:

J(X) = J(s, e, i) =

 ∂G/∂s ∂G/∂e ∂G/∂i
∂H/∂s ∂H/∂e ∂H/∂i
∂K/∂s ∂K/∂e ∂K/∂i

 =

 −βi− B −α −α− βs
βi −C βs
0 σ −D

 (28)

and evaluated at the equilibrium points to decide on the local stability, which is directly determined
from the eigenvalues λ of:

|J(X)− λI| = 0 (29)

Based on the eigenvalues λ of (29), the linearized system will either be stable (all the eigenvalues
of the Jacobian evaluated at the equilibrium point contain negative real parts) or unstable (at least one
of the eigenvalues of the Jacobian evaluated at the equilibrium point has positive real part) for the
transformed subsystem in (18).

3.1. Disease-Free Equilibrium

Through substitution of (25) into ds
dt = 0 of the transformed subsystem in (18), the DFE XDFE

in (25) is computed as:
ds
dt

∣∣∣∣
XDFE

= 0 = (A− αe− αi− βsi− Bs)|XDFE
(30)

to generate:

s =
A
B

(31)

or:

XDFE = (s, e, i) = (s∗, 0, 0) =
(

A
B

, 0, 0
)

(32)

At the DFE XDFE =
(

A
B , 0, 0

)
, the Jacobian matrix J(X) in (28) is given as:

J
(
XDFE

)
=

 −B −α −α− β A
B

0 −C β A
B

0 σ −D

 (33)
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with eigenvalues λ: ∣∣J(XDFE
)
− λI

∣∣ = 0 (34)

or: ∣∣∣∣∣∣∣
−B− λ −α −α− β A

B
0 −C− λ β A

B
0 σ −D− λ

∣∣∣∣∣∣∣ = 0 (35)

which is expanded as:

(−B− λ)

∣∣∣∣∣ −C− λ β A
B

σ −D− λ

∣∣∣∣∣+ α

∣∣∣∣∣ 0 β A
B

0 −D− λ

∣∣∣∣∣+
(
−α− β

A
B

)∣∣∣∣∣ 0 −C− λ

0 σ

∣∣∣∣∣ = 0 (36)

By evaluating the determinants in (36), the eigenvalues λ are determined from the
cubic polynomial:

P(λ) = λ3 + (B + C + D)λ2 +

(
BC + BD + CD− σβ

A
B

)
λ+ (BCD− σβA) = 0 (37)

where the three eigenvalues λ are dependent on the parameters σ and β and constants A, B, C, and D.
Unfortunately, the eigenvalues λ are difficult to compute for the cubic polynomial in (37) without

any specific values for the parameters σ and β and constants A, B, C, and D. In order to determine
the parameter and constant independent local stability of the DFE XDFE in (25), the Routh-Hurwitz
criteria is applied to the cubic polynomial in (37) with the coefficients:

a1 = B + C + D (38)

a2 = BC + BD + CD− σβ
A
B

(39)

and:
a3 = BCD− σβA (40)

Based on the Routh-Hurwitz criteria for a cubic polynomial P(λ), the three conditions:

a1 > 0 (41)

a3 > 0 (42)

and:
a1a2 > a3 (43)

must satisfied for the DFE XDFE in (25) to be locally stable. For the first condition (41):

a1 = B + C + D > 0 (44)

since the constants B > 0, C > 0, and D > 0 in (20)–(22). With the second condition (42):

a3 = BCD− σβA > 0 (45)

if:
BCD
σβA

> 1 (46)

From the third condition (43):

a1a2 = (B + C + D)

(
BC + BD + CD− σβ

A
B

)
(47)
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or:
a1a2 = B2C + B2D + 3BCD + BC2 + C2D + BD2 + CD2 − σβA− σβ

AC
B
− σβ

AD
B

(48)

By cancellation of BCD and −σβA in (45) and (48), (43) is simplified as:

B2C + B2D + 2BCD + BC2 + C2D + BD2 + CD2 − σβ
AC
B
− σβ

AD
B

> 0 (49)

or:
B2C + B2D + 2BCD + BC2 + C2D + BD2 + CD2 >

σβA
B

(C + D) (50)

After dividing by BC, (50) is simplified as:(
B2

D
+

B2

C
+ 2B +

BC
D

+
BD
C

)
+ 1(C + D) >

σβA
BCD

(C + D) (51)

where:
σβA
BCD

≤ 1 (52)

As a result of the Routh-Hurwitz criteria, all the eigenvalues λ in the cubic polynomial P(λ) in (37)
have negative real parts to conclude that the DFE XDFE in (25) is locally stable with (46).

3.2. Endemic Equilibrium

From the transformed subsystem in (18), the EE XEE in (26) is computed by developing a
relationship between i and e through di

dt = 0 as:

di
dt

= 0 = σe− Di (53)

or:
i =

σ

D
e (54)

where:
e
i
=

D
σ

(55)

By examining de
dt = 0 as:

de
dt

= 0 = βsi− Ce (56)

or:
s =

C
β

e
i

(57)

(55) is substituted into (57) to deliver the first coordinate of EE XEE as:

s =
CD
βσ

(58)

With ds
dt = 0 as:

ds
dt

= 0 = A− αe− αi− βsi− Bs (59)

or:
s(βi + B) = A− αe− αi (60)

(58) is inserted into (60) as: (
CD
βσ

)
(βi + B) = A− αe− αi (61)
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After distributing and collecting terms in (61):

i
(

CD
σ

+ α

)
= A− αe− BCD

βσ
(62)

which is further simplified with (54) as:( σ

D
e
)(CD

σ
+ α

)
= A− αe− BCD

βσ
(63)

or:

e
[( σ

D

)(CD
σ

+ α

)
+ α

]
= A− BCD

βσ
(64)

By distributing and combining fractions, (64) is written as:

e
[
C +

ασ

D
+ α

]
= A− BCD

βσ
(65)

or:

e
[

CD + ασ+ αD
D

]
=

βσA− BCD
βσ

(66)

to supply the second coordinate of EE XEE as:

e =
(

D
CD + ασ+ αD

)(
βσA− BCD

βσ

)
(67)

Through substitution of (67) into (54), the third coordinate of the EE XEE is given as:

i =
βσA− BCD

β(CD + ασ+ αD)
(68)

With (58), (67), and (68), the EE XEE in (26) is given by:

XEE = (s, e, i) = (s∗, e∗, i∗) =
(

CD
βσ

,
(

D
CD + ασ+ αD

)(
βσA− BCD

βσ

)
,

βσA− BCD
β(CD + ασ+ αD)

)
(69)

which only makes physical sense if:
βσA− BCD > 0 (70)

since all the constants A, B, C, and D and parameters α, β, and σ in (69) are positive values. By
manipulating the inequality in (70), the epidemic condition R0 is given as:

R0 =
βσA
BCD

> 1 (71)

The epidemic condition R0 in (71) is the basic reproduction value and is the most important
quantity to consider for analyzing any epidemiological model. In particular, R0 determines whether an
epidemic occurs for infectious diseases since R0 is the average number of secondary infections produced
by one infected individual during the mean period of infection in a fully susceptible population. If
R0 ≤ 1, then, on average, the number of new infections produced by one infected individual over the
mean course of the infectious disease is less than unity, which implies the infectious disease dies out
eventually. Conversely, if R0 > 1, then, on average, the number of new infections produced by one
infected individual is greater than unity, which leads to the persistence of the infectious disease as an
epidemic. At the EE XEE in (69), the Jacobian matrix J(X) is given by:
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J
(
XEE

)
=

 −βi∗ − B −α −α− βs∗

βi∗ −C βs∗

0 σ −D

 (72)

with eigenvalues λ: ∣∣J(XEE
)
− λI

∣∣ = 0 (73)

or: ∣∣∣∣∣∣∣
−βi∗ − B −α −α− βs∗

βi∗ −C βs∗

0 σ −D

∣∣∣∣∣∣∣ = 0 (74)

which is expanded as:

(−βi∗ − B− λ)

∣∣∣∣∣ −C− λ βs∗

σ −D− λ

∣∣∣∣∣+ α

∣∣∣∣∣ βi∗ −C− λ

0 σ

∣∣∣∣∣+ (−α− βi∗)

∣∣∣∣∣ βi∗ −C− λ

0 σ

∣∣∣∣∣ = 0 (75)

Through evaluation of the determinants in (75), the eigenvalues λ are computed from the
cubic polynomial:

P(λ) = λ3 + (B + C + D + βi∗)λ2 + (BC + BD + CD + βCi∗ + βDi∗ − σβs∗)λ
+(BCD + βCDi∗ − σβBs∗) = 0

(76)

or:

P(λ) = λ3 +
(

B + C + D + βσA−BCD
CD+ασ+αD

)
λ2 +

(
BC + BD + C

(
βσA−BCD

CD+ασ+αD

)
+ D

(
βσA−BCD

CD+ασ+αD

))
λ

+
(

CD
(

βσA−BCD
CD+ασ+αD

))
= 0

(77)

where the three eigenvalues λ are dependent on the parameters σ and β, constants A, B, C, and D, and
first and third coordinates of EE XEE, namely s* and i* in (69).

In a similar manner to the eigenvalues λ for the cubic polynomial in (37), the eigenvalues λ

for the cubic polynomial in (77) are even more difficult to compute without any specific values for
the parameters σ and β and constants A, B, C, and D. The Routh-Hurwitz criteria with conditions
(41)–(43) is again applied to now the cubic polynomial in (77) to determine the parameter and constant
independent local stability of the EE XEE in (69) with the coefficients:

a1 = B + C + D + βσA−BCD
CD+ασ+αD

= ασB+αBD+C2D+ασC+αCD+CD2+ασD+αD2+βσA
CD+ασ+αD

(78)

a2 = BC + BD + C
(

βσA−BCD
CD+ασ+αD

)
+ D

(
βσA−BCD

CD+ασ+αD

)
= ασBC+αBCD+ασBD+αBD2+βσAC+βσAD

CD+ασ+αD

(79)

and:

a3 = CD
(

βσA− BCD
CD + ασ+ αD

)
=

βσACD− BC2D2

CD + ασ+ αD
(80)

From the first condition (41):

a1 =
ασB + αBD + C2D + ασC + αCD + CD2 + ασD + αD2 + βσA

CD + ασ+ αD
> 0 (81)

since the constants A > 0, B > 0, C > 0, and D > 0 and parameters α >0, β > 0, σ > 0 in (20)–(22) and
table. With the second condition (42):
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a3 =
βσACD− BC2D2

CD + ασ+ αD
> 0 (82)

or:
a3 = βσA− BCD > 0 (83)

if (71). For the third condition (43):

a1a2 =
(ασB+αBD+C2D+ασC+αCD+CD2+ασD+αD2+βσA)(ασBC+αBCD+ασBD+αBD2+βσAC+βσAD)

(CD+ασ+αD)2 (84)

Through multiplication of (83) and (84) by (CD + ασ + αD)2, (43) is simplified as:

(
ασB + αBD + C2D + ασC + αCD + CD2 + ασD + αD2 + βσA

)(
ασBC + αBCD + ασBD + αBD2 + βσAC + βσAD

)
> (CD + ασ+ αD)

(
βσACD− BC2D2) (85)

or:
α2B2D3 + α2BD4 + α2σ2B2C + α2σ2B2D
+2α2σB2D2 + 3αBC2D3 + α2σ2BC2 + α2σ2 AC2

+2α2BCD3 + αBCD4 + α2σ2BD2 + 2α2σBD3

+β2σ2 A2D + α2B2CD2 + αBC3D2 + α2BC2D2

+α2σ2 ABC + 2α2σB2CD + ασBC3D
+3ασBC2D2 + ασAC3D + 2α2σ2BCD
+4α2σBCD2 + 2α2σBC2D + α2σAC2D
+ασBCD3 + ασAC2D2 + βσACD3 + α2σ2 ACD
+αβσ2 AD2 + α2σACD2 + αβσAD3 + ασ2βA2C
+αβσ2 ABC + 2ασ2βABD + α2σABCD
+2αβσABD2 + αβσABCD + BC3D3

> 0

(86)

As a consequence of the Routh-Hurwitz criteria, all the eigenvalues λ in the cubic polynomial
P(λ) in (77) have negative real parts to conclude that the DFE XEE in (69) is locally stable with (71).

4. Experimental Methodology

The proposed SEIRS model with vital dynamics, vaccinations, temporary immunity developed
in (1) and transformed to the subsystem of ordinary differential equations in (18) was evaluated in
Matlab. Table 4 lists a typical set of numerical values for the model parameters and inverse model
parameters for all the experiments.

Table 4. Numerical Values of Model Parameters and Inverse Model Parameters.

Parameter Value

b
1.9
100
365

births
person
day

d
0.8
100
365

births
person
day

ν 0.8
1
ρ 2 days

1
α

14 days
1
β 4 days (No Epidemic) 1

4 days (Epidemic)
1
σ

3 days
1
γ 7 days
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Based on the numerical values of the model parameters and inverse model parameters, the
positive constants A, B, C, D and F ((19)–(22) and (24)) along with the epidemic condition R0 ((71)) are
computed for the SEIRS model in (18) and shown in Table 5.

Table 5. Constants.

Parameter Value

A 0.07140
B 0.57150
C 0.33340
D 0.14290
F 0.07150

R0 0.21865 (No Epidemic) 3.49840 (Epidemic)

For the SEIRS model in (18) with rescaled variables s, e, i, and r ((9)–(12)), the total population n is
assumed to have a value of unity ((14)), where the population N of the original SEIRS model in (1) is
assumed to have a value of 100 ((2)).

5. Experimental Results

Simulations were performed using the proposed and rescaled SEIRS model with vital dynamics,
vaccinations, and temporary immunity in (18) along with the numerical values of the model parameters
and inverse model parameters (Table 4) and constants (Table 5). In order to differentiate between the
possibilities for the epidemic condition R0, the two cases of no epidemic (R0 ≤ 1) and epidemic (R0 > 1)
were analyzed separately. For both the no epidemic and epidemic cases, the local stability of the
DFE XDFE and EE XEE equilibrium points in (32) and (69) were evaluated using their corresponding
eigenvalues λi from their specific Jacobian matrix J

(
X
)
. The proportional population of the rescaled

variables s, e, i, and r with total population n of unity was studied through the subsequent time-series
with various initial conditions s(0), e(0), i(0) and r(0) over the course of a 90-day period. As a way to
examine the relationships between the different rescaled variables, phase portraits were utilized to
trace the solution of the system of ordinary differential equations for the rescaled SEIRS model in (18).
With all of the numerical simulations, the time period is assumed to have units of days.

5.1. No Epidemic

Based on the numerical values of the model and inverse model parameters and constants with
β = 1/4 (0.25 susceptible individuals who become exposed by infected individuals and leave the
susceptible class and enter the exposed class per day) for the rescaled SEIRS model in (18), the
epidemic condition R0 was calculated as R0 = 0.21865, which is less than unity and implies no epidemic
for the infectious disease. Table 6 shows the DFE and EE equilibrium points XDFE and XEE and
eigenvalues λi of the Jacobian matrices J

(
XDFE

)
and J

(
XEE

)
along with their local stabilities.

Table 6. Local Stability (β = 1
4 (No Epidemic)).

Point s e i λ1 λ2 λ3 Stability

DFE 0.12501 0 0 −0.57148 −0.37775 −0.09855 Stable

EE 0.57173 −0.44677 −1.0421 −0.44276
+i0.14310

−0.44276
−i0.14310 0.09826 Unstable

From the eigenvalues λi of the DFE and EE equilibrium points XDFE and XEE, the DFE equilibrium
point XDFE is locally stable (all eigenvalues with negative real parts) and the EE equilibrium point
XEE is locally unstable (at least one eigenvalue with non-negative real part) for β = 1/4.



Mathematics 2017, 5, 7 14 of 19

Figure 2 illustrates the time-series of the proportional populations for the rescaled variables
against time in days for a 90-day time period using various individual initial conditions.
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Figure 2. Proportional Populations (β = 1
4 (No Epidemic)).

From the proportional population time-series, the exposed e and infected i individuals eventually
decay to zero after approximately 40 days. The susceptible s and recovered r individuals reach their
steady-state values in essentially the same number of days. At the end of the studied time period of
90-days, the majority of the proportional population consist of recovered r (0.9) individuals with only
a small proportional population for the susceptible s (0.1) individuals.

Figure 3 demonstrates the two-dimensional phase portraits of the various combinations of the
rescaled variables using the initial conditions of (s(0), e(0), i(0), r(0)) = (0.25, 0.25, 0.25, 0.25).Mathematics 2017, 5, 7 16 of 20 
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4

(No Epidemic)).



Mathematics 2017, 5, 7 15 of 19

With the assorted phase portraits, the initial conditions (s(0), e(0), i(0), r(0)) for the rescaled
variables s, e, i, and r always reach the DFE equilibrium point XDFE since it is locally stable for the case
of no epidemic (β = 1

4 ).

5.2. Epidemic

From the numerical values of the model parameters and inverse model parameters and constants
with β = 4 (4 susceptible individuals who become exposed by infected individuals and leave the
susceptible class and enter the exposed class per day) for the rescaled SEIRS model in (18), the epidemic
condition R0 was calculated as R0 = 3.49840, which is greater than unity and implies epidemic for the
infectious disease. Table 7 displays the DFE and EE equilibrium points XDFE and XEE and eigenvalues
λi of the Jacobian matrices J

(
XDFE

)
and J

(
XEE

)
along with their local stabilities.

Table 7. Local Stability (β = 4 (Epidemic)).

Point s e i λ1 λ2 λ3 Stability

DFE 0.12501 0 0 −0.57148 −0.65737 0.18107 Unstable
EE 0.03573 0.08928 0.20825 −1.3929 −0.34731 −0.14062 Stable

In contrast to the no epidemic case (β = 1
4 ), the epidemic case (β = 4) causes the DFE and EE

equilibrium points XDFE and XEE to have different locally stability. With the eigenvalues λi of the
DFE and EE equilibrium points XDFE and XEE, the DFE equilibrium point XDFE is locally unstable
(at least one eigenvalue with non-negative real part) and the EE equilibrium point XEE is locally stable
(all eigenvalues with negative real parts) for β = 4.

Figure 4 exhibits the time-series of the proportional populations for the rescaled variables against
time in days for a 90-day time period using various individual initial conditions.Mathematics 2017, 5, 7 17 of 20 
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Figure 4. Proportional Populations (β = 4 (Epidemic)).

Through the proportional population time-series, the exposed e and infected i individuals do
not eventually decay to zero as with the no epidemic case (β = 1

4 ). In fact, exposed e and infected i
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individuals reach their steady-state of 0.0–0.2 in approximately 10–40 days. At the end of the studied
time period of 90-days, the proportional population consists of recovered r (0.7–0.9) individuals and
susceptible s (0.0–0.1) individuals.

Figure 5 presents the two-dimensional phase portraits of the various combinations of the rescaled
variables using the initial conditions of (s(0), e(0), i(0), r(0)) = (0.25, 0.25, 0.25, 0.25).
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Figure 5. Phase Portraits (β = 4 (Epidemic)).

By the variety of phase portraits, the initial conditions (s(0), e(0), i(0), r(0)) for the rescaled variables
s, e, i, and r always reach the EE equilibrium point XEE since it is locally stable for the case of epidemic
(β = 4).

6. Conclusions

In this paper, the author developed and implemented a new SEIRS model that capitalized on
the mutual benefits of the SIR and SIRS and SEIR and SEIRS models. Fundamentally, the focus
was to generalize the previous models to incorporate vital dynamics with unequal birth and death
rates, vaccinations for newborns and non-newborns, and temporary immunity for communicating
the advancement of infectious diseases. From the experimental results of the proposed and rescaled
SEIRS model, the local stability of the DFE XDFE and EE XEE equilibrium points were examined for
the cases of no epidemic (R0 ≤ 1) and epidemic (R0 > 1) using the time-series and phase portraits of the
susceptible s, exposed e, infected i, and recovered r individuals. Whereas the exposed e and infected i
individuals eventually decayed to zero after approximately 40 days (no epidemic), the exposed e and
infected i individuals reached their steady-state of 0.0–0.2 in approximately 10–40 days (epidemic).
In the no epidemic case, the proportional population consisted of recovered r (0.9) individuals with
only a small proportional population for the susceptible s (0.1) individuals. For the epidemic case, the
proportional population consisted primarily of the recovered r (0.7–0.9) individuals and susceptible
s (0.0–0.1) individuals. For both the no epidemic and epidemic cases, the initial conditions for the
susceptible s, exposed e, infected i, and recovered r individuals reached the corresponding equilibrium
point for local stability: no epidemic (DFE XDFE) and epidemic (EE XEE). For future work, the SEIRS
model with vital dynamics, vaccinations, and temporary immunity could be modified to incorporate
age structure, infection-age structure, and spatial structure along with treatment, isolation, quarantines,
and vertical transmission to obtain even more realistic epidemic mathematical models.
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Appendix A

Based on the transformations in (9)–(12), the SEIRS model in (1) with vital dynamics (birth and
death rates), vaccinations (newborns and non-newborns), and temporary immunity is formulated
mathematically as a system of ordinary differential equations as in (13). By substitution of (9)–(12) into
dS
dt , dE

dt , dI
dt , and dR

dt of (1):

dS
dt

∣∣∣∣ S = sN
I = iN
R = rN

=
d(sN)

dt
= b(1− v)N − β

(sN)(iN)

N
− d(sN) + α(rN)− ρ(sN) (A1)

and:
dE
dt

∣∣∣∣ S = sN
E = eN
I = iN

=
d(eN)

dt
= β

(sN)(iN)

N
− σ(eN)− d(eN) (A2)

and:
dI
dt

∣∣∣∣ E = eN
I = iN

=
d(iN)

dt
= σ(eN)− γ(iN)− d(iN) (A3)

and:
dR
dt

∣∣∣∣ S = sN
I = iN
R = rN

=
d(rN)

dt
= bvN + σ(iN)− d(rN)− α(rN) + ρ(sN) (A4)

or:
N

ds
dt

+ s
dN
dt

= b(1− v)N − βsiN − dsN + αrN − ρsN (A5)

and:
N

de
dt

+ e
dN
dt

= βsiN − σeN − deN (A6)

and:
N

di
dt

+ i
dN
dt

= σ(eN)− γ(iN)− d(iN) (A7)

and:
N

dr
dt

+ r
dN
dt

= bvN + γ(iN)− d(rN)− α(rN) + ρ(sN) (A8)

After insertion of (4), (A5)–(A8) are rewritten as:

N
ds
dt

+ s[(b− d)N] = b(1− v)N − βsiN − dsN + αrN − ρsN (A9)

and:
N

de
dt

+ e[(b− d)N] = βsiN − σeN − deN (A10)

and:
N

di
dt

+ i[(b− d)N] = σ(eN)− γ(iN)− d(iN) (A11)

and:
N

dr
dt

+ r[(b− d)N] = bvN + γ(iN)− d(rN)− α(rN) + ρ(sN) (A12)
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Through cancellation of N and collecting terms, (A9)–(A12) are given as ds
dt , de

dt , di
dt , and dr

dt in the
transformed ordinary differential equation system in (13).
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