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Abstract: In this work, we deal with the autonomy issue in the perturbation expansion for the
eigenfunctions of a compact Hilbert–Schmidt integral operator. Here, the autonomy points to the
perturbation expansion coefficients of the relevant eigenfunction not depending on the perturbation
parameter explicitly, but the dependence on this parameter arises from the coordinate change at
the zero interval limit. Moreover, the related half interval length is utilized as the perturbation
parameter in the perturbative analyses. Thus, the zero interval limit perturbation for solving the
eigenproblem under consideration is developed. The aim of this work is to show that the autonomy
imposition brings an important restriction on the kernel of the corresponding integral operator, and
the constructed perturbation series is not capable of expressing the exact solution approximately
unless a specific type of kernel is considered. The general structure for the encountered constraints is
revealed, and the specific class of kernels is identified to this end. Error analysis of the developed
method is given. These analyses are also supported by certain illustrative implementations involving
the kernels, which are and are not in the specific class addressed above. Thus, the efficiency of the
developed method is shown, and the relevant analyses are confirmed.

Keywords: Hilbert–Schmidt integral operators; autonomy; eigenvalues; eigenfunctions; perturbation
expansions; zero interval limit
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1. Introduction

Integral equations and integral operators are considered in one of the fundamental study areas
in science and engineering. They can be encountered in chemical and physical applications [1–3],
as well as in multivariate function approximation problems, such as Enhanced Multivariance Products
Representation (EMPR) [4,5]. In EMPR, univariate elements, called support functions [4], are utilized
in order to realize efficient approximations to an analytic multivariate function (the bivariate case is
considered in [4]). Optimization of these support functions gains great importance to this end. Through
the optimization process of these support functions, two spectral problems of two distinct integral
operators both involving symmetric, thus self-adjoint (Hermitian) bivariate kernels are encountered. If
these spectral problems are solved, the eigenfunctions accompanying the corresponding most dominant
eigenvalues, possessed by both integral operators, can be assessed as the optimized univariate support
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functions [4]. Thus, an efficient EMPR approximation to the bivariate function under consideration is
obtained with the utilization of these support functions.

In order to solve the above-mentioned spectral problems, each of which belongs to an integral
operator of Hilbert–Schmidt type, a numerical method based on the perturbation expansion involving
the autonomy on perturbation coefficients of the relevant eigenfunctions is taken into consideration.
This autonomy imposition brings quite a high level of simplicity in determining the perturbation
entities even for the most dominant eigenvalue and for its accompanying eigenfunction of the
Hilbert–Schmidt integral operator under consideration. On the other hand, this enforcement leads us
to some restrictive equations, which involve some constraints amongst the perturbation terms of the
kernel to be dealt with. In this paper, we focus on these issues and find a class of kernels for which the
proposed method is suitable.

The content of the present paper is as follows. First, brief information about integral operators is
given in the second section. Then, the details of the autonomy imposed zero interval limit perturbation
expansion for the eigenpairs of the Hilbert–Schmidt integral operators are explained in the third section.
The above-mentioned constraints encountered in almost every perturbation step are formulated in the
fourth section. In addition to this, the fourth section contains the proof for the failure of the autonomy
imposition on the eigenfunction perturbation coefficients, while the error analysis of the relevant
approximation for the eigenfunction under consideration is given in the fifth one. The efficiency
of the developed method for approximating the most dominant eigenvalue and its accompanying
eigenfunction is confirmed via numerical implementations in the sixth section even for the kernels
that do not satisfy the above-mentioned constraints and for the special type of kernels satisfying the
restrictive equations revealed in the fourth section. The paper is finalized with the concluding remarks
and discussions.

2. Integral Operators and Their Spectral Properties

Consider the following operator:

I g(x) ≡
∫ b

a
dξK (x, ξ) g (ξ) (1)

where K(x, ξ) is an analytic and bounded bivariate function whose domain is [ a, b ]2 and will be
called from now on “the kernel of the operator in Equation (1)”. On the other hand, g stands as a
univariate and analytic function defined on the interval [ a, b ]. It is obvious that the operator I in
Equation (1) is a linear mathematical object and, in particular, is called “an integral operator” whose
kernel is K(x, ξ) [6–8]. Since K(x, ξ) is continuous, hence bounded on [ a, b ]2, the integral operator in
Equation (1) is called the Hilbert–Schmidt integral operator. Hilbert–Schmidt integral operators are
compact operators because of their boundedness property [6–11].

If an integral operator whose kernel is K(x, ξ) satisfies the equation:

∫ b

a
dξK (x, ξ)ψ (ξ) = λψ (x) ; x, ξ ∈ [ a, b ] (2)

where ψ is an unknown univariate function, while scalar λ is again an unknown. Then, the
problem in Equation (2) is called “the spectral or the eigenvalue problem of the corresponding
integral operator” [6–8]. Thus, the scalar λ is named “the eigenvalue” and ψ is called “the relevant
eigenfunction” of the integral operator under consideration. If the kernel of the integral operator is
symmetric, that is, K(x, ξ) = K(ξ, x) for all x’s and ξ’s residing in the domain of the integral operator,
then the corresponding integral operator is called a self-adjoint operator [6]. As an analogy to the
classical linear algebra, all eigenvalues of a self-adjoint integral operator are real, which imply that the
spectrum of the relevant operator is located on the real axis [6]. Moreover, in many methods based
on the spectral properties of the linear operators, such as spectral decomposition [12] and principal
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component analysis [13], the most important component of the spectrum is the greatest eigenvalue in
absolute value sense and therefore its accompanying eigenfunction (eigenvector in matrix case). Thus,
obtaining these entities even using an analytical or a numerical method accurately becomes crucial to
this end.

3. Perturbation Scheme at the Zero Interval Limit

Consider the following equation:

1
b− a

∫ b

a
dξK (x, ξ)ψ (ξ) = λψ (x) ; x, ξ ∈ [ a, b ] (3)

where the operator in the focus is a Hilbert–Schmidt integral operator. By the brief knowledge
given in the previous section, it is possible to say that Equation (3) defines a spectral problem of an
integral operator whose kernel is K(x, ξ). Then, λ and ψ(x) can be named “the eigenvalue and its
corresponding eigenfunction” of the relevant integral operator, respectively. In order to develop a
general numerical solution method for the eigenproblem in Equation (3), a universal interval should be
considered instead of the existing one for the problem in Equation (3). For this purpose, the following
affine transformations can be put to use:

x ≡ a + b
2

+
b− a

2
y, ξ ≡ a + b

2
+

b− a
2

η (4)

It is obvious that the transformations in Equation (4) take any closed and bounded [ a, b ] interval to
[−1, 1 ]. By introducing the following shorthand notations:

xmp ≡
a + b

2
, ε ≡ b− a

2
(5)

and applying the transformations in Equation (4) to Equation (3):

1
2

∫ 1

−1
dηK

(
xmp + εy, xmp + εη

)
ψ
(
xmp + εη

)
= λ(ε)ψ

(
xmp + εy

)
(6)

is obtained. It is clear that the interval of the integral operator is transformed into a universalized
bounded one, that is [−1, 1 ]. On the other hand, the a and b dependencies of the corresponding
integral operator are transferred to its kernel accordingly. Thus, the integral operator and the related
spectral problem in Equation (6) can be named the universalized Hilbert–Schmidt integral operator
and universalized spectral problem, respectively.

In Equation (6), if ε is considered as a small positive entity whose value is close to zero, which
also means that the original interval [ a, b ] is small enough, then it becomes convenient to consider it as
a perturbation parameter [9–11]. Beyond that, xmp stands as the midpoint of the interval to be worked
on and as an important issue that will be discussed a bit later. Thus, by assuming that the unknowns
λ and ψ are analytic in the vicinity of xmp, a perturbation equation can be achieved with the help of
relevant infinite series, including the non-negative powers of ε. Therefore, since the bivariate kernel
in Equation (6) is analytic in the vicinity of

(
xmp, xmp

)
, it can be expanded to a series in terms of the

non-negative powers of the perturbation parameter ε, as well, as follows:

K
(

xmp + εy, xmp + εη
)
=

∞

∑
j=0

j

∑
k=0

Kk,j−kykη j−kεj (7)

where the corresponding expansion coefficients can be calculated as:

Kk,j−k ≡
1

k!(j− k)!
∂j K

∂xk ∂ξ j−k

(
xmp, xmp

)
(8)
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In other words, if the eigenvalue λ and the relevant eigenfunction ψ are assumed to be analytic in the
vicinity of

(
xmp, xmp

)
, they can be represented as infinite series in terms of the non-negative powers of

the perturbation parameter ε as follows:

λ(ε) =
∞

∑
j=0

λjε
j (9)

ψ
(

xmp + εη
)
=

∞

∑
j=0

ψjη
jεj, ψ

(
xmp + εy

)
=

∞

∑
j=0

ψjyjεj (10)

If the infinite series in Equations (7), (9), (10) are embedded in the universalized spectral problem in
Equation (6), then we have:

1
2

∫ 1

−1
dη

(
∞

∑
j=0

j

∑
k=0

Kk,j−kykη j−kεj

)(
∞

∑
j=0

ψjη
jεj

)
=

(
∞

∑
j=0

λjε
j

)(
∞

∑
j=0

ψjyjεj

)
(11)

from which the following equality can be obtained by rearranging the terms after the utilization of the
Cauchy product:

1
2

∫ 1

−1
dη

∞

∑
m=0

m

∑
n=0

n

∑
k=0

Kk,n−kykηn−kψm−nηm−nεm =
∞

∑
m=0

m

∑
n=0

λnψm−nym−nεm (12)

The above formula can be considered as the perturbation equation of the problem in Equation (3).
Before starting to determine the unknown perturbation coefficients at the zero interval limit by
considering ε as the perturbation parameter in Equation (12), the definite integral occurred on the
left-hand side along the universalized interval with respect to η should be evaluated first. By doing so,
the following equation can be obtained:

1
2

∞

∑
m=0

m

∑
n=0

n

∑
k=0

Kk,n−kψm−n Im−kykεm =
∞

∑
m=0

m

∑
n=0

λnψm−nym−nεm (13)

where:

In ≡
1 + (−1)n

n + 1
, n = 0, 1, ... (14)

Thus, the equation in Equation (13) can be identified as the final form of the relevant perturbation
recursion amongst the eigenpair components for the eigenvalue problem in Equation (3). By
utilizing this equation, unknown λj and ψj (j = 0, 1, ...) coefficients are expected to be determined
uniquely in order to obtain unique approximations to the most dominant eigenvalue λ and its
accompanying eigenfunction ψ(x), respectively. To this end, if ε is taken to the zero limit in both sides
of Equation (13) then:

λ0 = K0,0 (15)

is obtained. This result denotes that the zeroth coefficient of the perturbation expansion for the
eigenvalue λ is equal to the value of the relevant kernel at the point (xmp, xmp).

It is important to consider that the equation in Equation (13) holds for any ε. Thus, it can be
assessable as an identity with respect to ε, instead of an equation, in its convergence domain. Due
to this reason, any number of consecutive differentiations of this equation with respect to ε does
not annihilate its validity. Hence, the r-times (r is a nonnegative integer) consecutive differentiation
with respect to ε and then division by r! for both sides of the equation in Equation (13) yields the
following formula:

1
2

∞

∑
m=0

m

∑
n=0

n

∑
k=0

Kk,n−kψm−n Im−kyk (εm)(r) =
∞

∑
m=0

m

∑
n=0

λnψm−nym−n (εm)(r) (16)
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On the other hand, the following equalities can be easily written to facilitate the analyses:{
(εm)(r)

}
ε→0

= δm,r, r = 0, 1, . . . (17)

Now, if ε is taken to the zero limit in Equations (16) and (17) is utilized to evaluate the limit, then the
following result is achieved:

1
2

r

∑
n=0

n

∑
k=0

Kk,n−kψr−n Ir−kyk =
r

∑
n=0

λnψr−nyr−n (18)

Utilizing the summation index transform over the triangle 0 ≤ k ≤ n ≤ r, that is:

r

∑
n=0

n

∑
k=0

cn,k =
r

∑
k=0

r

∑
n=k

cn,k

and making the necessary arrangements over the indices:

λkψr−k =
1
2

r

∑
n=r−k

Kr−k,n−r+k Ikψr−n, r = 0, 1, ..., k = 0, 1, ..., r (19)

is yielded. Thus, an explicit recursion relation amongst the relevant perturbation coefficients
is obtained.

It is obvious that taking r = 0 in the newly-constructed explicit recursion in Equation (19) verifies
the result in Equation (15) by assuming that ψ0 6= 0. If the current process is resumed by taking r = 1,
then two values for the index k are encountered. These values are zero and one, respectively. Taking
k = 0 yields:

K1,0 ψ0 = λ0 ψ1 (20)

which can be rewritten using the result in Equation (15) as:

ψ1 =
K1,0

K0,0
ψ0 (21)

However, it is important to remark that ψ0 has an arbitrary non-zero value. Instead of taking k = 1
at this stage, we will deal with a more general structure, which is valid for each perturbation step
for the odd sub-indexed λj coefficients. Due to this aim, by having a glance at the explicit recursion
in Equation (19) and considering the definitions in Equation (14), one can easily observe that the
perturbation coefficients of the eigenvalue λ whose sub-indexes are odd can be obtained as:

λ2p+1 = 0, p = 0, 1, . . . (22)

Besides, it is known from the implicit recursion in Equation (18) that a general perturbation coefficient
for the eigenvalue whose subindex is even, say 2p (p = 0, 1, 2, . . .), is encountered first in the 2p-th
perturbation step. Thus, if r and k are taken as 2p in Equation (19), then:

λ2p =
1

(2p + 1)K0,0

2p

∑
n=0

K0,nK2p−n,0; p = 0, 1, . . . (23)

is obtained, which stands as an explicit representation for odd sub-indexed λj coefficients. Thus, the
explicit formulations to calculate all λr (r = 0, 1, 2, . . .) perturbation coefficients are obtained. After that
stage, one group of coefficients remains to be determined, which are ψrs (r = 0, 1, 2, . . .). To be able to
evaluate those coefficients, a general perturbation step should be considered. If we deal with the r-th



Mathematics 2017, 5, 2 6 of 15

perturbation step, which means k is taken as zero in the explicit recursion given through Equation (19),
the following is yielded:

ψr =
Kr,0

K0,0
ψ0, r = 1, 2, ... (24)

Thus, all unknown perturbation coefficients can be determined uniquely with one arbitrariness
coming from the value of ψ0. Although this arbitrariness can be thought of as an inconsistency,
this undesired situation may be removed by applying a certain normalization procedure to the
eigenfunction constructed using the coefficients in Equation (24).

4. Constraints on the Kernel and the Construction of the Perturbation Series

Although all of the unknown perturbation coefficients except ψ0 are determined explicitly in the
previous section, one can observe that some additional equations that need to be satisfied amongst the
perturbation coefficients occur at almost each perturbation step. That means denumerable infinitely
many inconsistencies amongst the perturbation coefficients, which should be taken into account as the
constraints, are encountered. These constraints have arisen since the autonomy on the perturbation
coefficients of the eigenfunction under consideration have been imposed.

With a careful examination, it is easy to observe that no constraint is encountered during the
determination of the perturbation coefficients at the zeroth, first and second steps, respectively. This
expected situation occurs since λ0 is determined as K0,0 at the zeroth perturbation step, and the
first order perturbation terms do not involve any even-indexed λj coefficients. Besides, it is clear
from Equations (14) and (19) that no constraint is encountered during the determination of an odd
sub-indexed λj coefficient. If we keep on evaluating the higher order perturbation terms in order to
construct the most dominant eigenvalue and its accompanying eigenfunction, only a single constraint
is encountered while trying to evaluate both the third and the fourth order perturbation coefficients.
At the fifth and sixth perturbation steps, this time, two more constraints occur in addition to these two
single constraints mentioned above. Thus, four additional constraints come into the scene at this stage,
and it can be easily observed that the total number of constraints grows as the perturbation order
increases. If the perturbation order is denoted as r, (n− 1)2 number of constraints are encountered
where r = 2n− 1 while (n− 1)n number of constraints are confronted where r = 2n, which n stands
as a positive integer greater than one.

If r stands, again, as the general perturbation order and considering k = 2m where 2m < r in
Equation (19), the m-th constraint at the r-th perturbation step is obtained as follows:

2m

∑
n=0

Kr−2m,n ψ2m−n = (2m + 1) λ2m ψr−2m, r = 0, 1, . . . , m = 2, 3, . . . , 2 < 2m < r (25)

By utilizing the Equations (23) and (24) in the above equation:

2m

∑
n=0

Kr−2m,n K2m−n,0 =
Kr−2m,0

K0,0

2m

∑
n=0

K0,n K2m−n,0, m = 0, 1, . . . (26)

are yielded and can be reorganized as follows:

2m

∑
n=0

K2m−n,0

(
Kr−2m,n −

Kr−2m,0 K0,n

K0,0

)
= 0, m = 0, 1, . . . (27)

Equation (27) are satisfied for two cases at first glance. The first one of these circumstances is
the following:

Kj,0 = 0, j = 0, 1, . . . (28)
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which leads us to the obvious zero solution for the problem in Equation (3), while the other option
implies the following relations:

Kp,q

Kp,0
=

K0,q

K0,0
, p, q = 0, 1, . . . (29)

which can also be represented using the following determinants:∣∣∣∣∣ K0,0 Kp,0

K0,q Kp,q

∣∣∣∣∣ = 0, p, q = 0, 1, . . . (30)

It is not quite a rational choice to proceed with the perturbation coefficients satisfying Equation (28)
for the relevant eigenfunction since the zero solution is acquired in that sense. Thus, considering
the relations amongst the kernel coefficients given by Equation (29) is more logical. If the Taylor
coefficients of the bivariate kernel under consideration in Equation (8) are placed accordingly, it is
possible to construct the following matrix:

K =



K0,0 K1,0 K2,0 · · · Kp,0 · · ·
K0,1 K1,1 K2,1 · · · Kp,1 · · ·
K0,2 K1,2 K2,2 · · · Kp,2 · · ·

...
...

...
. . .

... · · ·
K0,q K1,q K2,q · · · Kp,q · · ·

...
...

... · · ·
...

. . .


(31)

In Equation (31), it is easy to recognize that the boxed elements stand for the coefficients depicted in
Equation (30). Since we assume that the value of K0,0 is not zero, it becomes possible to say that the
determinant of the first leading principal submatrix of K is not zero. On the other hand, if the p and
q values are taken as one in Equation (30), one can easily verify that the determinant of the second
leading principal submatrix vanishes, which means the rows of the second leading principal submatrix
are linearly dependent. On the other hand, if the q value is fixed at one and the p-value is changed
from two to infinity in Equation (30), the first and the second row of the infinite dimensional matrix K
are revealed as being linearly dependent. By increasing q value this time, it becomes easy to conclude
that all rows of the matrix K are proportional to the first row. This important result tells us that K is a
one-rank matrix. To this end, the bivariate kernel that satisfies the constraints in Equation (29) must
be a one-rank kernel, which means that this kernel must be of a purely multiplicative structure, as
indicated below:

K(x, ξ) = A(x)A(ξ), x, ξ ∈ [ a, b ] (32)

where the function A is assumed to be bounded and analytic on the closed interval [ a, b ]. On the other
hand, the structure in Equation (32) makes sense if we could deal with infinitely many perturbation
terms. Since this situation is not possible in numerical applications, utilizing a kernel that is not purely
multiplicative, but does approach this case asymptotically can be a significant option to this end.

If λj coefficients whose explicit definitions given through Equations (22) and (23) are embedded
into the corresponding perturbation series in Equation (9) and assuming that the relevant kernel
coefficients satisfy the relations in Equation (29):

λ(ε) =
1

K0,0

∞

∑
j=0

(
1

2j + 1

2j

∑
n=0

K0,n K2j−n,0

)
ε2j (33)

is obtained. Thus, the perturbation series for the most dominant eigenvalue of the corresponding
Hilbert–Schmidt integral operator whose kernel coefficients satisfy the relevant constraints is evaluated.
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Similarly, by embedding the general structure of ψr given in Equation (24) into the perturbation
expansion of the eigenfunction in Equation (10) and applying the inverse of the first affine
transformation in Equation (4):

ψ(x) = ψ0

∞

∑
r=0

Kr,0

K0,0

(
x− xmp

)r (34)

is achieved as the power series representation of the corresponding eigenfunction. In other words,
by using the developed perturbation method and assuming the autonomy on the eigenfunction
perturbation coefficients, the corresponding univariate eigenfunction ψ(x) is expressed as an infinite
power series in ε whose general term involves the Taylor coefficients of the kernel satisfying the
constraint equations in Equation (29). On the other hand, the zeroth coefficient, that is ψ0, is another
important determining issue for the structure in Equation (34) and can be perceived as an arbitrary
constant at this moment. As has been stated previously, no assumption has been made about the
normalization of the corresponding eigenfunction. Thus, there is only one common flexibility ψ0 to be
determined in that sense. This freedom brings a common arbitrariness on the eigenfunction coefficients.
This undesired status in fact is originated from the autonomy imposition on the eigenfunction and can
be globally removed only by normalizing the corresponding eigenfunction. Thus, ψ0 is computed as the
normalization factor after truncating the series Equation (34) at a certain level. Hereby, the truncated
and normalized series can be assessed as an approximation for the relevant eigenfunction ψ(x).

Before closing the section, we need to emphasize the observed limitations and constraints
mentioned above. The series in Equations (33) and (34) are capable of representing the most dominant
eigenvalue and its accompanying eigenfunction, respectively, as long as the kernel coefficients satisfy
all of the constraints given in Equation (29). This means, the relevant coefficients should satisfy
denumerable infinitely many equations, which does not make sense practically. Thus, an asymptotically
multiplicative kernel could be considered, which enables the initial perturbation coefficients to satisfy
the corresponding initial restrictive equations instead of the purely multiplicative kernel depicted in
Equation (32).

5. Error Analysis

Error estimation is one of the important issues in approximation problems. Here, in this paper,
the eigenfunction under consideration is attempted to be approximated via a perturbation expansion
in this work. This section is devoted to the concern on the error bound determination of the relevant
perturbation series. Concordantly, one can easily verify that the series that will be utilized for
approximation in Equation (34) is a power series with the coefficients involving the derivatives
of the relevant kernel, which is of a purely multiplicative nature and whose Taylor coefficients
satisfy the constraints in Equation (29). Although the kernel under consideration is bivariate and has
differentiation possibilities with respect to both of its independent variables, the related coefficients in
Equation (24) include only the derivatives with respect to its first variable, x (but of course, this is valid
under the constraints mentioned above). This feature reveals the similarity between the perturbation
series in Equation (34) and the well-known Taylor series. To this end, it is reasonable to make an error
estimation for the developed perturbation series for the relevant eigenfunction by utilizing the error
bound theorem for the Taylor series.

As is obvious from the univariate Taylor theorem, assuming that g(x) has the derivatives up to
(n + 1)-th order, which are continuous on a closed interval and the last of them, that is, the (n + 1)-th
one, is bounded from above, such as:∣∣∣g(n+1)

∣∣∣ ≤ G, n = 0, 1, . . . (35)

where G is an n-independent positive constant, then the remainder function R(x) corresponding to the
(n + 1)-th degree Taylor polynomial for the function g(x) can be bounded from above [14] as:
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| R(x) | ≤ G (x− a)n+1

(n + 1)!
, n = 0, 1, ... (36)

In light of the brief information given above, we can assume that the upper bound for the (n + 1)-th
order derivative with respect to x of K(x, ξ) can be written as follows:∣∣∣∣ ∂n+1K

∂xn+1

∣∣∣∣ ≤ M, n = 0, 1, 2, ... (37)

On the other hand, it is useful to remark that the zeroth coefficient of the expansion for the kernel
in (7) denoted as K0,0 should not vanish by assumption. Considering the series in Equation (34) and
rewriting the kernel coefficients explicitly in accordance with the definition in Equation (8) gives:

ψ(x) =
∞

∑
r=0

ψ0

K0,0

1
r!

∂rK
∂xr

(
xmp, xmp

) (
x− xmp

)r (38)

where xmp = (a + b)/2. If the remainder function, occurring by retaining first n expansion terms
in order to make an approximation to the relevant eigenfunction ψ(x), is symbolized by R (x), it is
possible to write down the following:

| R (x) | ≤ ψ0M
|K0,0| (n + 1)!

∣∣x− xmp
∣∣n+1 (39)

By recalling that x− xmp = εy and |y| ≤ 1 from Equation (4):

| R (x) | ≤ ψ0M
|K0,0| (n + 1)!

εn+1 (40)

can be obtained as the remainder bound for the approximation of the the relevant eigenfunction
ψ(x) where ψ0 is a positive constant that normalizes the corresponding eigenfunction and, hence,
is bounded. It is also obvious from Equation (40) that the norm of the remainder term depends on
the perturbation parameter, ε, and the value of the kernel at the midpoint of the geometry under
consideration, that is K0,0.

6. Numerical Implementations

In this section, six numerical implementations are given in order to show the efficiency of the
method described in the third section. To this end, the exact solution of the eigenvalue problem in
Equation (3) and its perturbation-based numerical solutions at different truncation levels for various
kernels will be compared through the plots. The first four of these kernels are taken as the well-known
Pincherle–Goursat-type kernels, which are not of a purely multiplicative nature and, hence, do not need
to satisfy the conditions presented in Equation (29). On the other hand, the last two implementations
are considered to verify that the present method works efficiently for the kernels having a purely
multiplicative nature. Thus, the integral operators given in the fifth and the sixth implementation,
respectively, involve the Hilbert–Schmidt kernels satisfying the constraints in Equation (29).

The first four kernels that will be utilized in this section, all being the Pincherle–Goursat type, are
as follows:

K1(x, ξ) = exp (2x) + exp (2ξ),

K2(x, ξ) = exp (x + ξ) + exp (−x− ξ),

K3(x, ξ) = cos (π(x + ξ)),

K4(x, ξ) = tan x sin 3ξ + sin 3x tan ξ
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The reason for selecting this type of kernel is the simple solvability of their spectral problems. Hence,
the spectral problems of the integral operators having Pincherle–Goursat-type kernels can be reduced
into a matrix algebraic eigenvalue problem quite easily.

In each figure, the curves that are constructed using asterisks imply the exact solution of the
spectral problem for the integral operator under consideration while the dashed curves dictate the
truncated approximations to the corresponding exact eigenfunction. The truncation orders start from
n = 2 and go to n = 10 with an increment of two, and can go further up to n = 14 when it is necessary.
The n value standing in the legends of all figures implies the number of perturbation terms taken
into account to construct the approximated eigenfunction. For example, n = 2 means that just two
perturbation coefficients are evaluated, and the relevant approximation is just a straight line.

In Figures 1 and 2, one can easily verify that the increment in the n value brings better
approximation quality for the eigenfunction under consideration. This fact can be observed since
the difference between the dashed curves and asterisk curve in each figure starts to get smaller, even
though the restriction equations in Equation (29) are not satisfied. However, the chosen function needs
to satisfy the constraint equations to get an exact match. On the other hand, in Figures 3 and 4, the
approximation curves diverge from the corresponding exact eigenfunction curves for each; hence, the
constraints in Equation (29) are not satisfied.

On the other hand, each graphic is plotted over the interval [ 0, 1 ] since the corresponding spectral
problems are designed as their integration domains become [ 0, 1 ]. In addition to this, it becomes
useful to state that all of the eigenfunctions plotted are the ones whose accompanying eigenvalues are
the greatest in the absolute value sense. Furthermore, they are normalized over the interval [ 0, 1 ].

After investigating the first four implementations given above, the last two will be revived as
has already been mentioned above in this section. To this end, the eigenvalue problems involving
Hilbert–Schmidt integral operators whose kernels satisfy the constraints in Equation (29) will be
addressed. Those specific type of kernels that will be utilized in order to show the efficiency of the
method developed in the present paper are as follows:

K5(x, ξ) = cos 5x cos 5ξ,

K6(x, ξ) = sin (π exp (x)) sin (π exp (ξ))

where x, ξ ∈ [ 0, 1 ].
In Figures 5 and 6, it is obvious that the truncated perturbation series converge to the

corresponding exact eigenfunction for the kernels K5(x, ξ) and K6(x, ξ), respectively. These results
occur since both kernels under consideration satisfy the restrictive equations in Equation (29) and the
bounded property achieved in Equation (40).
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Figure 1. Exact and approximate eigenfunctions for the kernel K(x, ξ) = exp (2x) + exp (2ξ) over
[ 0, 1 ]2 at various truncation orders.
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Figure 2. Exact and approximate eigenfunctions for the kernel K(x, ξ) = cos (π(x + ξ)) over [ 0, 1 ]2 at
various truncation orders.
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Figure 3. Exact and approximate eigenfunctions for the kernel K(x, ξ) = exp (x + ξ) + exp (−x− ξ)

over [ 0, 1 ]2 at various truncation orders.
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Figure 4. Exact and approximate eigenfunctions for the kernel K(x, ξ) = tan x sin 3ξ + sin 3x tan ξ over
[ 0, 1 ]2 at various truncation orders.
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Figure 5. Exact and approximate eigenfunctions for the kernel K(x, ξ) = cos 5x cos 5ξ over [ 0, 1 ]2 at
various truncation orders.
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Figure 6. Exact and approximate eigenfunctions for the kernel K(x, ξ) = sin (π exp (x)) sin (π exp (ξ))

over [ 0, 1 ]2 at various truncation orders.
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7. Conclusions

In this work, a perturbation expansion-based approximation method is proposed for
approximating the most dominant eigenvalue and its accompanying eigenfunction of a
Hilbert–Schmidt integral operator having symmetric kernel. Throughout the development of this
method, the half interval length of the domain of the integral operator is considered as the perturbation
parameter, and all investigations are realized by assuming that this parameter is small enough, which
means it approaches zero. Thus, this process can be interpreted as a perturbation method at the zero
interval limit.

Since we have imposed autonomy on the perturbation coefficients of the eigenfunction under
consideration, denumerable infinitely many constraints have arisen. The general structure for the
mentioned constraints are obtained, and it is guaranteed that the developed method is valid for the
compact operators involving purely multiplicative kernels.

With the help of numerical implementations, the efficiency of the present method is confirmed
for the kernels that have a purely multiplicative nature. However, it is observed that the developed
method may work efficiently for the kernels that are not of a purely multiplicative type. In addition to
these, the effects of the integration interval, ψ0 coefficient and truncation order to the approximation
quality are investigated by error analysis.

As a final remark, if the restrictions amongst the kernel coefficients depicted in the fourth section
are not satisfied, the generated perturbation series in Equation (34) may not converge to the exact
solution for the relevant eigenfunction. Thus, it becomes wiser to work with kernels satisfying these
restrictions or to deal with intervals that enable kernel coefficients to satisfy the restrictive relations.
Even if the restriction equations are not exactly satisfied, their closeness to satisfiability may result
in effective approximations. On the other hand, since we could only deal with a finite number
of perturbation terms in practical cases, satisfying denumerable infinitely many constraints is not
necessary to this end. Thus, working with the kernels whose initial Taylor coefficients satisfying
initial constraints may empower the efficiency of the developed method even for the non-purely
multiplicative kernels.
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