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Abstract: A hypergraph is the most developed tool for modeling various practical problems in
different fields, including computer sciences, biological sciences, social networks and psychology.
Sometimes, given data in a network model are based on bipolar information rather than one sided.
To deal with such types of problems, we use mathematical models that are based on bipolar fuzzy
(BF) sets. In this research paper, we introduce the concept of BF directed hypergraphs. We describe
certain operations on BF directed hypergraphs, including addition, multiplication, vertex-wise
multiplication and structural subtraction. We introduce the concept of B = (m+, m−)-tempered
BF directed hypergraphs and investigate some of their properties. We also present an algorithm to
compute the minimum arc length of a BF directed hyperpath.

Keywords: bipolar fuzzy (BF) directed hypergraphs; B-tempered BF directed hypergraphs;
BF shortest hyperpath

1. Introduction

Graph theory has become a powerful conceptual framework for the modeling and solution of
combinatorial problems that arise in various areas, including mathematics, computer science and
engineering. Graphs are only useful for modeling of the pairwise communication. However, many
times (for example, in statistical physics and effective theories), one works with such interactions that
are based on more than two particles. To deal with such kinds of interactions, we use a hyperedge, as it
contains more than two vertices. Hypergraphs [1], a generalization of graphs, have many properties
that are the basis of different techniques that are used in modern mathematics. Hypergraphs are stated
as the extended form of ordinary graphs in the way that they contain a finite collection of points and
a set of hyperarcs defined as a subset of vertices. The applicability of graph theory has widened by
the generalization of undirected graphs, called undirected hypergraphs, which have been proven to
be more useful as mathematical modeling tools. In real-world applications, hypergraph techniques
appear very useful in many places, including declustering problems, which are important to increase
the performance of parallel databases [2]. Hypergraphs can be demonstrated as a useful engine
(or tool) to model concepts and systems in different fields of discrete mathematics. There are different
types of hypergraphs that have been broadly utilized in computer science as a suitable mathematical
model. There are many complex phenomena and concepts in many areas, including rewriting systems,
problem solving, databases and logic programming, which can be represented using hypergraphs [3].
The most used hypergraphs in computer science are undirected hypergraphs [4]. Directed hypergraphs
are used to solve and model certain problems arising in deductive databases and in model checking.

There are many complicated phenomena in science and technology in which available information
is not accurate. For such types of problems, we use mathematical models that contain elements of
uncertainty. These mathematical models are based on fuzzy set theory. The idea of fuzzy sets was given
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by Zadeh [5]. Fuzzy set theory has many applications in many disciplines, including management
sciences, decision theory and robotics. Fuzzy sets have been used successfully in problems that
involve approximate reasoning. Zhang [6] gave the idea of bipolar fuzzy (BF) sets. BFs generalize the
fuzzy sets whose degree of membership ranges over [−1, 1]. There are many problems in which it is
necessary to utilize bipolar information. In BFs, there are two types of information, namely positive
and negative. Positive information deals with the possibility that an element satisfies some property,
whereas negative information deals with the element which satisfies some counter property. In recent
years, this domain has motivated new research in several fields. For instance we suppose that we have
to determine the location of something in the space, we use positive information to express the set of
points that are possible, and the set of places that are impossible is taken as negative information.

In 1973, Kaufmann [7] gave the concept of fuzzy graphs based on Zadeh’s fuzzy relations [8].
Rosenfeld [9] described the structure of fuzzy graphs. Later on, some remarks on fuzzy graphs were
given by Bhattacharya [10]. In 1994, Mordeson and Chang-Shyh [11] defined some operations on
fuzzy graphs. Kaufmann [7] presented the idea of fuzzy hypergraphs. Mordeson and Nair presented
a valuable contribution on fuzzy graphs as well as fuzzy hypergraphs in [12]. Interval-valued fuzzy
hypergraphs were introduced by Chen [13]. Lee Kwang and K.m Lee studied the fuzzy hypergraphs
using fuzzy partition in [14]. Intuitionistic fuzzy directed hypergraphs were defined by Parvathi
and Thilagavathi in 2013 [15]. Rangasamy et al. [16] proposed a method for finding the shortest
hyperpath in an intuitionistic fuzzy weighted hypergraph. Further, certain types of intuitionistic fuzzy
directed hypergraphs were discussed by Myithili et al. in [17]. BF graphs were first defined by Akram
in [18]. In 2012, Akram and Dudek discussed the regularity of BF graphs [19]. Novel applications of
bipolar fuzzy graphs were discussed by Akram ans Waseem in [20]. Sarwar and Akram discussed the
novel concepts of bipolar fuzzy competition graphs in [21]. In 2011, BF hypergraphs were studied by
Samanta and Pal [22]. In 2013, Akram et al. [23] discussed the properties of BF hypergraphs.

This paper is organized as follows: In Section 2, the concepts of BF hypergraphs,
BF directed hypergraphs and hyperpath are described. Some certain operations on BF directed
hypergraphs, including addition, multiplication, vertex-wise multiplication and structural subtraction,
are introduced. The concepts of simple, elementary, support simple and sectionally elementary
BF directed hypergraphs are introduced. This section also deals with B-tempered BF directed
hypergraphs. In Section 3, we provide an algorithm to compute minimum arc length in a BF directed
hypernetwork. The shortest BF directed hyperpath is calculated using the score-based method. In the
last section, we conclude with our results. For other notations, terminologies and applications not
mentioned in the paper, the readers are referred to [24–26]. Throughout this paper, the following
notations given in Table 1 will be used:

Table 1. Notations. BF: bipolar fuzzy.

Notations Description

B = 〈m+, m−〉 BF set
G = (T, U) BF directed hypergraph having vertex set T and edge set U

[T, U] Index matrix of G
0 〈0, 0〉
B̃ Triangular BF number

S(B̃) Score of BF number B̃
Acc(B̃) Accuracy of BF number B̃
h(G) Height of hypergraph G

FS(G) Fundamental sequence of G
c(G) Core set of G

G(µi ,νi) (µi, νi)-level BF hypergraph
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2. Bipolar Fuzzy Directed Hypergraphs

Definition 1. [4] A directed hypergraph is a hypergraph with directed hyperedges. A directed hyperedge or
hyperarc is an ordered pair E = (X, Y) of (possibly empty) disjoint subsets of vertices. X is the tail of E, while Y
is its head.

Definition 2. [23] A BF hypergraph is an ordered pair H = (N, E), where:

(1) N is a finite collection of points,
(2) E = {E1, E2, E3, ..., Ek} is a finite collection of nontrivial BF subsets of N,
(3) (i) Ej = {(vi, m+

j (vi), m−j (vi))|vi ∈ N},
(ii) Ej ⊆ N × N, where m+

ij : N × N → [0, 1] and m−ij : N × N → [−1, 0] are such that:

m+
ij ≤ min{m+

i , m+
j }, m−ij ≤ max{m−i , m−j },

where m+
ij and m−ij are the positive membership and negative membership values of the hyperedge Ej.

(4) Ej 6= φ, j = 1, 2, 3, ..., k,
(5) N =

⋃
j

supp(Ej), j = 1, 2, 3, ..., k.

Here, the edges Ej are BF sets. m+
j (vi) and m−j (vi) are positive and negative membership values of vertex

vi to edge Ej, respectively.
If m+

ij = m−ij = 0, it indicates the non-existence of the edge between xi and xj; it is indexed by 〈0, 0〉 = 0.
Otherwise, there exists an edge.

We now define the BF directed hypergraph.

Definition 3. A BF directed hyperarc (hyperedge) a ∈ U is a pair (t(a), h(a)), where t(a) ⊂ U, t(a) 6= φ is
its tail and h(a) ∈ U − t(a) is called its head. A source vertex s is defined as a vertex in G if h(a) 6= s, for each
a ∈ U. A destination vertex d is defined as a vertex if t(a) 6= d, for every a ∈ U.

A BF directed hypergraph G is a pair (T, U), where T is a finite set of points and U is a set of BF
directed hyperarcs.

Definition 4. A BF directed hyperedge (or hyperarc) is defined as an ordered pair U = (u, v), where u and
v are disjoint subsets of nodes. u is taken as the tail of U and v is called its head. t(U) and h(U) are used to
denote the tail and head of the BF directed hyperarc, respectively.

Definition 5. A backward BF directed hyperarc or b-arc is defined as a hyperarc U = (t(U), h(U)),
with |h(U)| = 1. A forward BF hyperarc or f-arc is a hyperarc U = (t(U), h(U)), with |t(U)| = 1.

A BF directed hypergraph is called a b-BF directed hypergraph if its hyperarcs are b-arcs. A BF directed
hypergraph is said to be a f-BF directed hypergraph if its hyperarcs are f-arcs. A backward-forward (bf)-graph
(or bf-bipolar fuzzy directed hypergraph) is a BF directed hypergraph whose hyperarcs are either b-arcs or f-arcs.

Definition 6. A path between nodes s and d in a BF directed hypergraph G is an alternating sequence of distinct
vertices and BF hyperedges s = t0, e1, t1, e2, ..., ek = d, such that ti−1, ti ∈ ei, for all i = 1, 2, 3, ..., k.

Example 1. A BF directed hypergraph and a hyperpath between two nodes s and d is shown in Figure 1
(generated with LaTeXDraw 2.0.8 Mon17 October 2016 12:01:25 PDT).
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s = t1(0.1,−0.2)

t2(0.7,−0.2)

t3(0.6,−0.2)

t4(0.4,−0.5)

t5(0.1,−0.2)

t6(0.2,−0.3) t7(0.3,−0.2)

t8(0.5,−0.4) = d

Figure 1. A path from source s to destination node d in a BF set directed hypergraph.

The path is drawn as a thick line.

Definition 7. [4] The incidence matrix representation of a directed hypergraph N = (V, A) is given as a matrix
[bij] of order n×m, defined as follows:

bij =





−1, if ei ∈ t(Aj),

1, if ei ∈ h(Aj),

0, otherwise.

Definition 8. The incidence matrix of a BF directed hypergraph G = (T, U) is characterized by an n× m
matrix [aij] as follows:

aij =




〈m+

j (ni), m−j (ni)〉, if ni ∈ Uj,

0, otherwise.

Definition 9. Let G = (T, U) be a BF directed hypergraph. The height h(G) of G is defined as:

h(G) = {max(Ui), min(Uj) : Ui, Uj ∈ U},

where Ui = max(m+
ij ) and Uj = min(m−ij ), m+

ij is taken as the positive membership value and m−ij indicates
the negative membership value of vertex i to hyperedge j.

Definition 10. A BF directed hypergraph G = (T, U) is simple if there are no repeated BF hyperedges in U,
and if Uk, Uj ∈ U and Uk ⊆ Uj, then Uk = Uj, for each k and j.

Definition 11. A BF directed hypergraph G = (T, U) is called support simple if whenever Ui, Uj ∈ U,
Ui ⊆ Uj and supp(Ui) = supp(Uj), then Ui = Uj, for all i and j. Then, the hyperedges Ui and Uj are called
supporting edges.

Definition 12. A BF directed hypergraph is named elementary if m+
ij :→ [0, 1] and m−ij :→ [−1, 0] are

constant functions. If |supp(m+
ij , m−ij )| = 1, then it is characterized as a spike; that is, a BF subset with

singleton support.

Theorem 1. The BF directed hyperedges of a BF directed hypergraph are elementary.

Example 2. Consider a BF directed hypergraph G = (T, U), such that T = {t1, t2, t3, t4}, U =

{U1, U2, U3, U4}. The corresponding incidence matrix is given in Table 2.
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Table 2. Elementary BF directed hypergraph.

I U1 U2 U3 U4

t1 〈0.2,−0.3〉 〈0.5,−0.2〉 0 〈0.3,−0.4〉
t2 0 〈0.5,−0.2〉 〈0.5,−0.2〉 0
t3 〈0.2,−0.3〉 0 〈0.5,−0.2〉 〈0.3,−0.4〉
t4 0 0 〈0.5,−0.2〉 〈0.3,−0.4〉

The corresponding elementary BF directed hypergraph is shown in Figure 2.

h(G) = {max(Ui),min(Uj) : Ui, Uj ∈ U},

where Ui = max(m+
ij ) and Uj = min(m−

ij ), m
+
ij is taken as the positive membership value and m−

ij

indicates the negative membership value of vertex i to hyperedge j.

Definition 2.10. A BF directed hypergraph G = (T,U) is simple if there are no repeated BF
hyperedges in U and if Uk, Uj ∈ U and Uk ⊆ Uj then Uk = Uj, for each k and j.

Definition 2.11. A BF directed hypergraph G = (T,U) is called support simple if whenever Ui, Uj ∈
U , Ui ⊆ Uj and supp(Ui) = supp(Uj) then Ui = Uj, for all i and j.
Then, the hyperedges Ui and Uj are called supporting edges.

Definition 2.12. A BF directed hypergraph is named as elementary ifm+
ij :→ [0, 1] andm−

ij :→ [−1, 0]
are constant functions.
If |supp(m+

ij ,m
−
ij )| = 1, then it is characterized as a spike. That is, a BF subset with singleton support.

Theorem 2.1. The BF directed hyperedges of a BF directed hypergraph are elementary.

Example 2.2. Consider a BF directed hypergraph G = (T,U), such that T = {t1, t2, t3, t4}, U =
{U1, U2, U3, U4}. The corresponding incidence matrix is given in Table 1.

Table 1: Elmentary BF directed hypergraph
I U1 U2 U3 U4

t1 〈0.2,−0.3〉 〈0.5,−0.2〉 0 〈0.3,−0.4〉
t2 0 〈0.5,−0.2〉 〈0.5,−0.2〉 0
t3 〈0.2,−0.3〉 0 〈0.5,−0.2〉 〈0.3,−0.4〉
t4 0 0 〈0.5,−0.2〉 〈0.3,−0.4〉

The corresponding elementary BF directed hypergraph is shown in Figure 2.
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Figure 2: Elementary BF directed hypergraph.

Definition 2.13. Let G = (T,U) be a BF directed hypergraph. Suppose that μ ∈ [0, 1] and ν ∈
[−1, 0]. The (μ, ν)−level is defined as U(μ,ν) = {v ∈ T |m+(v) ≥ μ or m−(v) ≤ ν}. The crisp
directed hypergraph G(μ, ν) = (T(μ,ν), U(μ,ν)), such that

• U(μ,ν) = {v ∈ T |m+(v) ≥ μ or m−(v) ≤ ν},

5

Figure 2. Elementary BF directed hypergraph.

Definition 13. Let G = (T, U) be a BF directed hypergraph. Suppose that µ ∈ [0, 1] and ν ∈ [−1, 0].
The (µ, ν)-level is defined as U(µ,ν) = {v ∈ T|m+(v) ≥ µ or m−(v) ≤ ν}. The crisp directed hypergraph
G(µ, ν) = (T(µ,ν), U(µ,ν)), such that:

• U(µ,ν) = {v ∈ T|m+(v) ≥ µ or m−(v) ≤ ν},
• T(µ,ν) =

⋃
U

U(µ,ν),

is called the (µ, ν)-level hypergraph of G.

Definition 14. Let G = (T, U) be a BF directed hypergraph and Gµi ,νi = (Tµi ,νi , Uµi ,νi ) be the
(µi, νi)-level directed hypergraphs of G. The sequence {(µ1, ν1), (µ2, ν2), ..., (µn, νn)} of real numbers, where
0 < µ1 < µ2 < ... < µn and 0 > ν1 > ν2 > ... > νn, (µn, νn) = h(G), such that the following properties:

(i) if (µi−1, νi−1) < (α, β) ≤ (µi, νi), then U(α,β) = U(µi ,νi)
,

(ii) U(µi ,νi)
@ U(µi+1,νi+1)

,

are satisfied, is illustrated as the fundamental sequence (FS) of G. The sequence is denoted by
FS(G).The (µi, νi)-level hypergraphs {G(µ1,ν1)

, G(µ2,ν2)
, ..., G(µn ,νn)} are called the core hypergraphs of G. This is

also called the core set of G and is denoted by c(G).

Definition 15. Let G = (T, U) be a BF directed hypergraph and FS(G) = {(µ1, ν1), (µ2, ν2), ..., (µn, νn)}. If
for each E = (m+, m−) ∈ U and each µi, νi ∈ FS(G), E(µ,ν) = U(µi ,νi)

, for all (µ, ν) ∈ ((µi−1,νi−1), (µi, νi)],
then G is sectionally elementary.

Definition 16. Let G = (T, U) be a BF directed hypergraph and c(G) = {G(µ1,ν1)
, G(µ2,ν2)

, ..., G(µn ,νn)}. G is
said to be ordered if c(G) is ordered. That is, G(µ1,ν1)

⊂ G(µ2,ν2)
⊂ ... ⊂ G(µn ,νn). The BF directed hypergraph

is called simply ordered if the sequence {G(µ1,ν1)
, G(µ2,ν2)

, ..., G(µn ,νn)} is simply ordered.

Example 3. Consider a BF directed hypergraph G = (T, U), such that T = {t1, t2, t3, t4, t5},
U = {U1, U2, U3}, given by the incidence matrix in Table 3.
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Table 3. BF directed hypergraph.

I U1 U2 U3

t1 〈0.8,−0.2〉 〈0.6,−0.1〉 〈0.4,−0.3〉
t2 0 0 〈0.4,−0.3〉
t3 〈0.8,−0.1〉 0 0
t4 〈0.8,−0.2〉 〈0.6,−0.1〉 〈0.4,−0.3〉
t5 0 〈0.5,−0.1〉 〈0.4,−0.3〉

The corresponding graph is shown in Figure 3.
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1 (0.8,−0.2)

U
2 (0.6,−0.1)

U3(0.4,−0.3)

Figure 3: BF directed hypergraph.

By computing the (μi, νi)−level BF directed hypergraphs of G, we have U(0.8,−0.2) = {t1, t4},
U(0.6,−0.1) = {t1, t4} and U(0.4,−0.3) = {{t1, t2}, {t4, t5}}. Note that G(0.8,−0.2) = G(0.6,−0.1) and
G(0.8,−0.2) ⊆ G(0.4,−0.3). The fundamental sequence is FS(G) = {(0.8,−0.2), (0.4,−0.3)}. The
(0.6,−0.1)−level is not in FS(G). Also G(0.8,−0.2) �= G(0.4,−0.3).
G is not sectionally elementary since U2(μ,ν) �= U2(0.8,−0.2) for μ = 0.6, ν = −0.1. The BF directed
hypergraph is ordered and the set of core hypergraphs is c(G) = {G1 = G(0.8,−0.2), G2 = G(0.4,−0.3)}.
Induced fundamental sequence of G is given in Figure 4.
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Theorem 2.2. (a) If G = (T,U) is an elementary BF directed hypergraph, then G is ordered.

(b) If G is an ordered BF directed hypergraph with c(G) = {G(μ1,ν1), G(μ2,ν2),...,G(μn,νn)
} and if

G(μn,νn) is simple, then G is elementary.

We now define the index matrix representation and certain operations on BF directed hypergraphs.

Definition 2.17. Let G = (T,U) be a BF directed hypergraph. Then the index matrix of G is of the
form [T,U ⊂ T × T ], where T = {t1, t2, t3, · · · , tk} and U = 〈m+

ij ,m
−
ij 〉 =

t1 t2 · · · tk
t1 〈m+

11,m
−
11〉 〈m+

12,m
−
12〉 · · · 〈m+

1k,m
−
1k〉

t2 〈m+
21,m

−
21〉 〈m+

22,m
−
22〉 · · · 〈m+

2k,m
−
2k〉

...
...

...
...

...
tk 〈m+

k1,m
−
k1〉 〈m+

k2,m
−
k2〉 · · · 〈m+

kk,m
−
kk〉

where m+
ij ∈ [0, 1] and m−

ij ∈ [−1, 0], i, j = 1, 2, 3, ..., k. The edge between two vertices vi and vj is

indexed by 〈m+
ij ,m

−
ij 〉, whose values can be find out by using the Cartesian products defined below.

Definition 2.18. Let E be a fixed set of points. The Cartesian product of two BF sets B1 and B2

over E is defined as

i. B1×1B2 = {〈(v1, v2),min(m+(v1),m
+(v2)),max(m−(v1),m−(v2))〉|v1 ∈ B1, v2 ∈ B2}.

ii. B1×2B2 = {〈(v1, v2),max(m+(v1),m
+(v2)),min(m−(v1),m−(v2))〉|v1 ∈ B1, v2 ∈ B2}.

8

Figure 4. G induced fundamental sequence.
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Theorem 2.

(a) If G = (T, U) is an elementary BF directed hypergraph, then G is ordered.
(b) If G is an ordered BF directed hypergraph with c(G) = {G(µ1,ν1)

, G(µ2,ν2),...,G(µn ,νn)
} and if G(µn ,νn) is

simple, then G is elementary.

We now define the index matrix representation and certain operations on BF directed hypergraphs.

Definition 17. Let G = (T, U) be a BF directed hypergraph. Then, the index matrix of G is of the form
[T, U ⊂ T × T] as given in Table 4, where T = {t1, t2, t3, · · · , tk} and U = 〈m+

ij , m−ij 〉 =

Table 4. Index matrix representation of BF directed hypergraphs.

t1 t2 · · · tk

t1 〈m+
11, m−11〉 〈m+

12, m−12〉 · · · 〈m+
1k, m−1k〉

t2 〈m+
21, m−21〉 〈m+

22, m−22〉 · · · 〈m+
2k, m−2k〉

...
...

...
...

...
tk 〈m+

k1, m−k1〉 〈m+
k2, m−k2〉 · · · 〈m+

kk, m−kk〉

where m+
ij ∈ [0, 1] and m−ij ∈ [−1, 0], i, j = 1, 2, 3, ..., k. The edge between two vertices vi and vj is indexed by

〈m+
ij , m−ij 〉, whose values can be find out by using the Cartesian products defined below.

Definition 18. Let E be a fixed set of points. The Cartesian product of two BF sets B1 and B2 over E is
defined as:

i. B1×1B2 = {〈(v1, v2), min(m+(v1), m+(v2)), max(m−(v1), m−(v2))〉|v1 ∈ B1, v2 ∈ B2}.
ii. B1×2B2 = {〈(v1, v2), max(m+(v1), m+(v2)), min(m−(v1), m−(v2))〉|v1 ∈ B1, v2 ∈ B2}.

Note that the Cartesian product B1×iB2 is a BF set, where i = 1, 2.

We now define some operations on BF directed hypergraphs.

Definition 19. The addition of BF directed hypergraphs G1 = (T1, U1, 〈m+
i , m−i 〉, 〈m+

ij , m−ij 〉) and
G2 = (T2, U2, 〈m+

p , m−p 〉, 〈m+
pq, m−pq〉), which is denoted by G = G1 � G2, is defined as G1 � G2 =

[T1 ∪ T2, 〈m+
r , m−r 〉, 〈m+

rs, m−rs〉], where:

〈m+
r , m−r 〉 =





〈m+
i , m−i 〉, if vr ∈ T1 − T2,

〈m+
p , m−p 〉, if vr ∈ T2 − T1,

〈max(m+
i , m+

p ), min(m−i , m−p )〉, if vr ∈ T1 ∩ T2,

0, otherwise.

(1)

and:

〈m+
rs, m−rs〉 =





〈m+
ij , m−ij 〉, if vr = vi ∈ T1 and vs = vj ∈ T1 − T2,

or vr = vi ∈ T1 − T2 and vs = vj ∈ T1,

〈m+
pq, m−pq〉, if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

or vr = vp ∈ T2 − T1 and vs = vq ∈ T2,

〈max(m+
ij , m+

pq), min(m−ij , m−pq)〉, if vr = vi = vp ∈ T1 ∩ T2 and

vs = vj = vq ∈ T2 ∩ T1,

0, otherwise.

(2)
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Example 4. Consider the BF directed hypergraphs G1 = (T1, U1) and G2 = (T2, U2), where T1 =

{t1, t2, t3, ..., t8}, U1 = {({t1}, t3), ({t1, t2}, t4), ({t3}, t5), ({t1, t5}, t6), ({t5, t7}, t8)} and T2 = {t1, t2, ..., t5},
U2 = {({t1, t3}, t2), ({t2}, t2), ({t4}, t2), ({t3, t5}, t4), ({t3}, t5)} as shown in Figures 5 and 6, respectively.

Note that the Cartesian product B1×iB2 is a BF set, where i = 1, 2.

We now define some operations on BF directed hypergraphs.

Definition 2.19. The addition of BF directed hypergraphs G1 = (T1, U1, 〈m+
i ,m

−
i 〉, 〈m+

ij ,m
−
ij 〉) and

G2 = (T2, U2, 〈m+
p ,m

−
p 〉, 〈m+

pq,m
−
pq〉), which is denoted by G = G1 � G2, is defined as G1 � G2 =

[T1 ∪ T2, 〈m+
r ,m

−
r 〉, 〈m+

rs,m
−
rs〉], where

〈m+
r ,m

−
r 〉 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈m+
i ,m

−
i 〉, if vr ∈ T1 − T2,

〈m+
p ,m

−
p 〉, if vr ∈ T2 − T1,

〈max(m+
i ,m

+
p ),min(m−

i ,m
−
p )〉, if vr ∈ T1 ∩ T2,

0, otherwise.

(1)

and

〈m+
rs,m

−
rs〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈m+
ij ,m

−
ij 〉, if vr = vi ∈ T1 and vs = vj ∈ T1 − T2,

or vr = vi ∈ T1 − T2 and vs = vj ∈ T1,

〈m+
pq,m

−
pq〉, if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

or vr = vp ∈ T2 − T1 and vs = vq ∈ T2,

〈max(m+
ij ,m

+
pq),min(m−

ij ,m
−
pq)〉, if vr = vi = vp ∈ T1 ∩ T2 and

vs = vj = vq ∈ T2 ∩ T1,

0, otherwise.

(2)

Example 2.4. Consider the BF directed hypergraphs G1 = (T1, U1) and G2 = (T2, U2), where
T1 = {t1, t2, t3, ..., t8}, U1 = {({t1}, t3), ({t1, t2}, t4), ({t3}, t5), ({t1, t5}, t6), ({t5, t7}, t8)}
and T2 = {t1, t2, ..., t5}, U2 = {({t1, t3}, t2), ({t2}, t2), ({t4}, t2), ({t3, t5}, t4), ({t3}, t5)} as shown in
Figures 5 and 6, respectively.

�
� ���

� �
�

t1(0.1,−0.2) t2(0.4,−0.5) t5(0.3,−0.3)

t3(0.6,−0.3) t4(0.7,−0.2) t6(0.5,−0.2)

(0
.6
,−

0
.3
)

(0.7,−
0.5)

(0
.6
,−
0.
3)

(0.5,−
0.3)

�

�

t7(0.1,−0.5)

t8(0.6,−0.3)

(0.1,−
0.5)

Figure 5: G1

9

Figure 5. G1.

�

�

�

�

�

t1(0.6,−0.3)

t2(0.5,−0.2)

t4(0.6,−0.1)

t5(0.8,−0.1)t3(0.1,−0.7)

(0.6,
−0.7)

(0.6,−0.2)

(0.8
,−0.

7)

(0.8,−0.7)

(0.5,−
0.2)

Figure 6: G2

The index matrix of G1 is [T1, 〈m+
ij ,m

−
ij 〉], where T1 = {t1, t2, t3, ..., t8} and

〈m+
ij ,m

−
ij 〉 =

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0
t3 〈0.6,−0.3〉 0 0 0 0 0 0 0
t4 〈0.7,−0.5〉 〈0.7,−0.5〉 0 0 0 0 0 0
t5 0 0 〈0.6,−0.3〉 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

The index matrix of G2 is [T2, 〈m+
pq,m

−
pq〉], where T2 = {t1, t2, t3, t4, t5} and

〈m+
pq,m

−
pq〉 =

t1 t2 t3 t4 t5
t1 0 0 0 0 0
t2 〈0.6,−0.7〉 〈0.5,−0.2〉 〈0.6,−0.7〉 〈0.6,−0.2〉 0
t3 0 0 0 0 0
t4 0 0 〈0.8,−0.7〉 0 〈0.8,−0.7〉
t5 0 0 〈0.8,−0.7〉 0 0

The index matrix of G1 �G2 is [T1 ∪ T2, 〈m+
rs,m

−
rs〉, 〈m+

rs,m
−
rs〉], where T1 ∪ T2 = {t1, t2, t3, t4, t5, t6,

t7, t8}. The membership values 〈m+
r ,m

−
r 〉 are calculated by using Equation 1 and 〈m+

rs,m
−
rs〉 are

calculated by using Equation 2.

〈m+
rs,m

−
rs〉 =

10

Figure 6. G2.

The index matrix of G1 is [T1, 〈m+
ij , m−ij 〉] as given in Table 5, where T1 = {t1, t2, t3, ..., t8} and:

Table 5. Index matrix of G1.

〈m+
ij , m−ij 〉 =

t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0
t3 〈0.6,−0.3〉 0 0 0 0 0 0 0
t4 〈0.7,−0.5〉 〈0.7,−0.5〉 0 0 0 0 0 0
t5 0 0 〈0.6,−0.3〉 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

The index matrix of G2 is [T2, 〈m+
pq, m−pq〉] as given in Table 6, where T2 = {t1, t2, t3, t4, t5} and:
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Table 6. Index matrix of G2.

〈m+
pq, m−pq〉 =

t1 t2 t3 t4 t5

t1 0 0 0 0 0
t2 〈0.6,−0.7〉 〈0.5,−0.2〉 〈0.6,−0.7〉 〈0.6,−0.2〉 0
t3 0 0 0 0 0
t4 0 0 〈0.8,−0.7〉 0 〈0.8,−0.7〉
t5 0 0 〈0.8,−0.7〉 0 0

The index matrix of G1�G2 is [T1∪T2, 〈m+
rs, m−rs〉, 〈m+

rs, m−rs〉], where T1∪T2 = {t1, t2, t3, t4, t5, t6, t7, t8}.
The membership values 〈m+

r , m−r 〉 are calculated by using Equation (1), and 〈m+
rs, m−rs〉 are calculated by using

Equation (2) and are given in Table 7.

Table 7. Index matrix of G1 � G2.

〈m+
rs, m−rs〉 =

t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0
t2 〈0.6,−0.7〉 〈0.5,−0.2〉 〈0.6,−0.7〉 〈0.6,−0.2〉 0 0 0 0
t3 〈0.6,−0.3〉 0 0 0 0 0 0 0
t4 〈0.7,−0.5〉 〈0.7,−0.5〉 〈0.8,−0.7〉 0 〈0.8,−0.7〉 0 0 0
t5 0 0 〈0.8,−0.7〉 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

The graph of G1 � G2 is shown in Figure 7.

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 0 0 0 0 0 0 0
t2 〈0.6,−0.7〉 〈0.5,−0.2〉 〈0.6,−0.7〉 〈0.6,−0.2〉 0 0 0 0
t3 〈0.6,−0.3〉 0 0 0 0 0 0 0
t4 〈0.7,−0.5〉 〈0.7,−0.5〉 〈0.8,−0.7〉 0 〈0.8,−0.7〉 0 0 0
t5 0 0 〈0.8,−0.7〉 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

The graph of G1 �G2 is shown in Figure 7.
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Definition 2.20. The vertexwise multiplication of two BF directed hypergraphs G1 and G2, denoted
by G1

⊗
G2, is [T1 ∩ T2, 〈m+

r ,m
−
r 〉, 〈m+

rs,m
−
rs〉], where

〈m+
r ,m

−
r 〉 = 〈min(m+

i ,m
+
p ),max(m−

i ,m
−
p )〉 if vr ∈ T1 ∩ T2, (3)

〈m+
rs,m

−
rs〉 = 〈min(m+

ij ,m
+
pq),max(m−

ij ,m
−
pq)〉 if vr = vi = vp ∈ T1∩T2 and vs = vj = vq ∈ T1∩T2. (4)

Example 2.5. Consider BF directed hypergraphsG1 and G2 as shown in Figures 5 and 6, respectively.
The index matrix of G1

⊗
G2 is [T1 ∩T2, 〈m+

r ,m
−
r 〉, 〈m+

rs,m
−
rs〉], where T1 ∩T2 = {t1, t2, t3, t4, t5}. The

membership values 〈m+
r ,m

−
r 〉 are calculated by using Equation 3 and 〈m+

rs,m
−
rs〉 are calculated by

using Equation 4.

〈m+
rs,m

−
rs〉 =

t1 t2 t3 t4 t5
t1 0 0 0 0 0
t2 0 0 0 0 0
t3 0 0 0 0 0
t4 0 0 0 0 0
t5 0 0 〈0.6,−0.3〉 0 0

11

Figure 7. G1 � G2.

Definition 20. The vertex-wise multiplication of two BF directed hypergraphs G1 and G2, denoted by G1
⊗

G2,
is [T1 ∩ T2, 〈m+

r , m−r 〉, 〈m+
rs, m−rs〉], where:

〈m+
r , m−r 〉 = 〈min(m+

i , m+
p ), max(m−i , m−p )〉 if vr ∈ T1 ∩ T2, (3)

〈m+
rs, m−rs〉 = 〈min(m+

ij , m+
pq), max(m−ij , m−pq)〉 if vr = vi = vp ∈ T1 ∩ T2 and vs = vj = vq ∈ T1 ∩ T2. (4)

Example 5. Consider BF directed hypergraphs G1 and G2 as shown in Figures 5 and 6, respectively. The index
matrix of G1

⊗
G2 is [T1 ∩ T2, 〈m+

r , m−r 〉, 〈m+
rs, m−rs〉], where T1 ∩ T2 = {t1, t2, t3, t4, t5}. The membership

values 〈m+
r , m−r 〉 are calculated by using Equation (3), and 〈m+

rs, m−rs〉 are calculated by using Equation (4) and
are given in Table 8.
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Table 8. Index matrix of G1
⊗

G2.

〈m+
rs, m−rs〉 =

t1 t2 t3 t4 t5

t1 0 0 0 0 0
t2 0 0 0 0 0
t3 0 0 0 0 0
t4 0 0 0 0 0
t5 0 0 〈0.6,−0.3〉 0 0

The graph of G1
⊗

G2 is given in Figure 8.The graph of G1
⊗

G2 is given in Figure 8.

� � �

� �

t1(0.1,−0.2) t2(0.4,−0.2) t3(0.1,−0.3)

t4(0.6,−0.1)t5(0.3,−0.1)

(0.
6,
−0.

3)

Figure 8: G1
⊗

G2

Definition 2.21. Themultiplication of two BF directed hypergraphsG1 and G2, denoted byG1
⊙

G2,
is defined as [T1 ∪ (T2 − T1), T2 ∪ (T1 − T2), 〈m+

r ,m
−
r 〉, 〈m+

rs,m
−
rs〉], where

〈m+
r ,m

−
r 〉 =

⎧
⎪⎨
⎪⎩

〈m+
i ,m

−
i 〉, if vr ∈ T1,

〈m+
p ,m

−
p 〉, if vr ∈ T2,

〈min(m+
i ,m

+
p ),max(m−

i ,m
−
p )〉, if vr ∈ T1 ∩ T2.

(5)

and

〈m+
rs,m

−
rs〉 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈m+
ij ,m

−
ij 〉, if vr = vi ∈ T1 and vs = vj ∈ T1 − T2,

〈m+
pq,m

−
pq〉, if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

〈max(min(m+
ij ,m

+
pq)),min(max(m−

ij ,m
−
pq))〉, if vr = vi ∈ T1 ∩ T2

and vs = vq ∈ T1 ∩ T2,

0, otherwise.

(6)

Remark 2.1. The positive membership and negative membership values of the loops (m+
r ,m

−
r ) in the

resultant graph (if present) can be calculated as m+
r ≤ m+

i or m+
r ≤ m+

p and m−
r ≥ m−

i or m−
r ≥ m−

p .

Example 2.6. The index matrix of graphG1
⊙

G2 is [T1∪(T2−T1), T2∪(T1−T2), 〈m+
r ,m

−
r 〉, 〈m+

rs,m
−
rs〉],

where T2 ∪ (T1 − T2) = {t1, t2, t3, ..., t8}. The membership values 〈m+
r ,m

−
r 〉 are calculated by using

Equation 5 and 〈m+
rs,m

−
rs〉 are calculated by using Equation 6.

〈m+
rs,m

−
rs〉=

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0
t3 0 0 0 0 0 0 0 0
t4 〈0.6,−0.5〉 〈0.5,−0.2〉 〈0.6,−0.5〉 〈0.6,−0.2〉 0 0 0 0
t5 0 0 0 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

12

Figure 8. G1
⊗

G2.

Definition 21. The multiplication of two BF directed hypergraphs G1 and G2, denoted by G1
⊙

G2, is defined
as [T1 ∪ (T2 − T1), T2 ∪ (T1 − T2), 〈m+

r , m−r 〉, 〈m+
rs, m−rs〉], where:

〈m+
r , m−r 〉 =





〈m+
i , m−i 〉, if vr ∈ T1,

〈m+
p , m−p 〉, if vr ∈ T2,

〈min(m+
i , m+

p ), max(m−i , m−p )〉, if vr ∈ T1 ∩ T2.

(5)

and:

〈m+
rs, m−rs〉 =





〈m+
ij , m−ij 〉, if vr = vi ∈ T1 and vs = vj ∈ T1 − T2,

〈m+
pq, m−pq〉, if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

〈max(min(m+
ij , m+

pq)), min(max(m−ij , m−pq))〉, if vr = vi ∈ T1 ∩ T2

and vs = vq ∈ T1 ∩ T2,

0, otherwise.

(6)

Remark 1. The positive membership and negative membership values of the loops (m+
r , m−r ) in the resultant

graph (if present) can be calculated as m+
r ≤ m+

i or m+
r ≤ m+

p and m−r ≥ m−i or m−r ≥ m−p .

Example 6. The index matrix of graph G1
⊙

G2 is [T1 ∪ (T2 − T1), T2 ∪ (T1 − T2), 〈m+
r , m−r 〉, 〈m+

rs, m−rs〉],
where T2 ∪ (T1 − T2) = {t1, t2, t3, ..., t8}. The membership values 〈m+

r , m−r 〉 are calculated by using
Equation (5), and 〈m+

rs, m−rs〉 are calculated by using Equation (6) and are given in Table 9.
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Table 9. Index matrix of graph G1
⊙

G2.

〈m+
rs, m−rs〉=

t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0
t3 0 0 0 0 0 0 0 0
t4 〈0.6,−0.5〉 〈0.5,−0.2〉 〈0.6,−0.5〉 〈0.6,−0.2〉 0 0 0 0
t5 0 0 0 0 0 0 0 0
t6 〈0.5,−0.3〉 0 0 0 〈0.5,−0.3〉 0 0 0
t7 0 0 0 0 0 0 0 0
t8 0 0 0 0 〈0.1,−0.5〉 0 〈0.1,−0.5〉 0

The graph of G1
⊙

G2 is shown in Figure 9.The graph of G1
⊙

G2 is shown in Figure 9.
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Figure 9: G1
⊙

G2

Definition 2.22. The structural subtraction of G1 and G2, denoted by G1 �G2, is defined as [T1 −
T2, 〈m+

r ,m
−
r 〉, 〈m+

rs,m
−
rs〉], where ‘−’ is the set theoretic difference operation and

〈m+
r ,m

−
r 〉 =

⎧
⎪⎨
⎪⎩

〈m+
i ,m

−
i 〉, if vr ∈ T1,

〈m+
p ,m

−
p 〉, if vr ∈ T2,

0, otherwise.

(7)

〈m+
rs,m

−
rs〉 = 〈m+

ij ,m
−
ij 〉, if vr = vs ∈ T1 − T2 and vs = vj ∈ T1 − T2. (8)

If T1 − T2 = ∅, then graph of G1 �G2 is also empty.

Example 2.7. Consider BF directed hypergraphs G1 and G2 as shown in Figures 5 and 6. The index
matrix of G1 � G2 is [T1 − T2, 〈m+

r ,m
−
r 〉, 〈m+

rs,m
−
rs〉], where T1 − T2 = {t6, t7, t8}. The membership

values 〈m+
r ,m

−
r 〉 are calculated by using Equation 7 and 〈m+

rs,m
−
rs〉 are calculated by using Equation

8.

〈m+
rs,m

−
rs〉=

t6 t7 t8
t6 0 0 0
t7 0 0 0
t8 0 〈0.1,−0.5〉 0

The following Figure 10 shows their structural subtraction.

13

Figure 9. G1
⊙

G2.

Definition 22. The structural subtraction of G1 and G2, denoted by G1 � G2, is defined as
[T1 − T2, 〈m+

r , m−r 〉, 〈m+
rs, m−rs〉], where “−” is the set theoretic difference operation and:

〈m+
r , m−r 〉 =





〈m+
i , m−i 〉, if vr ∈ T1,

〈m+
p , m−p 〉, if vr ∈ T2,

0, otherwise.

(7)

〈m+
rs, m−rs〉 = 〈m+

ij , m−ij 〉, if vr = vs ∈ T1 − T2 and vs = vj ∈ T1 − T2. (8)

If T1 − T2 = ∅, then the graph of G1 � G2 is also empty.

Example 7. Consider BF directed hypergraphs G1 and G2 as shown in Figures 5 and 6. The index matrix of
G1 � G2 is [T1 − T2, 〈m+

r , m−r 〉, 〈m+
rs, m−rs〉], where T1 − T2 = {t6, t7, t8}. The membership values 〈m+

r , m−r 〉
are calculated by using Equation (7), and 〈m+

rs, m−rs〉 are calculated by using Equation (8) and are given in
Table 10.

Table 10. Index matrix of G1 � G2.

〈m+
rs, m−rs〉=

t6 t7 t8

t6 0 0 0
t7 0 0 0
t8 0 〈0.1,−0.5〉 0

The following Figure 10 shows their structural subtraction.
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Definition 2.23. A BF directed hypergraph G = (T,U) is called B = (m+,m−)−tempered BF
directed hypergraph of G = (T,U) if there exists a crisp hypergraph G∗ = (T,U∗) and a BF set
B = (m+,m−) :−→ [0, 1] × [−1, 0] such that U = {FX = (m+,m−)|X ∈ U∗}, where

m+(x) =

{
min(m+(t)|t ∈ X), if x ∈ X,

0, otherwise.
m−(x) =

{
max(m−(t)|t ∈ X), if x ∈ X,

0, otherwise.

Let B ⊗ G denotes the B−tempered hypergraph of G, which is firmed by the crisp hypergraph
G∗ = (T,U∗) and the BF set B : T −→ [0, 1] × [−1, 0].
Example 2.8. Consider the BF directed hypergraph G = (T,U), where T = {t1, t2, t3, t4} and
U = {U1, U2, U3}, the corresponding incidence matrix is given in Table 3.

Table 3: Incidence matrix of G.
U1 U2 U3

t1 〈0.5,−0.2〉 〈0.4,−0.3〉 0
t2 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t3 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t4 0 〈0.4,−0.3〉 0

The corresponding graph is shown in Figure 11.
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Figure 11: B-tempered BF directed hypergraph.
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Definition 23. A BF directed hypergraph G = (T, U) is called B = (m+, m−)-tempered BF directed
hypergraph of G = (T, U) if there exists a crisp hypergraph G∗ = (T, U∗) and a BF set B = (m+, m−) :−→
[0, 1]× [−1, 0], such that U = {FX = (m+, m−)|X ∈ U∗}, where:

m+(x) =

{
min(m+(t)|t ∈ X), if x ∈ X,

0, otherwise.
m−(x) =

{
max(m−(t)|t ∈ X), if x ∈ X,

0, otherwise.

Let B⊗ G denotes the B-tempered hypergraph of G, which is firmed by the crisp hypergraph G∗ = (T, U∗)
and the BF set B : T −→ [0, 1]× [−1, 0].

Example 8. Consider the BF directed hypergraph G = (T, U), where T = {t1, t2, t3, t4} and
U = {U1, U2, U3}; the corresponding incidence matrix is given in Table 11.

Table 11. Incidence matrix of G.
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t1 〈0.5,−0.2〉 〈0.4,−0.3〉 0
t2 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t3 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t4 0 〈0.4,−0.3〉 0

The corresponding graph is shown in Figure 11.
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Definition 2.23. A BF directed hypergraph G = (T,U) is called B = (m+,m−)−tempered BF
directed hypergraph of G = (T,U) if there exists a crisp hypergraph G∗ = (T,U∗) and a BF set
B = (m+,m−) :−→ [0, 1] × [−1, 0] such that U = {FX = (m+,m−)|X ∈ U∗}, where

m+(x) =

{
min(m+(t)|t ∈ X), if x ∈ X,

0, otherwise.
m−(x) =

{
max(m−(t)|t ∈ X), if x ∈ X,

0, otherwise.

Let B ⊗ G denotes the B−tempered hypergraph of G, which is firmed by the crisp hypergraph
G∗ = (T,U∗) and the BF set B : T −→ [0, 1] × [−1, 0].
Example 2.8. Consider the BF directed hypergraph G = (T,U), where T = {t1, t2, t3, t4} and
U = {U1, U2, U3}, the corresponding incidence matrix is given in Table 3.

Table 3: Incidence matrix of G.
U1 U2 U3

t1 〈0.5,−0.2〉 〈0.4,−0.3〉 0
t2 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t3 〈0.5,−0.2〉 0 〈0.5,−0.2〉
t4 0 〈0.4,−0.3〉 0

The corresponding graph is shown in Figure 11.
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Then, U(0.5,−0.2) = {{t1, {t2, t3}}, {t2, t3}}, U(0.4,−0.3) = {{t1, t4}}.
Define B = (m+, m−) : T −→ [0, 1] × [−1, 0] by m+(t1) = 0.6, m+(t2) = 0.5, m+(t3) = 0.5,

m+(t4) = 0.4, m−(t1) = −0.3, m−(t2) = −0.2, m−(t3) = −0.4, m−(t4) = −0.3.
Note that:

m+
F{t1,t2,t3} = min(m+(t1), m+(t2), m+(t3)) = 0.5,

m−F{t1,t2,t3} = max(m−(t1), m−(t2), m−(t3)) = −0.2,

m+
F{t1,t4} = min(m+(t1), m+(t4)) = 0.4,

m−F{t1,t4} = max(m+(t1), m+(t4)) = −0.3,

m+
F{t2,t3} = min(m+(t2), m+(t3)) = 0.5,

m−F{t2,t3} = max(m+(t2), m+(t3)) = −0.2.

Thus:

U1 = (m+
F{t1,t2,t3}, m−F{t1,t2,t3}), U2 = (m+

F{t1,t4}, m−F{t1,t4}), U3 = (m+
F{t2,t3}, m−F{t2,t3}).

Hence, G is a B-tempered BF directed hypergraph.

Theorem 3. A BF directed hypergraph G = (T, U) is a B = (m+, m−)-tempered BF directed hypergraph
determined by some crisp hypergraph G∗ if and only if G is elementary, simply ordered and support simple.

Proof. Suppose that G = (T, U) is a B-tempered BF directed hypergraph, which is firmed by some
crisp hypergraph G∗. Since G is B-tempered, then the positive membership values and negative
membership values of BF directed hyperedges are the same. Hence, G is elementary. If the support
of two BF directed hyperedges of the B-tempered BF directed hypergraph is the same, then the BF
hyperedges are equal. Hence, G is support simple. Let c(G) = {G(µ1,ν1)

, G(µ2,ν2)
, ..., G(µn ,νn)}. Since G

is elementary, it will be ordered.
Claim: G is simply ordered.
Let U ∈ Gµi+1,νi+1 − Gµi ,νi , then there exists vi ∈ U, such that m+

ij (vi) = µi+1 and m−ij (vi) = νi+1.
Since µi+1 < µi and νi+1 < νi, it follows that vi /∈ Gµi ,νi and U * Gµi ,νi . Hence, G is simply ordered.

Conversely, suppose G = (T, U) is elementary, simply ordered and support simple. As we know,
Gµi ,νi = Gi = (Ti, Ui) and m+

ij : T −→ [0, 1] and m−ij : T −→ [−1, 0] are defined by:

m+
ij =

{
µ1, i f vi ∈ T1,
µi, i f vi ∈ Ti − Ti−1, i = 1, 2, 3, · · · , m.

m−ij =

{
ν1, i f vi ∈ T1,
νi, i f vi ∈ Ti − Ti−1, i = 1, 2, 3, · · · , m.

To prove U = {m+
ij (vi), m−ij (vi)|vi ∈ Ui}, where:

m+
ij (vi) =

{
min m+

i (y)|y ∈ U, i f vi ∈ Ui,

0, otherwise.
m−ij (vi) =

{
max m−i (y)|y ∈ U, i f vi ∈ Ui,

0, otherwise.

Let U′ ∈ Ui.
There is a unique BF hyperedge (aij, bij) in U having support U′ because G is elementary and

support simple. Clearly, different edges in U having distinct supports lie in Ui. We have to prove
that for each U′ ∈ Ui, m+

ij (vi) = aij, m−ij (vi) = bij. Since distinct edges have different supports
and all edges are elementary, then the definition of the fundamental sequence implies that h(aij, bij)

is the same as an arbitrary element of (µi, νi) of FS(G). Therefore, U′ ⊆ Ti. Further, if i > 1, then
U′ ∈ Ui−Ui−1. Since U ⊆ Ui, the definition of B-tempered indicates that for each vi ∈ Ui, m+

ij (vi) ≥ µi

and m−ij (vi) ≤ νi.
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To prove m+
ij (vi) = µi and m−ij (vi) = νi for some Vi ∈ Ui, it follows from the definition of

B-tempered m+
ij (vi) ≥ µi−1 and m−ij (vi) ≤ νi−1 for all vi ∈ Ui =⇒ U ⊆ Ui−1 and, so, U ∈ Ui −Ui−1.

Since G is simply ordered, therefore U * Ui−1, which is a contradiction to the definition of B-tempered BF
directed hypergraphs. Thus, from the definition of m+

ij (vi) and m−ij (vi), we have m+
ij = aij, m−ij = bij.

Theorem 4. Let G = (T, U) be a simply-ordered BF directed hypergraph and FS(G) = {µn, µn−1, µn−2, · · · ,
µ1 ν1, ν2, · · · , νn}. If Gµn,νn is a simple hypergraph, then there exists a partial BF directed hypergraph
D′ = (T, U′) of G, such that the conditions given below are satisfied:

(i) D′ is a B-tempered BF directed hypergraph of G.
(ii) U v U′, that is for all (m+, m−) ∈ U, there exist (m+, m−) ∈ U′, such that (m+(U) ⊆ m+(U′)) and

(m−(U) ⊆ m−(U′)).
(iii) FS(G) = FS(D′) and c(G) = c(D′).

Proof. By the above Theorem, we have G is an elementary BF directed hypergraph. By the removal
of all of those edges of G which lie in another edge of G properly, we attain the partial BF directed
hypergraph D′ = (T, U′), where U′ = {Ui ∈ U|Ui ⊆ Uj and Uj ∈ U, then Ui = Uj}. Since Gµn,νn is
simple and all of its edges are elementary, no edges can properly be contained in other edges of G if
they have different support. Hence, (iii) holds. We know that D′ is support simple. Thus, all of the
above conditions are satisfied by D′. From the definition of U′, D′ is elementary and support simple.
Thus, D′ is B-tempered.

3. Algorithm For Computing Minimum Arc Length and Shortest Hyperpath

This section investigates the definition of the triangular BF number. The score and ranking of BF
numbers are also defined. A triangular BF number is used to represent the arc length in a hypernetwork.
The algorithm explained below is based on [16]. Let Lj denotes the arc length of the j -th hyperpath.

Definition 24. Let E be a finite set, which is non-empty, and B = 〈m+, m−〉 be a BF set. Then, the pair
(m+(a), m−(a)) is called a BF number, denoted by (〈l, m, n〉, 〈c, d, e〉), where 〈l, m, n〉 ∈ F(I+), 〈c, d, e〉 ∈
F(I−), I+ = [0, 1], I− = [−1, 0].

Definition 25. A triangular BF number B is denoted by B = {〈m+(a), m−(a)〉|a ∈ E}, where m+(a)
and m−(a) are BF numbers. Therefore, a triangular BF number is given by B̃ = (〈l, m, n〉, 〈c, d, e〉).
The diagrammatic representation of BF number (〈l, m, n〉, 〈c, d, e〉) is shown in Figure 12.

m+
ij(vi) ≥ μi−1 andm−

ij(vi) ≤ νi−1 for all vi ∈ Ui =⇒ U ⊆ Ui−1 and so U ∈ Ui−Ui−1. Since G is simply
ordered, therefore U � Ui−1, which is a contradiction to the definition of B−tempered BF directed
hypergraphS. Thus from the definition of m+

ij(vi) and m−
ij(vi), we have m+

ij = aij , m
−
ij = bij.

Theorem 2.4. Let G = (T,U) be a simply ordered BF directed hypergraph and FS(G) = {μn, μn−1, μn−2,
· · · , μ1 ν1, ν2, · · · , νn}. If Gμn,νn is simple hypergraph. Then there exists a partial BF directed hyper-
graph D′ = (T,U ′) of G such that the conditions given below are satisfied:

(i) D′ is a B-tempered BF directed hypergraph of G.

(ii) U � U ′, that is for all (m+,m−) ∈ U there exist (m+,m−) ∈ U ′ such that (m+(U) ⊆ m+(U ′))
and (m−(U) ⊆ m−(U ′)).

(iii) FS(G) = FS(D′) and c(G) = c(D′).

Proof. By above Theorem, we have G is an elementary BF directed hypergraph. By the removal of all
those edges of G which lie in another edge of G properly, we attain the partial BF directed hypergraph
D′ = (T,U ′), where U ′ = {Ui ∈ U |Ui ⊆ Uj and Uj ∈ U , then Ui = Uj}. Since Gμn,νn is simple and
all its edges are elementary, no edges can properly contained in other edges of G if they have different
support. Hence (iii) holds. We know that D′ is support simple. Thus all above conditions are satisfied
by D′. From the definition of U ′, D′ is elementary and support simple. Thus D′ is B-tempered.

3 Algorithm For Computing Minimum Arc Length and Shortest

Hyperpath

This section investigates the definition of triangular BF number. The score and ranking of a BF num-
bers are also defined. A triangular BF number is used to represent the arc length in a hypernetwork.
The algorithm explained below is based on [16]. Let Lj denotes arc length of the jth hyperpath.

Definition 3.1. Let E be a finite set, which is non-empty and B = 〈m+,m−〉 be a BF set. Then the
pair (m+

( a),m
−(a)) is called a BF number, denoted by (〈l,m, n〉, 〈c, d, e〉), where 〈l,m, n〉 ∈ F (I+),

〈c, d, e〉 ∈ F (I−), I+ = [0, 1], I− = [−1, 0].
Definition 3.2. A triangular BF number B is denoted by B = {〈m+(a),m−(a)〉|a ∈ E}, where
m+(a) and m−(a) are BF numbers. So, a triangular BF number is given by B̃ = (〈l,m, n〉, 〈c, d, e〉).
The diagrammatic representation of BF number (〈l,m, n〉, 〈c, d, e〉) is shown in Figure 12.
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Figure 12: Triangular BF number.
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Definition 26. Let B̃ = (〈l, m, n〉, 〈c, d, e〉) be a triangular BF number, then the score of B̃ is a BF set whose
positive membership value is S+(B̃) = l+2m+n

4 and negative membership value is S−(B̃) = c+2d+e
4 .
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Definition 27. The accuracy of a triangular BF number is defined as Acc(B̃) = 1
2 (S

+(B̃) + S−(B̃)).

Algorithm 1.

Input. Enter the number of hyperpaths and their membership values, which are taken as triangular BF number.
Output. Minimum arc length of BF directed hypernetwork.
1. Calculate the lengths of all possible hyperpaths Lj for j = 1, 2, 3, ..., k, where
Lj = (〈l̄j, m̄j, n̄j〉〈c̄j, d̄j, ēj〉).
2. Initialize Lmin = (〈l, m, n〉〈c, d, e〉) = L1 = (〈l̄1, m̄1, n̄1〉〈c̄1, d̄1, ē1〉).
3. Set j = 2.
4. The positive membership values 〈l, m, n〉 are computed as
l = min(l, l̄j),

m =





m, if m ≤ l̄j,
mm̄j−ll̄j

(m+m̄j)−(l+l̄j)
, if m > l̄j,

n = min(n, m̄j),
and negative membership values 〈c, d, e〉 as
c = min(c, c̄j),

d =





d, if d ≤ c̄j,
dd̄j−cc̄j

(d+d̄j)−(c+c̄j)
, if d > c̄j,

e = min(e, d̄j).
5. Set Lmin = (〈l, m, n〉〈c, d, e〉), as calculated in Step 4.
6. j = j + 1.
7. If j = k, then stop the procedure. If j < k + 1, then go to Step 3.

Example 9. Consider a hypernetwork with triangular BF arc lengths shown in Figure 13.

Definition 3.3. Let B̃ = (〈l,m, n〉, 〈c, d, e〉) be a triangular BF number, then the score of B̃ is
a BF set whose positive membership value is S+(B̃) = l+2m+n

4 and negative membership value is

S−(B̃) = c+2d+e
4 .

Definition 3.4. The accuracy of a triangular BF number is defined as Acc(B̃) = 1
2(S

+(B̃)+S−(B̃)).

Algorithm

Input. Enter the number of hyperpaths and their membership values, which are taken
as triangular BF number.
Output. Minimum arc length of BF directed hypernetwork.
1. Calculate the lengths of all possible hyperpaths Lj for j = 1, 2, 3, ..., k, where
Lj = (〈l̄j , m̄j , n̄j〉〈c̄j , d̄j , ēj〉).
2. Initialize Lmin = (〈l,m, n〉〈c, d, e〉) = L1 = (〈l̄1, m̄1, n̄1〉〈c̄1, d̄1, ē1〉).
3. Set j = 2.
4. The positive membership values 〈l,m, n〉 are computed as
l = min(l, l̄j),

m =

{
m, if m ≤ l̄j ,

mm̄j−ll̄j
(m+m̄j)−(l+l̄j)

, if m > l̄j ,

n = min(n, m̄j),
and negative membership values 〈c, d, e〉 as
c = min(c, c̄j),

d =

{
d, if d ≤ c̄j ,

dd̄j−cc̄j
(d+d̄j )−(c+c̄j)

, if d > c̄j ,

e = min(e, d̄j).
5. Set Lmin = (〈l,m, n〉〈c, d, e〉), as calculated in step-4.
6. j = j + 1.
7. If j = k, then stop the procedure. If j < k + 1, then go to step 3.

Example 3.1. Consider a hypernetwork with a triangular BF arc lengths shown in Figure 13.
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1. From source vertex 1 to destination vertex 8, there are four possible paths (k = 4) , given as
follows:
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Figure 13. BF hypernetwork.

(1) From source Vertex 1 to destination Vertex 8, there are four possible paths (k = 4), given as follows:

Path(1): 1→ 2→ 6→ 8, L1 = (〈10, 14, 18〉〈−13,−20,−25〉);
Path(2): 1→ 3→ 6→ 8, L2 = (〈12, 16, 20〉〈−18,−22,−23〉);
Path(3): 1→ 5→ 8, L3 = (〈13, 17, 21〉〈−19,−20,−21〉);
Path(4): 1→ 4→ 7→ 8, L4 = (〈6, 11, 16〉〈−12,−16,−23〉).
(2) Initialize Lmin = (〈l, m, n〉〈c, d, e〉) = L1 = (〈l̄1, m̄1, n̄1〉〈c̄1, d̄1, ē1〉) = (〈10, 14, 18〉〈−13,−20,−25〉).
(3) Initialize j = 2.
(4) Let Lmin = (10, 14, 18)(−13,−20,−25) and L2 = (〈l̄2, m̄2, n̄2〉〈c̄2, d̄2, ē2〉) =

(12, 16, 20)(−18,−22,−23). Compute the positive membership values 〈l, m, n〉 as:

l = min(l, l̄2) = min(10, 12) = 10,
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m =
{

(14×16)−(10×12)
(14+16)−(10+12) = 13, since m > l̄2,

n = min(n, m̄2) = min(18, 16) = 16,

and negative membership values 〈c, d, e〉 as:

c = min(c, c̄2) = min(−13,−18) = −18,
d = d̄2 = −22 since d < d̄2,

e = min(e, d̄2) = min(−25,−22) = −25.

(5) Set Lmin = (〈10, 13, 16〉〈−18,−22,−25〉).
(6) j = j + 1 = 3.
(7) If j < k + 1, go to Step 4.
(4) Let Lmin = (10, 13, 16)(−18,−22,−25) and L3 = (〈l̄3, m̄3, n̄3〉〈c̄3, d̄3, ē3〉) =

(13, 17, 21)(−19,−20,−21). Calculate the positive membership values as:

l = min(l, l̄3) = min(10, 13) = 10,
m = 13 since m = l̄3,

n = min(n, m̄3) = min(16, 17) = 16,

and negative membership values 〈c, d, e〉 as:

c = min(c, c̄3) = min(−18,−19) = −19,
d = −22 since d < c̄3,

e = min(e, d̄3) = min(−25,−20) = −25,

(5) Set Lmin = (〈10, 13, 16〉〈−19,−22,−25〉).
Repeat the procedure until j = 4.
Finally, we get the minimum arc length of BF hypernetwork as:

Lmin = (〈6, 10.38, 11〉〈−19,−22,−25〉).

We now write steps of the score-based method to determine a BF shortest hyperpath.

(1) All possible hyperpaths are considered from the source point to the destination.
(2) Compute the scores of the hyperpaths.
(3) Find the accuracy of all paths.
(4) The shortest hyperpath is obtained with the lowest accuracy.

Example 10. Consider the BF hypernetwork as +shown in Figure 13. The BF shortest hyperpath in this
hypernetwork is recognized using the score-based method. The scores of hyperpaths can be calculated a 6s:

S(P1) = ( l+2m+n
4 , c+2d+e

4 ) = ( 10+2(14)+18
4 , −13+2(−20)−25

4 ) = (14,−19.5).

S(P2) = ( 12+2(16)+20
4 , −18+2(−22)−23

4 ) = (16,−21.25).

Similarly, S(P3) = (17,−20) and S(P4) = (11,−16.75).
The accuracy of hyperpaths can be computed as:

Acc(P1) =
1
2 (14 + (−19.5)) = −2.75, Acc(P2) =

1
2 (16 + (−21.25)) = −2.625, Acc(P3)

= 1
2 (17 + (−20)) and Acc(P4) =

1
2 (11 + (−16.75)) = −2.875

From Table 12 given below, the path P4 : 1→ 4→ 7→ 8 with minimum accuracy is identified as the BF
shortest hyperpath.
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Table 12. Accuracy table.

Path Score Accuracy Rank

P1 (14,−19.5) −2.75 2
P2 (16,−21.25) −2.625 3
P3 (17,−20) −1.50 4
P4 (11,−16.75) −2.875 1

4. Conclusions

BF graph theory is widely applied in computer science and mathematics. In comparison to the
classical and fuzzy models, BF models provide more precision, comparability and flexibility to the
system as they combine the bipolarity and fuzziness both into a unified model. We have represented
the BF directed hypergraphs using the incidence matrix and described their certain properties. We have
represented the BF directed hypergraphs using the index matrix. We have described certain operations
on BF directed hypergraphs, including addition, multiplication and structural subtraction. We have
discussed an algorithm to find the minimum arc length of the BF directed hyperpath. We aim to widen
our research work to: (1) BF soft directed hypergraphs; (2) bipolar neutrosophic hypergraphs; (3) rough
neutrosophic graphs; and (4) soft rough directed hypergraphs.
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