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Abstract: The Harary index is defined as the sum of reciprocals of distances between all pairs of
vertices of a connected graph. The additively weighted Harary index HA(G) is a modification of the
Harary index in which the contributions of vertex pairs are weighted by the sum of their degrees.
This new invariant was introduced in (Alizadeh, Iranmanesh and Došlić. Additively weighted Harary
index of some composite graphs, Discrete Math, 2013) and they posed the following question: What is
the behavior of HA(G) when G is a composite graph resulting for example by: splice, link, corona and rooted
product? We investigate the additively weighted Harary index for these standard graph products.
Then we obtain lower and upper bounds for some of them.
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1. Introduction

A topological index is a real number derived from the structure of a graph in a way that does
not depend on the labeling of the vertices. Hence, isomorphic graphs have the same values of
topological indices. Chemical graph theory is a branch of mathematical chemistry that is mostly
concerned with finding topological indices of chemical graphs that correlate well with certain
physico-chemical properties of the corresponding molecules. The basic idea behind this approach
is that the physico-chemical properties are governed by the mechanism depending mostly on the
valences of atoms and on their relative positions within the molecule. Since both concepts are well
described in graph-theoretical terms, there are reasons to believe that chemical graphs capture enough
information about real molecules to make them useful as their models.

Hundreds of different topological indices have been investigated so far and have been employed
in QSAR (Quantitative Structure Activity Relationship)/QSPR (Quantitative Structure Property
Relationship) studies, with various degrees of success. Most of the more useful invariants belong to
one of two broad classes: they are either distance based, or bond additive. The first class contains
the indices that are defined in terms of distances between pairs of vertices; the second class contains
the indices defined as the sums of contributions over all edges. Typical representants of the first type
are the Wiener index and its various modifications; characteristic for the second type are the Randić
index [1] and the two Zagreb indices.

Another distance-based topological index of the graph G is the Harary index. The Harary
index of a graph G, denoted by H(G), was introduced independently by Plavšić et al. [2] and by
Ivanciuc et al. [3] in 1993. The Harary index is defined as follows:

H(G) = ∑
{u,v}⊆V(G)

u 6=v

1
dG(u, v)

,
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where the summation goes over all pairs of vertices of G and dG(u, v) denotes the distance of the
two vertices u and v in the graph G. For a list of new results about the Harary index see [4–7].

The additively weighted version of the Harary index was introduced by Alizadeh et al. [8] in 2013.
For a given graph G, its additively weighted Harary index HA(G) is defined as:

HA(G) = ∑
{u,v}⊆V(G)

u 6=v

δG(u) + δG(v)
dG(u, v)

,

where δG(u) denotes the degree of vertex u in G. It is obvious that, if G is a k-regular graph,
then HA(G) = 2kH(G).

Also, in the paper [8], they posed the following question: What is the behavior of HA(G) when G
is a composite graph resulting for example by: splice, link, corona and rooted product?

In this paper we investigate the behavior of HA(G) under these four operations which are useful
in chemistry. Also, we try to obtain upper and lower bounds for HA(G) of these operations.

2. Preliminary Results

All graphs considered in this paper are finite, simple and connected. For a given graph G we
denote by V(G) its vertex set, and by E(G) its edge set. The cardinalities of these two sets are denoted
by n and e, respectively. The degree of a vertex u ∈ V(G) is denoted by δG(u) and the distance dG(u, v)
between vertices u and v in G is the length of any shortest path in G connecting u and v. The diameter
of the graph G, denoted by D(G), is max{dG(u, v)|u, v ∈ V(G)}. We denote by Kn and Pn the complete
graph and the path graph with n vertices, respectively.

A regular graph is a graph where each vertex has the same number of neighbors. A regular graph
with vertices of degree k is called a k-regular graph or regular graph of degree k.

The first and the second Zagreb indices of a graph G are defined as follows:

M1(G) = ∑
uv∈E(G)

(δG(u) + δG(v)), M2(G) = ∑
uv∈E(G)

δG(u)δG(v).

These topological indices were conceived in the 1970s [9,10]. In 2008, in [11] the first and the
second Zagreb coindices of a graph G are defined as follows:

M̄1(G) = ∑
uv/∈E(G)

(δG(u) + δG(v)), M̄2(G) = ∑
uv/∈E(G)

δG(u)δG(v).

Also, the first and the second Zagreb coindices of graph G with n vertices and e edges are equal
to M̄1(G) = 2e(n− 1)−M1(G) and M̄2(G) = 2e2 −M2(G)− 1

2 M1(G), respectively. For the proof of
these facts, we refer the readers to [12]. We will use Zagreb indices and Zagreb coindices to formulate
our results in a more compact way.

For a graph G with u ∈ V(G), we define P(G) = ∑u,v∈V(G)
1

dG(u,v)+1 and PG(v) =

∑u∈V(G)
1

dG(u,v)+1 . Also we define HG(v) = ∑u∈V(G)\{v}
1

dG(u,v) .

In the rest of the paper any sum ∑{u,v}⊆V(G) h(u, v) denotes the sum ∑u∈V(G) h(u, u) +
2 ∑{u,v}⊆V(G)

u 6=v
h(u, v), where h(u, v) is the contribution of pair u, v to the sum.

In the sequel of this paper we denote by nG, eG for the number of vertices and the number of
edges of G and we denote by nH , eH for the same quantities for H.

3. Main Results

In this section we introduce the standard graph products resulting in composite graphs and then
we present explicit formulas for the values of additively weighted Harary indices of them.
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3.1. Rooted Product

Definition 1. The rooted product G{H} is obtained by taking one copy of G and |V(G)| copies of a rooted
graph H, and by identifying the root of the i-th copy of H with the i-th vertex of G, i = 1, 2, ..., |V(G)|.

For the rooted product G{H} we have:

|V(G{H})| = |V(G)||V(H)|, |E(G{H})| = |E(G)|+ |V(G)||E(H)|.

As an example for rooted product see Figure 1.
ON ADDITIVELY WEIGHTED HARARY INDEX OF SOME COMPOSITE GRAPHS 3
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Figure 1. The rooted product of G and H where w is the root of H

For a graph G with u ∈ V (G), we define P (G) =
∑

u,v∈V (G)
1

dG(u,v)+1
and PG(v) =∑

u∈V (G)
1

dG(u,v)+1
. Also we define HG(v) =

∑
u∈V (G)\{v}

1
dG(u,v)

.

In the rest of the paper any sum
∑

{u,v}⊆V (G) h(u, v) denotes the sum
∑

u∈V (G) h(u, u)+

2
∑

{u,v}⊆V (G)
u 6=v

h(u, v), where h(u, v) is the contribution of pair u, v to the sum.

In the sequel of this paper we denote by nG, eG for the number of vertices and the
number of edges of G and we denote by nH , eH for the same quantities for H.

3. Main results

In this section we introduce the standard graph products resulting in composite graphs
and then we present explicit formulas for the values of additively weighted Harary indices
of them.

3.1. Rooted Product

Definition 3.1. The rooted product G{H} is obtained by taking one copy of G and
|V (G)| copies of a rooted graph H, and by identifying the root of the i − th copy of H
with the i− th vertex of G, i = 1, 2, ..., |V (G)|.
For the rooted product G{H} we have

|V (G{H})| = |V (G)||V (H)|, |E(G{H})| = |E(G)|+ |V (G)||E(H)|.
As an example for rooted product see Figure 1.

Lemma 3.2. Let G be a simple graph and H be a rooted graph with w as its root. Then
for a vertex u of G{H} such that u ∈ V (G), we have δG{H}(u) = δG(u) + δH(w), and
for a vertex v of G{H} such that v /∈ V (G) we have δG{H}(v) = δH(v0), where v0 is the
corresponding vertex in H as v of Hi. Also

(1) if u, v ∈ V (G), then dG{H}(u, v) = dG(u, v),
(2) if u ∈ V (G), v ∈ V (Hi), where i = 1, 2, ..., |V (G)|, then dG{H}(u, v) = dG(u,wi) +

dHi
(wi, v) = dG(u,wi) + dH(w, v0), where wi is the root of Hi and v0 is the corre-

sponding vertex in H as v of Hi,
(3) if u, v ∈ V (Hi), where i = 1, 2, ..., |V (G)|, then dG{H}(u, v) = dH(u0, v0), where u0

and v0 are the corresponding vertices in H as u and v of Hi,
(4) if u ∈ V (Hi), v ∈ V (Hj) and 1 6 i < j 6 |V (G)|, then dG{H}(u, v) = dHi

(u,wi) +
dHj

(v, wj) + dG(wi, wj) = dH(u0, w) + dH(v0, w) + dG(wi, wj), where wi is the root
of Hi and wj is the root of Hj. Also, u0 and v0 are the corresponding vertices in
H as u of Hi and v of Hj, respectively.

Figure 1. The rooted product of G and H where w is the root of H.

Lemma 1. Let G be a simple graph and H be a rooted graph with w as its root. Then for a vertex u of G{H}
such that u ∈ V(G), we have δG{H}(u) = δG(u) + δH(w), and for a vertex v of G{H} such that v /∈ V(G)

we have δG{H}(v) = δH(v0), where v0 is the corresponding vertex in H as v of Hi. Also:

(1) if u, v ∈ V(G), then dG{H}(u, v) = dG(u, v),
(2) if u ∈ V(G), v ∈ V(Hi), where i = 1, 2, ..., |V(G)|, then dG{H}(u, v) = dG(u, wi) + dHi (wi, v) =

dG(u, wi) + dH(w, v0), where wi is the root of Hi and v0 is the corresponding vertex in H as v of Hi,
(3) if u, v ∈ V(Hi), where i = 1, 2, ..., |V(G)|, then dG{H}(u, v) = dH(u0, v0), where u0 and v0 are the

corresponding vertices in H as u and v of Hi,
(4) if u ∈ V(Hi), v ∈ V(Hj) and 1 6 i < j 6 |V(G)|, then dG{H}(u, v) = dHi (u, wi) + dHj(v, wj) +

dG(wi, wj) = dH(u0, w) + dH(v0, w) + dG(wi, wj), where wi is the root of Hi and wj is the root of Hj.
Also, u0 and v0 are the corresponding vertices in H as u of Hi and v of Hj, respectively.

Proof. The proof is straightforward.

Theorem 1. Let G be a simple graph and H be a rooted graph with w as its root. Then:

HA(G{H}) = HA(G) + 2δH(w)H(G) + nG HA(H) + 2eG HH(w)

+ 2 ∑
{u,t}⊆V(G)

u 6=t

∑
v∈V(H)\{w}

δG(u) + δH(v) + δH(w)

dG(u, t) + dH(v, w)

+ ∑
{t,l}⊆V(G)

t 6=l

∑
{u,v}⊆V(H)\{w}

δH(u) + δH(v)
dH(u, w) + dH(v, w) + dG(t, l)

.

Proof. From the definition we have:

HA(G{H}) = ∑
{u,v}⊆V(G{H})

u 6=v

δG{H}(u) + δG{H}(v)
dG{H}(u, v)

.



Mathematics 2017, 5, 16 4 of 13

By Lemma 1, we partition the sum into four sums Si, i =1, 2, 3, 4, where:

S1 = ∑
{u,v}⊆V(G)

u 6=v

δG{H}(u) + δG{H}(v)
dG{H}(u, v)

= ∑
{u,v}⊆V(G)

u 6=v

δG(u) + δG(v) + 2δH(w)

dG(u, v)

= HA(G) + 2δH(w)H(G),

S2 =
nG

∑
i=1

∑
u∈V(G)

v∈V(Hi)\{wi}

δG{H}(u) + δG{H}(v)
dG{H}(u, v)

= ∑
{u,t}⊆V(G)

v∈V(H)\{w}

δG(u) + δH(w) + δH(v)
dG(u, t) + dH(v, w)

,

S3 =
nG

∑
i=1

∑
{u,v}⊆V(Hi)\{wi}

u 6=v

δG{H}(u) + δG{H}(v)
dG{H}(u, v)

= nG ∑
{u,v}⊆V(H)\{w}

u 6=v

δH(u) + δH(v)
dH(u, v)

,

S4 = ∑
16i<j6nG

∑
u∈V(Hi)\{wi}
v∈V(Hj)\{wj}

δG{H}(u) + δG{H}(v)
dG{H}(u, v)

= ∑
{t,l}⊆V(G)

t 6=l

∑
{u,v}⊆V(H)\{w}

δH(u) + δH(v)
dH(u, w) + dH(v, w) + dG(t, l)

.

Hence:

HA(G{H}) = HA(G) + 2δH(w)H(G) + 2 ∑
v∈V(H)\{w}

∑
{u,t}⊆V(G)

u 6=t

δG(u) + δH(w) + δH(v)
dG(u, t) + dH(v, w)

+ ∑
u∈V(G)

v∈V(H)\{w}

δG(u)
dH(v, w)

+ nG ∑
{w,v}⊆V(H)

w 6=v

δH(w) + δH(v)
dH(v, w)

+ ∑
{t,l}⊆V(G)

t 6=l

∑
{u,v}⊆V(H)\{w}

δH(u) + δH(v)
dH(u, w) + dH(v, w) + dG(t, l)

.

Thus we complete the proof of this theorem.

Example 1. We have:

HA(P2{K3}) =
148
3

, HA(P3{K3}) =
313

3
.

Based on Theorem 1, we obtain the next corollary immediately.

Corollary 1. Let G be a r-regular graph and H be a k-regular rooted graph with w as its root. Then:

HA(G{H}) = 2(r + k)H(G) + 2knG H(H) + nGrHH(w)

+ 2(r + 2k) ∑
{u,t}⊆V(G)

u 6=t

∑
v∈V(H)\{w}

1
dG(u, t) + dH(v, w)

+ 2k ∑
{t,l}⊆V(G)

t 6=l

∑
{u,v}⊆V(H)\{w}

1
dH(u, w) + dH(v, w) + dG(t, l)

.

We can determine a lower and an upper bound for HA(G{H}), where G is a r-regular graph and
H is a k-regular rooted graph.
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We know that 1 6 dG(u, v) 6 D(G), where {u, v} ⊆ V(G), u 6= v and D(G) is the diameter of G.
Similarly, we have 1 6 dH(u, v) 6 D(H), where {u, v} ⊆ V(H), u 6= v and D(H) is the diameter of H.
Hence, we have:

HA(G{H}) ≥ 2(r + k)H(G) + 2knG H(H) + nGrHH(w)

+ nG(nG − 1)(nH − 1)[
r + 2k

D(H) + D(G)
+

k(nH − 1)
2D(H) + D(G)

],

HA(G{H}) ≤ 2(r + k)H(G) + 2knG H(H) + nGrHH(w)

+ nG(nG − 1)(nH − 1)[
r + 2k

2
+

k(nH − 1)
3

].

3.2. Corona

Definition 2. Let G and H be two graphs. The corona product G ◦ H is obtained by taking one copy of G and
|V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G, i = 1, 2, ..., |V(G)|.

For the corona product G ◦ H, we have:

|V(G ◦ H)| = |V(G)|(1 + |V(H)|), |E(G ◦ H)| = |E(G)|+ |V(G)|(|V(H)|+ |E(H)|).

As an example for the corona product see Figure 2.
6 BEHROOZ KHOSRAVI & ELNAZ RAMEZANI

G

H

⇒ G ◦H:

Figure 2. The corona product of G and H

For the corona product G ◦H, we have

|V (G ◦H)| = |V (G)|(1 + |V (H)|), |E(G ◦H)| = |E(G)|+ |V (G)|(|V (H)|+ |E(H)|).
As an example for the corona product see Figure 2.

Lemma 3.7. Let G and H be two simple connected graphs. For a vertex u of G ◦H such
that u ∈ V (G), we have δG◦H(u) = δG(u) + |V (H)|, and for a vertex v of G ◦H such that
v ∈ V (H), we have δG◦H(v) = δH(v) + 1. Also

(1) if u, v ∈ V (G), then dG◦H(u, v) = dG(u, v),
(2) if u ∈ V (G), v ∈ V (Hi), where i = 1, 2, ..., |V (G)|, then dG◦H(u, v) = dG(u,wi)+1,

where wi is the i− th vertex in G,
(3) if u, v ∈ V (Hi), where i = 1, 2, ..., |V (G)|, then

dG◦H(u, v) =

{
1 if uv ∈ E(Hi)
2 if uv 6∈ E(Hi)

(4) if u ∈ V (Hi), v ∈ V (Hj) and 1 6 i < j 6 |V (G)|, then dG◦H(u, v) = dG(wi, wj)+2,
where wi is the i− th and wj is the j − th vertices in G.

Proof. The proof is obvious. �

Lemma 3.8. Let G be a simple graph and K2 be the complete graph of order 2. Then

H(G{K2}) = H(G) + P (G) +
∑

{u,v}⊆V (G)
u 6=v

1

dG(u, v) + 2
.

Proof. By definition

H(G{K2}) =
∑

{u,v}⊆V (G{K2})
u 6=v

1

dG{K2}(u, v)
.

We partition the sum in the formula of H(G{K2}) into three sums Si such that Si is
over Ai for i = 1, 2, 3, where
A1 = {(u, v)|u, v ∈ V (G)},
A2 = {(u, v)|u ∈ V (G), v ∈ V

(
(K2)i

)
\ {wi}, 1 6 i 6 |V (G)|},

A3 = {(u, v)|u ∈ V
(
(K2)i

)
\ {wi}, v ∈ V

(
(K2)j

)
\ {wj}, 1 6 i < j 6 |V (G)|},

where (K2)i is the i− th copy of K2 and (K2)j is the j − th copy of K2 in G{K2}.

Figure 2. The corona product of G and H.

Lemma 2. Let G and H be two simple connected graphs. For a vertex u of G ◦ H such that u ∈ V(G),
we have δG◦H(u) = δG(u) + |V(H)|, and for a vertex v of G ◦ H such that v ∈ V(H), we have
δG◦H(v) = δH(v) + 1. Also:

(1) if u, v ∈ V(G), then dG◦H(u, v) = dG(u, v),
(2) if u ∈ V(G), v ∈ V(Hi), where i = 1, 2, ..., |V(G)|, then dG◦H(u, v) = dG(u, wi) + 1, where wi is the

i-th vertex in G,
(3) if u, v ∈ V(Hi), where i = 1, 2, ..., |V(G)|, then:

dG◦H(u, v) =

{
1 if uv ∈ E(Hi)

2 if uv 6∈ E(Hi)

(4) if u ∈ V(Hi), v ∈ V(Hj) and 1 6 i < j 6 |V(G)|, then dG◦H(u, v) = dG(wi, wj) + 2, where wi is the
i-th and wj is the j-th vertices in G.

Proof. The proof is obvious.

Lemma 3. Let G be a simple graph and K2 be the complete graph of order 2. Then:

H(G{K2}) = H(G) + P(G) + ∑
{u,v}⊆V(G)

u 6=v

1
dG(u, v) + 2

.
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Proof. By definition:

H(G{K2}) = ∑
{u,v}⊆V(G{K2})

u 6=v

1
dG{K2}(u, v)

.

We partition the sum in the formula of H(G{K2}) into three sums Si such that Si is over Ai for
i = 1, 2, 3, where:
A1 = {(u, v)|u, v ∈ V(G)},
A2 = {(u, v)|u ∈ V(G), v ∈ V

(
(K2)i

)
\ {wi}, 1 6 i 6 |V(G)|},

A3 = {(u, v)|u ∈ V
(
(K2)i

)
\ {wi}, v ∈ V

(
(K2)j

)
\ {wj}, 1 6 i < j 6 |V(G)|},

where (K2)i is the i-th copy of K2 and (K2)j is the j-th copy of K2 in G{K2}.
So we have:

H(G{K2}) = S1 + S2 + S3

= ∑
{u,v}⊆V(G)

u 6=v

1
dG{K2}(u, v)

+
nG

∑
i=1

∑
u∈V(G)

v∈V((K2)i)\{wi}

1
dG{K2}(u, v)

+ ∑
16i<j6nG

∑
u∈V((K2)i)\{wi}
v∈V((K2)j)\{wj}

1
dG{K2}(u, v)

= ∑
{u,v}⊆V(G)

u 6=v

1
dG(u, v)

+
nG

∑
i=1

∑
u∈V(G)

1
dG(u, wi) + 1

+ ∑
16i<j6nG

1
dG(wi, wj) + 2

= H(G) + P(G) + ∑
{u,v}⊆V(G)

u 6=v

1
dG(u, v) + 2

.

Theorem 2. Let G and H be simple graphs. Then:

HA(G ◦ H) = HA(G) + 2nH(1− 2eH − nH)H(G) + 2nH(2eH + nH)H(G{K2})
+

nG
2

M1(H) + [2eH(1− 2nH)− n2
H + nH ]P(G)

+ nGnH(eH +
nH − 1

2
) + nH ∑

{u,v}⊆V(G)

δG(u)
dG(u, v) + 1

.

Proof. By definition we have:

HA(G ◦ H) = ∑
{u,v}⊆V(G◦H)

u 6=v

δG◦H(u) + δG◦H(v)
dG◦H(u, v)

.

By Lemma 2, we partition the sum into four sums Si, i = 1, 2, 3, 4. We consider four sums
S1, S2, S3, S4 as follows:

S1 = ∑
{u,v}⊆V(G)

u 6=v

δG◦H(u) + δG◦H(v)
dG◦H(u, v)

= ∑
{u,v}⊆V(G)

u 6=v

δG(u) + δG(v) + 2|V(H)|
dG(u, v)

= HA(G) + 2nH H(G)

S2 =
|V(G)|
∑
i=1

∑
u∈V(G)
v∈V(Hi)

δG◦H(u) + δG◦H(v)
dG◦H(u, v)

=
nG

∑
i=1

∑
u∈V(G)
v∈V(Hi)

δG(u) + |V(H)|+ δH(v) + 1
dG(u, wi) + 1
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Now we consider the following relation:

∑
u∈V(G)
v∈V(Hi)

δG(u) + δH(v) + nH + 1
dG(u, wi) + 1

= ∑
u∈V(G)

nHδG(u) + 2eH
dG(u, wi) + 1

+ (nH + 1)nH ∑
u∈V(G)

1
dG(u, wi) + 1

= nH ∑
u∈V(G)

δG(u)
dG(u, wi) + 1

+ (2eH + n2
H + nH) ∑

u∈V(G)

1
dG(u, wi) + 1

= nH ∑
u∈V(G)

δG(u)
dG(u, wi) + 1

+ (2eH + n2
H + nH)PG(wi).

Hence, we have:

S2 =
nG

∑
i=1

[nH ∑
u∈V(G)

δG(u)
dG(u, wi) + 1

+ (2eH + n2
H + nH)PG(wi)]

= nH ∑
{u,v}⊆V(G)

δG(u)
dG(u, v) + 1

+ (2eH + n2
H + nH)P(G)

S3 =
|V(G)|
∑
i=1

∑
{u,v}⊆V(Hi)

u 6=v

δG◦H(u) + δG◦H(v)
dG◦H(u, v)

=
nG

∑
i=1

∑
{u,v}⊆V(Hi)

u 6=v

δH(u) + δH(v) + 2
dG◦H(u, v)

.

Now we consider the following relation:

∑
{u,v}⊆V(H)

u 6=v

δH(u) + δH(v) + 2
dG◦H(u, v)

= ∑
uv∈E(H)

(δH(u) + δH(v) + 2) + ∑
uv/∈E(H)

δH(u) + δH(v) + 2
2

= M1(H) +
1
2

M̄1(H) + 2|E(H)|+ [

(|V(H)|
2

)
− |E(H)|]

=
1
2

M1(H) + nH(eH +
nH − 1

2
).

Note that the last equality holds in view of the fact that M̄1(H) = 2eH(nH − 1)−M1(H). So:

S3 =
nG

∑
i=1

[
1
2

M1(H) + nH(eH +
nH − 1

2
)] = nG[

1
2

M1(H) + nH(eH +
nH − 1

2
)]

S4 = ∑
16i<j6nG

∑
u∈V(Hi)
v∈V(Hj)

δG◦H(u) + δG◦H(v)
dG◦H(u, v)

= ∑
16i<j6nG

∑
u∈V(Hi)
v∈V(Hj)

δH(u) + δH(v) + 2
dG(wi, wj) + 2

Now we consider the following relation, where 1 6 i < j 6 nG

∑
u∈V(Hi)
v∈V(Hj)

δH(u) + δH(v) + 2
dG(wi, wj) + 2

=
1

dG(wi, wj) + 2
[ ∑
u∈V(Hi)
v∈V(Hj)

(δH(u) + δH(v)) + 2n2
H ] =

2nH(2eH + nH)

dG(wi, wj) + 2

By using Lemma 3 we have:

S4 = 2nH(2eH + nH) ∑
{u,v}⊆V(G)

u 6=v

1
dG(u, v) + 2

= 2nH(2eH + nH)[H(G{K2})− H(G)− P(G)].

The result now follows by adding the four contributions and simplifying the expression.
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Example 2.

HA(P2 ◦ K2) =
148

3
,

HA(P3 ◦ K2) =
313

3
.

We note that P2 ◦ K2 = P2{K3} and P3 ◦ K2 = P3{K3} and the result is similar to Example 1.

Corollary 2. Let G be a r-regular graph and H be a simple graph. Then:

HA(G ◦ H) = 2[nH(1− 2eH − nH) + r]H(G) + [2eH(1− 2nH)− n2
H + nH(r + 1)]P(G)

+
nG
2

M1(H) + 2nH(2eH + nH)H(G{K2}) + nGnH(eH +
nH − 1

2
).

3.3. Splice

Definition 3. For given vertices y ∈ V(G) and z ∈ V(H) the splice of G and H by vertices y and z, which is
denoted by (G · H)(y; z), is defined by identifying the vertices y and z in the union of G and H.

As an example for the splice of G and H see Figure 3.
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Then for the splice of G and H by vertices y and z we have

|V
(
(G · H)(y; z)

)
| = |V(G)|+ |V(H)| − 1, |E

(
(G · H)(y; z)

)
| = |E(G)|+ |E(H)|.

Lemma 4. Let G and H be simple graphs with disjoint vertex sets. For given vertices y ∈ V(G) and z ∈ V(H)
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Then for the splice of G and H by vertices y and z we have:

|V
(
(G · H)(y; z)

)
| = |V(G)|+ |V(H)| − 1, |E

(
(G · H)(y; z)

)
| = |E(G)|+ |E(H)|.

Lemma 4. Let G and H be simple graphs with disjoint vertex sets. For given vertices y ∈ V(G) and z ∈ V(H)

suppose that the splice of G and H by vertices y and z is denoted by G · H for convenience. Then for a vertex
u of G · H such that u ∈ V(G) \ {y} we have δG·H(u) = δG(u) and for a vertex v of G · H such that
v ∈ V(H) \ {z} we have δG·H(v) = δH(v) and δG·H(y) = δG(y) + δH(z) = δG·H(z). Also:

(1) if u, v ∈ V(G), then dG·H(u, v) = dG(u, v),
(2) if u, v ∈ V(H), then dG·H(u, v) = dH(u, v),
(3) if u ∈ V(G), v ∈ V(H), then dG·H(u, v) = dG(u, y) + dH(z, v).

Proof. The proof is obvious.

Theorem 3. Let G and H be two simple graphs. For vertices y ∈ V(G) and z ∈ V(H),
consider (G · H)(y; z). Then:

HA
(
(G · H)(y; z)

)
= HA(G) + HA(H) + δH(z)HG(y)

+ δG(y)HH(z) + ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG(u) + δH(v)
dG(u, y) + dH(v, z)

.
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Proof. For convenience we denote (G · H)(y; z) by G · H. By definition we have:

HA(G · H) = ∑
{u,v}⊆V(G·H)

u 6=v

δG·H(u) + δG·H(v)
dG·H(u, v)

.

We partition the sum into three sums Si such that Si is over Ai for i = 1, 2, 3, where A1 =

{(u, v)|u, v ∈ V(G)}, A2 = {(u, v)|u, v ∈ V(H)}, A3 = {(u, v)|u ∈ V(G) \ {y}, v ∈ V(H) \ {z}}.
So we have:

S1 = ∑
{u,v}⊆V(G)

u 6=v

δG·H(u) + δG·H(v)
dG·H(u, v)

= ∑
{u,v}⊆V(G)\{y}

u 6=v

δG(u) + δG(v)
dG(u, v)

+ ∑
v∈V(G)\{y}

δG(y) + δH(z) + δG(v)
dG(y, v)

= HA(G) + δH(z)HG(y).

Similarly, we have S2 = HA(H) + δG(y)HH(z). Also:

S3 = ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG·H(u) + δG·H(v)
dG·H(u, v)

= ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG(u) + δH(v)
dG(u, y) + dH(v, z)

The result now follows by adding the three sums Si, i = 1, 2, 3.

Corollary 3. Let G be a r-regular graph and H be a k-regular graph. For vertices y ∈ V(G) and z ∈ V(H),
consider (G · H)(y; z). Then:

HA
(
(G · H)(y; z)

)
= 2rH(G) + 2kH(H) + kHG(y)

+ rHH(z) + (r + k) ∑
u∈V(G)\{y}
v∈V(H)\{z}

1
dG(u, y) + dH(v, z)

.

We can determine a lower and an upper bound for HA
(
(G ·H)(y; z)

)
, where G and H are r-regular

and k-regular graphs, respectively.
We know that 1 6 dG(u, y) 6 D(G), where u ∈ V(G) \ {y} and D(G) is the diameter of G.

Similarly, we have 1 6 dH(v, z) 6 D(H), where v ∈ V(H) \ {z} and D(H) is the diameter of H.
Hence, we have:

HA
(
(G · H)(y; z)

)
≥ 2rH(G) + 2kH(H) + kHG(y) + rHH(z) +

(r + k)(nG − 1)(nH − 1)
D(G) + D(H)

,

HA
(
(G · H)(y; z)

)
≤ 2rH(G) + 2kH(H) + kHG(y) + rHH(z) +

(r + k)(nG − 1)(nH − 1)
2

.

3.4. Link

Definition 4. A link of G and H by vertices y and z, which is denoted by (G ∼ H)(y; z), is defined as the
graph obtained by joining y and z by an edge in the union of these graphs.

As an example of the link of two graphs see Figure 4.
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We know that 1 6 dG(u, y) 6 D(G), where u ∈ V (G) \ {y} and D(G) is the diameter
of G. Similarly, we have 1 6 dH(v, z) 6 D(H), where v ∈ V (H) \ {z} and D(H) is the
diameter of H. Hence we have

HA

(
(G ·H)(y; z)

)
≥ 2rH(G) + 2kH(H) + kHG(y) + rHH(z) +

(r + k)(nG − 1)(nH − 1)

D(G) +D(H)
,

HA

(
(G ·H)(y; z)

)
≤ 2rH(G) + 2kH(H) + kHG(y) + rHH(z) +

(r + k)(nG − 1)(nH − 1)

2
.

3.4. Link

Definition 3.16. A link of G and H by vertices y and z, which is denoted by (G ∼
H)(y; z), is defined as the graph obtained by joining y and z by an edge in the union of
these graphs.

G
y

z

H

⇒
(G ∼ H)(y; z):

Figure 4. The link of G and H by vertices y and z

y

z

As an example of the link of two graphs see Figure 4.
For a link of G and H by vertices y and z we have

|V
(
(G ∼ H)(y; z)

)
| = |V (G)|+ |V (H)|, |E

(
(G ∼ H)(y; z)

)
| = |E(G)|+ |E(H)|+ 1.

Lemma 3.17. Let G and H be two simple graphs with disjoint vertex sets. For given
vertices y ∈ V (G) and z ∈ V (H) suppose a link of G and H by vertices y and z is denoted
by G ∼ H for convenience. Then for a vertex u of G ∼ H such that u ∈ V (G) \ {y} we
have δG∼H(u) = δG(u) and for a vertex v of G ∼ H such that v ∈ V (H) \ {z} we have
δG∼H(v) = δH(v) and δG∼H(y) = δG(y) + 1, δG∼H(z) = δH(z) + 1. Also

(1) if u, v ∈ V (G), then dG∼H(u, v) = dG(u, v),

(2) if u, v ∈ V (H), then dG∼H(u, v) = dH(u, v),

(3) if u ∈ V (G), v ∈ V (H), then dG∼H(u, v) = dG(u, y) + dH(z, v) + 1.

Proof. The proof is straightforward. �

Figure 4. The link of G and H by vertices y and z.

For a link of G and H by vertices y and z we have:

|V
(
(G ∼ H)(y; z)

)
| = |V(G)|+ |V(H)|, |E

(
(G ∼ H)(y; z)

)
| = |E(G)|+ |E(H)|+ 1.

Lemma 5. Let G and H be two simple graphs with disjoint vertex sets. For given vertices y ∈ V(G) and
z ∈ V(H) suppose a link of G and H by vertices y and z is denoted by G ∼ H for convenience. Then for a vertex
u of G ∼ H such that u ∈ V(G) \ {y} we have δG∼H(u) = δG(u) and for a vertex v of G ∼ H such that
v ∈ V(H) \ {z} we have δG∼H(v) = δH(v) and δG∼H(y) = δG(y) + 1, δG∼H(z) = δH(z) + 1. Also:

(1) if u, v ∈ V(G), then dG∼H(u, v) = dG(u, v),
(2) if u, v ∈ V(H), then dG∼H(u, v) = dH(u, v),
(3) if u ∈ V(G), v ∈ V(H), then dG∼H(u, v) = dG(u, y) + dH(z, v) + 1.

Proof. The proof is straightforward.

Theorem 4. Let G and H be two simple graphs. For vertices y ∈ V(G) and z ∈ V(H), consider (G ∼
H)(y; z). Then:

HA((G ∼ H)(y; z)) = HA(G) + HA(H) + HG(y) + HH(z)

+ (δH(z) + 1)(PG(y)− 1) + (δG(y) + 1)(PH(z)− 1)

+ δG(y) + δH(z) + 2 + ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG(u) + δH(v)
dG(u, y) + dH(v, z) + 1

+ ∑
u∈V(G)\{y}

δG(u)
dG(u, y) + 1

+ ∑
v∈V(H)\{z}

δH(v)
dH(v, z) + 1

.

Proof. For convenience we denote (G ∼ H)(y; z) by G ∼ H. By definition we have:

HA(G ∼ H) = ∑
{u,v}⊆V(G∼H)

u 6=v

δG∼H(u) + δG∼H(v)
dG∼H(u, v)

.

Similarly to the proof of Theorem 3, we partition the sum into three sums Si such that Si is over
Ai for i = 1, 2, 3, where:
A1 = {(u, v)|u, v ∈ V(G)},
A2 = {(u, v)|u, v ∈ V(H)},
A3 = {(u, v)|u ∈ V(G), v ∈ V(H)}.
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We consider three sums S1, S2, S3 as follows:

S1 = ∑
{u,v}⊆V(G)

u 6=v

δG∼H(u) + δG∼H(v)
dG∼H(u, v)

= ∑
{u,v}⊆V(G)\{y}

u 6=v

δG(u) + δG(v)
dG(u, v)

+ ∑
u∈V(G)\{y}

δG(u) + δG(y) + 1
dG(u, y)

= HA(G) + HG(y).

Similarly, we have S2 = HA(H) + HH(z). Also:

S3 = ∑
u∈V(G)
v∈V(H)

δG∼H(u) + δG∼H(v)
dG∼H(u, v)

= ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG(u) + δH(v)
dG(u, y) + dH(v, z) + 1

+ ∑
u∈V(G)\{y}

δG(u) + δH(z) + 1
dG(u, y) + 1

+ ∑
v∈V(H)\{z}

(
δG(y) + δH(v) + 1

dH(v, z) + 1
) + δG(y) + δH(z) + 2

= ∑
u∈V(G)\{y}
v∈V(H)\{z}

δG(u) + δH(v)
dG(u, y) + dH(v, z) + 1

+ δG(y) + δH(z) + 2

+ ∑
u∈V(G)\{y}

δG(u)
dG(u, y) + 1

+ (δH(z) + 1)(PG(y)− 1)

+ ∑
v∈V(H)\{z}

δH(v)
dH(v, z) + 1

+ (δG(y) + 1)(PH(z)− 1).

We obtain the result by adding the three sums Si, i = 1, 2, 3.

Corollary 4. Let G be a r-regular graph and H be a k-regular graph. For vertices y ∈ V(G) and z ∈ V(H),
consider (G ∼ H)(y; z). Then:

HA
(
(G ∼ H)(y; z)

)
= 2rH(G) + 2kH(H) + HG(y) + HH(z)

+ (k + r + 1)[PG(y) + PH(z)− 1] + 1

+ (k + r) ∑
u∈V(G)\{y}
v∈V(H)\{z}

1
dG(u, y) + dH(v, z) + 1

.

Similarly, we can determine a lower and an upper bound for HA
(
(G ∼ H)(y; z)

)
, where G and H

are r-regular and k-regular graphs, respectively.
We know that 1 6 dG(u, y) 6 D(G), where u ∈ V(G) \ {y} and D(G) is the diameter of G.

Similarly, we have 1 6 dH(v, z) 6 D(H), where v ∈ V(H) \ {z} and D(H) is the diameter of H.
So we have:

HA
(
(G ∼ H)(y; z)

)
≥ 2rH(G) + 2kH(H) + HG(y) + HH(z)

+ (r + k + 1)[PG(y) + PH(z)− 1] + 1 +
(r + k)(nG − 1)(nH − 1)

D(G) + D(H) + 1
,

HA
(
(G ∼ H)(y; z)

)
≤ 2rH(G) + 2kH(H) + HG(y) + HH(z)

+ (r + k + 1)[PG(y) + PH(z)− 1] + 1 +
(r + k)(nG − 1)(nH − 1)

3
.
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Remark 1. From the definition of H(G) and P(G), it is obvious that the complete graph has the largest H(G)

and P(G) among all graphs on the same number of vertices. So, for any graph G on n vertices we have
H(G) ≤ (n

2) and P(G) ≤ (n
2) + n. Also, from the fact that adding an edge to G will increase its additively

weighted Harary index, it immediately follows that the complete graph has the largest HA(G) among all graph
on the same number of vertices. Hence, for any graph G on n vertices we have HA(G) ≤ n(n− 1)2.

From the above remark, we obtain the next corollaries immediately.

Corollary 5. Let G be a r-regular graph and H be a k-regular rooted graph. Then:

HA(G{H}) ≤ (r + 1)[r(r + k) + k2(k + 1)]

+ rk(r + 1)[1 +
r + 2k

2
+

k2

3
].

Corollary 6. Let G be a r-regular graph and H be a k-regular graph. Then:

HA
(
(G · H)(y; z)

)
≤ (r + 1)r2 + (k + 1)k2 + rk[2 +

r + k
2

],

HA
(
(G ∼ H)(y; z)

)
≤ (r + 1)r2 + (k + 1)k2 +

1
3

rk(r + k)

+
1
2
(r + k + 1)[(r + 1)(r + 2) + (k + 1)(k + 2)].

4. Conclusions

In this paper we have investigated the additively weighted Harary index for some graph products
such as splice, link, corona and rooted product. Also we have determined lower and upper bounds for
some of them.
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9. Gutman, I.; Ruščić, B.; Trinajstić, N.; Wilcox, C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes.

J. Chem. Phys. 1975, 62, 3399–3405.
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