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1. Introduction

Let (X, d) be a given metric space and let x, y be two poins in X with d(x, y) = l. By a geodesic
path from x to y we mean an isometry c : [0, l] → c([0, 1]) ⊂ X with the property that c(0) = x,
c(l) = y. The image of each geodesic path between two given points is said to be a geodesic segment.
We call (X, d) a geodesic space if every two points of X can be joined by a geodesic segment. By
definition, a geodesic triangle4(x, y, z) consists of three points x, y, z together with the three segments
that join each pair of these points. A comparison triangle of a geodesic triangle 4(x, y, z), which
will be denoted by 4(x, y, z) or 4(x, y, z), is a triangle in the plane R2 such that d(x, y) = dR2(x, y),
d(x, z) = dR2(x, z), and d(y, z) = dR2(y, z). This is a consequence of the triangle inequality; and it is
well-known that it is unique up to isometry. In [1] Bridson and Haefliger have proved that such a
triangle always exists. A geodesic segment joining two points x, y in a geodesic space X is denoted
by [x, y]. Every point z in the segment is represented by αx ⊕ (1 − α)y, where α ∈ [0, 1], that is,
[x, y] := {αx⊕ (1− α)y : α ∈ [0, 1]}. A subset C of a metric space X is called convex if for all x, y ∈ C,
[x, y] ⊂ C. A geodesic space is called a CAT(0) space if for every geodesic triangle4 and its comparison
4, the following inequality holds true: d(x, y) ≤ dR2(x, y) for all x, y ∈ 4 and x, y ∈ 4. A complete
CAT(0) space is often called a Hadamard space (see [2,3]). We mention in passsing that an R-tree, a
Hadamard manifold, and the Hilbert ball endowed with the hyperbolic metric are typical examples
of CAT(0) spaces. For more information on CAT(0) spaces, the interested reader is referred to [4–6].
A geodesic space (X, d) is called hyperbolic (see for instance [7,8]) if, for any x, y, z ∈ X :
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Note that every normed space, and every CAT(0) space is a hyperbolic space. Bashir Ali in [9]
constructed an example of a hyperbolic space that is not a normed space. Therefore the class of
hyperbolic spaces properly includes the class of normed spaces.

Definition 1. Let {xn} be a bounded sequence in a CAT(0) space (X, d).

(1) The asymptotic radius r({xn}) of {xn} is given by:

r({xn}) := inf
x∈X
{r(x, {xn})}

where r(x, {xn}) := lim supn→∞ d(xn, x).
(2) The asymptotic center A({xn}) of {xn} is the set:

A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})}

In 2006, Dhompongsa et al. [10] observed that for a bounded sequence {xn} in a CAT(0) space,
A({xn}) is a singleton.

Definition 2. Let C be a nonempty, closed convex subset of a CAT(0) space (X, d). A mapping T : C → C is
said to be uniformly L-Lipschitzian if there exists a constant L ≥ 0 such that:

d(Tnx, Tny) ≤ L d(x, y), ∀x, y ∈ C, and n ∈ N

It is now time to recall the concept of4-convergence in a given CAT(0) space.

Definition 3. Let (X, d) be a CAT(0) space. A sequence {xn} in X is said to4-converge to x ∈ X if and only
if x is the unique asymptotic center of all subsequences of {xn}. In this case, we write4− limn→∞ xn = x and
call x the4− limito f {xn}.

In the following, we recall some basic facts regarding the nonlinear mappings on CAT(0) spaces.
Let C be a nonempty subset of a CAT(0) spaces (X, d). A self-mapping T : C → C is

called nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C and is called quasi-nonexpansive if
Fix(T) = {x ∈ C : Tx = x} 6= ∅ and d(Tx, p) ≤ d(x, p) for all x ∈ C and p ∈ Fix(T). The class of
quasi-nonexpansive mappings properly contains the class of nonexpansive mappings with fixed
points; see, for example, [11]. A mapping T is called asymptotically nonexpansive [12] if there exists a
sequence {kn} ⊂ [1, ∞) such that kn → 1 as n→ ∞ and, for every n ∈ N :

d(Tnx, Tny) ≤ knd(x, y), ∀x, y ∈ C

If Fix(T) 6= ∅ and there exists a sequence {kn} ⊂ [1, ∞) such that kn → 1 as n → ∞ and, for
every n ∈ N :

d(Tnx, p) ≤ knd(x, p), ∀x ∈ C, and p ∈ Fix(T)

then T is called an asymptotically quasi-nonexpansive mapping. A mapping T is called totally
asymptotically nonexpansive if there exist null sequences {un}∞

n=1 and {vn}∞
n=1 of nonnegative

numbers (i.e., un, vn → 0 as n → ∞) and a strictly increasing function ψ : [0, ∞) → [0, ∞) with
ψ(0) = 0 such that:

d(Tnx, Tny) ≤ d(x, y) + unψ(d(x, y)) + vn, ∀x, y ∈ C
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A mapping T is called totally asymptotically quasi-nonexpansive if Fix(T) 6= ∅ and there exist
null sequences {un}∞

n=1 and {vn}∞
n=1 of nonnegative numbers (i.e., un, vn → 0 as n→ ∞) and a strictly

increasing function ψ : [0, ∞)→ [0, ∞) with ψ(0) = 0 such that:

d(Tnx, p) ≤ d(x, p) + unψ(d(x, p)) + vn, ∀x ∈ C, and p ∈ Fix(T)

We recall that the concept of asymptotically nonexpansive mappings was first introduced by
Goebel and Kirk [12]. Then Alber et al. [13] introduced the class of totally asymptotically nonexpansive
mappings that generalizes several classes of maps that are extensions of asymptotically nonexpansive
mappings. These classes of maps were extensively studied by several authors (see, e.g., [14–19], to
list just a few). We remark that according to the Example 1 of [20], the class of totally asymptotically
nonexpansive mappings properly contains the class of asymptotically nonexpansive mappings.

We now turn to recall some well-known iteration processes. The Mann iteration process is defined
by the sequence {xn} : {

x1 ∈ C
xn+1 = (1− αn)xn + αnT(xn), n ≥ 1

where {αn}∞
n=1 is a sequence in (0, 1).

Further, the Ishikawa iteration process is defined as the sequence {xn} :
x1 ∈ C
xn+1 = (1− αn)xn + αnT(yn)

yn = (1− βn)xn + βnT(xn), n ≥ 1

where {αn}∞
n=1 and {βn}∞

n=1 are some numerical sequences in (0, 1).
In 2016, Huang in [21], introduced the following algorithm for a family of nonexpansive mappings

in a CAT(0) space: {
x1 ∈ C
xn+1 = αn f (xn)

⊕
(1− αn)Tn(xn), n ≥ 1

(1)

where {αn}∞
n=1 is a sequence in (0, 1) and f is a φ-weak contraction on C.

Further, in 2016, Balwant Singh Thakur, Dipti Thakur and Mihai Postolache in [22], introduced
the following algorithm for nonexpansive mappings in uniformly convex Banach spaces:

x1 ∈ C
zn = (1− βn)xn + βnT(xn)

yn = T((1− αn)xn + αnzn)

xn+1 = T(yn)

(2)

where {αn}∞
n=1 and {βn}∞

n=1 are real sequences in (0, 1).
In this paper, inspired by the Algorithms (1) and (2), we introduce a new iterative algorithm for

approximating fixed points of totally asymptotically quasi-nonexpansive mappings in CAT(0) spaces.
We prove some strong convergence theorems under suitable conditions. The results we obtain improve
and extend several recent results stated by many others; they also complement many known results in
the literature. We then provide two numerical examples to illustrate our main result and to display the
efficiency of the proposed algorithm.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. We write xn ⇀ x to indicate that the sequence {xn}∞

n=1 converges weakly to x, and xn → x
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to indicate that the sequence {xn}∞
n=1 converges strongly to x. We begin by recalling some known facts

on the space CAT(0).

Lemma 1. ([23], Lemma 2) Let {an}, {vn} and {ξn} be sequences of nonnegative real numbers such that
an+1 ≤ (1+vn)an + ξn, for all n ≥ 1. If ∑∞

n=1 vn < ∞ and ∑∞
n=1 ξn < ∞, then limn→∞ an exists. Moreover,

if there exists a subsequence {anj} of {an} such that anj → 0 as j→ ∞, then an → 0 as n→ ∞.

Lemma 2. ([24], Lemma 4.5) Let x be a given point in a CAT(0) space (X, d) and {tn} be a sequence in a closed

interval [a, b] with 0 < a ≤ b < 1 and 0 < a(1− b) ≤ 1
2

. Suppose that {xn} and {yn} are two sequences in
X such that:

(1) lim supn→∞ d(xn, x) ≤ r,
(2) lim supn→∞ d(yn, x) ≤ r,
(3) lim supn→∞ d((1− tn)xn ⊕ tnyn, x) = r

for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.

Lemma 3. The following assertions in a CAT(0) space hold:

(A1) Every bounded sequence in a complete CAT(0) space has a4-convergent subsequence [25].
(A2) If {xn} is a bounded sequence in a closed convex subset C of a complete CAT(0) space (X, d), then the

asymptotic center of {xn} is in C [26].
(A3) If {xn} is a bounded sequence in a complete CAT(0) space (X, d) with A({xn}) = {p}, {νn} is a

subsequence of {xn} with A({νn}) = {ν}, and the sequence {d(xn, ν)} converges, then p = ν [27].

Lemma 4. ([14], Theorem 2.8) Let C be a nonempty bounded closed convex subset of complete CAT(0) space
(X, d) and T : C → C be a totally asymptotically nonexpansive and uniformly L-Lipschitzian mapping. If {xn}
is a bounded sequence in C such that limn→∞ d(xn, T(xn)) = 0 and4− limn→∞ xn = p, then T(p) = p.

Theorem 5. ([28], Corollary 3.2) Let C be a nonempty bounded closed convex subset of complete CAT(0) space
(X, d) and T : C → C be a continuous totally asymptotically nonexpansive mapping. Then T has a fixed point.

3. Approximation Result

We begin this section by proving a strong convergence theorem for a totally asymptotically
quasi-nonexpansive mapping.

Theorem 6. Let (X, d) be a complete CAT(0) space, C be a nonempty, closed convex subset of (X, d) and
T : C → C be a uniformly L-Lipschitzian and totally asymptotically quasi-nonexpansive mapping with
sequences {un}∞

n=1, {vn}∞
n=1 satisfying ∑∞

n=1 un < ∞ and ∑∞
n=1 vn < ∞, and strictly increasing mapping

ψ : [0, ∞)→ [0, ∞) with ψ(0) = 0. Let {αn}∞
n=1, {βn}∞

n=1 and {γn}∞
n=1 be sequences in (0, 1) and suppose

that the following conditions are satisfied:

(C1) there exist constants a, b such that 0 < a ≤ αn ≤ b < 1 for all n ∈ N,
(C2) there exists a constant M such that ψ(r) ≤ Mr for all r ≥ 0.

Then {xn}∞
n=1 defined by: 

x1 ∈ C
zn = (1− αn)xn ⊕ αnTn(xn)

yn = (1− βn)zn ⊕ βnTn(zn)

xn+1 = (1− γn)Tn(zn)⊕ γnTn(yn)

(3)

is4-convergent to some p ∈ Fix(T).
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Proof. Since T is uniformly L-Lipschitzian, we have T is continuous. By using Theorem 5, we get
Fix(T) 6= ∅. Next, we will divide the proof into three steps.

Step 1. First, we will prove that limn→∞ d(xn, x∗) exists for each x∗ ∈ Fix(T), where {xn} is
defined by (3). For this purpose, let x∗ ∈ Fix(T), using the fact that {αn}∞

n=1 ⊂ (0, 1) and by the
condition (C2) we obtain:

d(zn, x∗) = d((1− αn)xn ⊕ αnTn(xn), x∗)
≤ (1− αn)d(xn, x∗) + αnd(Tn(xn), x∗)

≤ (1− αn)d(xn, x∗) + αn

[
d(xn, x∗) + unψ(d(xn, x∗)) + vn

]

= d(xn, x∗) + αn

[
unψ(d(xn, x∗)) + vn

]
≤ d(xn, x∗) + unψ(d(xn, x∗)) + vn

≤ (1 + Mun)d(xn, x∗) + vn

(4)

for all n ∈ N. Also, we have:

d(yn, x∗) = d((1− βn)zn ⊕ βnTn(zn), x∗)

≤ (1− βn)d(zn, x∗) + βnd(Tn(zn), x∗)

≤ (1− βn)d(zn, x∗) + βn

[
d(zn, x∗) + unψ(d(zn, x∗)) + vn

]

= d(zn, x∗) + βn

[
unψ(d(zn, x∗)) + vn

]
(5)

≤ d(zn, x∗) + unψ(d(zn, x∗)) + vn

≤ (1 + Mun)d(zn, x∗) + vn

≤ (1 + Mun)
2d(xn, x∗) + (1 + Mun)vn + vn

for all n ∈ N. From (3)–(5) and using the fact that {γn}∞
n=1 ⊂ (0, 1), we conclude that:

d(xn+1, x∗) = d((1− γn)Tn(zn)⊕ γnTn(yn), x∗)
≤ (1− γn)d(Tn(zn), x∗) + γnd(Tn(yn), x∗)

≤ (1− γn)

[
d(zn, x∗) + unψ(d(zn, x∗)) + vn

]

+γn

[
d(yn, x∗) + unψ(d(yn, x∗)) + vn

]

≤ (1− γn)

[
(1 + Mun)

(
(1 + Mun)d(xn, x∗) + vn

)
+ vn

]

+γn

[
(1 + Mun)

(
(1 + Mun)2d(xn, x∗) + (1 + Mun)vn + vn

)
+ vn

]
≤ (1− γn)(1 + Mun)2d(xn, x∗) + (1− γn)(1 + Mun)vn + (1− γn)vn

+γn(1 + Mun)3d(xn, x∗) + (1 + Mun)2vn + γn(1 + Mun)vn + γnvn

= (1 + vn)d(xn, x∗) + ξn

(6)

where vn := 5Mun + 4(Mun)2 + (Mun)3 and ξn :=

[
(1 + Mun)2 + (1 + Mun) + 1

]
vn. Forasmuch as

∑∞
n=1 un < ∞ and ∑∞

n=1 vn < ∞, it follows that ∑∞
n=1 vn < ∞ and ∑∞

n=1 ξn < ∞. Hence by Lemma 1,
limn→∞ d(xn, x∗) exists.
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Step 2. In this step, we will prove that limn→∞ d(xn, T(xn)) = 0. Without loss of generality, we
may assume that:

r := lim
n→∞

d(xn, x∗) (7)

From (4), we conclude that:
lim sup

n→∞
d(zn, x∗) ≤ r (8)

Now, Using the fact that T being a totally asymptotically nonexpansive mapping and (8), we have:

lim sup
n→∞

d(Tn(zn), x∗) ≤ lim sup
n→∞

[
d(zn, x∗) + unψ(d(zn, x∗)) + vn

]

≤ lim sup
n→∞

[
(1 + Mun)d(zn, x∗) + vn

]
(9)

≤ r

By the same above argument, we get:

lim sup
n→∞

d(Tn(xn), x∗) ≤ r (10)

Now, we can write:

r = lim sup
n→∞

d(xn+1, x∗) = lim sup
n→∞

d((1− γn)Tn(zn)⊕ γnTn(yn), x∗)

≤ lim sup
n→∞

[
(1− γn)d(Tn(zn), x∗) + γnd(Tn(yn), x∗)

]
≤ (1− γn)r + γn lim sup

n→∞
d(Tn(yn), x∗)

≤ (1− γn)r + γn lim sup
n→∞

[
d(yn, x∗) + unψ(d(yn, x∗)) + vn

]
≤ (1− γn)r + γn lim sup

n→∞
d(yn, x∗)

by arranging the above inequality, we conclude that:

r ≤ lim sup
n→∞

d(yn, x∗) (11)

which implies that:
r ≤ lim sup

n→∞
d(zn, x∗) (12)

From (8) and (12), we have:

r = lim sup
n→∞

d(zn, x∗) = lim sup
n→∞

d((1− αn)xn ⊕ αnTn(xn), x∗) (13)

By using Lemma 2 with (7), (10) and (13), we have:

lim
n→∞

d(xn, Tn(xn)) = 0. (14)

From (5) and (7), we have:
lim sup

n→∞
d(yn, x∗) ≤ r (15)
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Now, by Combining (11) and (15), we have:

r = lim sup
n→∞

d(yn, x∗) = lim sup
n→∞

d((1− βn)zn ⊕ βnTn(zn), x∗) (16)

Again, by using Lemma 2 with (8), (9) and (16), we have:

lim
n→∞

d(zn, Tn(zn)) = 0 (17)

Using the definition of totally asymptotically nonexpansive mapping and (14), we conclude that:

d(Tn(zn), Tn(xn)) ≤ d(zn, xn) + unψ(d(zn, xn)) + vn

≤ (1 + Mun)d(zn, xn) + vn

= (1 + Mun)d((1− αn)xn ⊕ αnTn(xn), xn) + vn

≤ (1 + Mun)

[
(1− αn)d(xn, xn) + αnd(Tn(xn), xn)

]
+ vn → 0, n→ ∞

(18)

Also, by the same argument and (17), we have:

d(Tn(yn), Tn(zn)) ≤ d(yn, zn) + unψ(d(yn, zn)) + vn

≤ (1 + Mun)d(yn, zn) + vn

= (1 + Mun)d((1− βn)zn ⊕ βnTn(zn), zn) + vn

≤ (1 + Mun)

[
(1− βn)d(zn, zn) + βnd(Tn(zn), zn)

]
+ vn → 0, n→ ∞

(19)

By using the triangle inequality and (18) and (19), we have:

lim
n→∞

d(Tn(xn), Tn(yn)) = 0, ∀n ∈ N (20)

Again, by using the triangle inequality and (18) and (20), we have:

d(xn, xn+1) = d(xn, (1− γn)Tn(zn)⊕ γnTn(yn))

≤ (1− γn)d(xn, Tn(zn)) + γnd(xn, Tn(yn))

≤
[

d(xn, Tn(xn)) + d(Tn(xn), Tn(zn))

]

+

[
d(xn, Tn(xn)) + d(Tn(xn), Tn(yn))

]
→ 0, n→ ∞

(21)

Finally, with (14) and (21), we conclude that:

d(xn, T(xn)) ≤ d(xn, xn+1) + d(xn+1, Tn+1(xn+1)) + d(Tn+1(xn+1), Tn+1(xn)) + d(Tn+1(xn), T(xn))

≤ d(xn, xn+1) + d(xn+1, Tn+1(xn+1)) + Ld(xn+1, xn) + Ld(Tn(xn), xn)→ 0, n→ ∞

Therefore, Step 2 is proved.
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Step 3. Define:
Ω4(xn) :=

⋃
{νn}⊆{xn}

A({νn}) ⊆ Fix(T)

We claim that the sequence {xn} 4-converges to a fixed point of T and Ω4(xn) consists of exactly
one point. Assume that ν ∈ Ω4(xn). From the definition of Ω4(xn), there is a subsequence {νn} of
{xn} such that A({νn}) = {ν}. From assertion (A1) in Lemma 3, there exists a subsequence {ρn}
of {νn} such that 4− limn→∞ ρn = ρ ∈ C. Using Lemma 4, we conclude that ρ ∈ Fix(T). Since
{d(νn, ρ)} converges, by assertion (A2) in Lemma 3, we obtain ν = ρ. Therefore Ω4(xn) ⊆ Fix(T).
Finally, we show that Ω4(xn) consists of exactly one point. Let {νn} be a subsequence of {xn} such
that A({νn}) = {ν} and let A({xn}) = {x}. We have already seen that ν = ρ ∈ Fix(T). Since
{d(xn, ρ)} converges, by assertion (A3) in Lemma 3, we have x = ρ ∈ Fix(T), that is, Ω4(xn) = x.
This completes the proof.

Remark. We note that each nonexpansive mapping is an asymptotically nonexpansive mapping with a
sequence {kn := 1} for all n ∈ N and each asymptotically nonexpansive mapping is a ({un}, {vn}, ψ)-totally
asymptotically nonexpansive mapping with two sequences {vn := kn − 1} and {un =: 0} for all n ∈ N and
ψ being the identity mapping. Also, we see that each asymptotically nonexpansive mapping is a uniformly
L-Lipschitzian mapping with L := supn∈N{kn}.

3.1. Numerical Results

In the following, we supply a numerical example of totally asymptotically quasi-nonexpansive
mappings satisfying the conditions of Theorem 6, and some numerical experiment results to explain
the conclusion of our Algorithm (3).

Example 1. Consider X = R with its usual metric, so X is also a complete CAT(0) space. Let C = [−1, 1]

which clearly is a bounded closed convex subset of X. Define the mapping T : C −→ C by T(x) =
x
2

. Let

ψ : [0, ∞)→ [0, ∞) be a strictly increasing mapping with ψ(0) = 0. Let un =
1
n2 and vn =

1
n3 for all n ≥ 1.

Since the sequences {un}∞
n=1, {vn}∞

n=1 satisfying un, vn → 0 as n→ ∞, for all x, y ∈ C, we have:

|Tn(x)− Tn(y)| − |x− y| − unψ(|x− y|)− vn ≤
1
2n |x− y| − |x− y| − unψ(|x− y|)− vn

≤ |x− y| − |x− y| − unψ(|x− y|)− vn ≤ 0

So T is a totally asymptotically quasi-nonexpansive mapping. Clearly, zero is the only fixed point

of the mappings T. Put αn = βn = γn =
1

n + 100
. By using MATHEMATICA, we computed the

iterates of Equation (3) for initial point x1 =
1
2
∈ [−1, 1]. Finally, by the numerical experiments we

compared Mann iteration process, Ishikawa iteration process and Thakur iteration process with our
Equation (3) (see Table 1). Moreover, the convergence behaviors of these algorithms are shown in
Figure 1. We conclude that xn converges to zero.
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Table 1. Numerical results corresponding to x1 =
1
2

for 30 steps.

Numerical Results

Step Our Algorithm Mann Algorithm Ishikawa Algorithm Thakur Algorithm

1 0.5 0.5 0.5 0.5
2 0.24875 0.497525 0.497512 0.124994
3 0.0617258 0.495086 0.495062 0.031247
4 0.00764955 0.492683 0.492647 0.00781137
5 0.000473746 0.490314 0.490267 0.00195275
6 0.0000146667 0.487979 0.487921 0.000488166
7 2.27019× 10−7 0.485677 0.485609 0.000122036
8 1.75699× 10−9 0.483408 0.483329 0.0000305077
9 6.79935× 10−12 0.481169 0.481081 7.62659× 10−6

10 1.31573× 10−14 0.478963 0.478864 1.90657× 10−6

11 1.27312× 10−17 0.476785 0.476678 4.76623× 10−7

12 6.15991× 10−21 0.474638 0.474521 1.19151× 10−7

13 1.49034× 10−24 0.472519 0.472393 2.97865× 10−8

14 1.80303× 10−28 0.470428 0.470293 7.44634× 10−9

15 1.09074× 10−32 0.468365 0.468222 1.86151× 10−9

16 3.29949× 10−37 0.466328 0.466177 4.65361× 10−10

17 4.99085× 10−42 0.464318 0.464159 1.16336× 10−10

18 3.77489× 10−47 0.462334 0.462167 2.90829× 10−11

19 1.42770× 10−52 0.460375 0.460200 7.27046× 10−12

20 2.70005× 10−58 0.458441 0.458259 1.81755× 10−12

21 2.55333× 10−64 0.456531 0.456341 4.54372× 10−13

22 1.20738× 10−70 0.454644 0.454448 1.13589× 10−13

23 2.85483× 10−77 0.452781 0.452578 2.83963× 10−14

24 3.37533× 10−84 0.450940 0.450730 7.09885× 10−15

25 1.99550× 10−91 0.449122 0.448906 1.77465× 10−15

26 5.89910× 10−99 0.447325 0.447103 4.43649× 10−16

27 8.72003× 10−107 0.445550 0.445322 1.10909× 10−16

28 6.44537× 10−115 0.443796 0.443561 2.77263× 10−17

29 2.38219× 10−123 0.442063 0.441822 6.93138× 10−18

30 4.40250× 10−132 0.440349 0.440103 1.73279× 10−18

Figure 1. Convergence behaviors corresponding to x1 =
1
2

for 30 steps.



Mathematics 2017, 5, 14 10 of 13

Example 2. Consider X = R2 equipped with the Euclidean norm. Let x = (x1, x2) ∈ R2, then the squared
distance of x from the origin is:

‖x‖2 = x2
1 + x2

2

Consider C as the closed unit disk:

C = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}

which is bounded, closed, and convex in X. We define the mapping Rotθ : C −→ C by:

Rotθ(x1, x2) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x1

x2

]

Let θ =
π

4
. It is easy to see that Rotθ is nonexpansive, since for all (x1, x2), (y1, y2) ∈ C, we have:

‖Rotθ(x1, x2)− Rotθ(y1, y2)‖ =
1
2

∥∥∥∥
[

x1 − x2

x1 + x2

]
−
[

y1 − y2

y1 + y2

] ∥∥∥∥
=

1
2

∥∥∥∥
[
(x1 − y1)− (x2 − y2)

(x1 − y1) + (x2 − y2)

] ∥∥∥∥
=

1
2

√
[(x1 − y1)− (x2 − y2)]2 + [(x1 − y1) + (x2 − y2)]2

=

√
2

2

√
(x1 − y1)2 + (x2 − y2)2

=

√
2

2
‖x− y‖

Let ψ : [0, ∞) → [0, ∞) be a strictly increasing mapping with ψ(0) = 0, and let un =
1
n2 and

vn =
1
n3 for all n ≥ 1. Since the sequences {un}∞

n=1 and {vn}∞
n=1 satisfy un, vn → 0 as n→ ∞, it follows

that for all x, y ∈ C and n ≥ 1, we have:

‖Rotn
θ (x)− Rotn

θ (y)‖ − ‖x− y‖ − unψ(‖x− y‖)− vn ≤ (

√
2

2
)n‖x− y‖ − ‖x− y‖ − unψ(‖x− y‖)− vn

≤ ‖x− y‖ − ‖x− y‖ − unψ(‖x− y‖)− vn

≤ 0

This means that Rotθ is a totally asymptotically quasi-nonexpansive mapping. Clearly, zero is the

only fixed point of the mapping Rotθ for θ =
π

4
. In this case, our algorithm is the following:


x(1) = (x(1)1

, x(1)2
) ∈ C

(z(n)1
, z(n)2

) = (1− αn)(x(n)1
, x(n)2

) + αnRotn
θ (x(n)1

, x(n)2
)

(y(n)1
, y(n)2

) = (1− βn)(z(n)1
, z(n)2

) + βnRotn
θ (z(n)1

, z(n)2
)

(x(n+1)1
, x(n+1)2

) = (1− γn)Rotn
θ (z(n)1

, z(n)2
) + γnRotn

θ (y(n)1
, y(n)2

)

(22)
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Put αn = βn = γn =
1

n + 100
. By using MATHEMATICA, we computed the iterates of

Algorithm (22) for initial point x(1) = (
1
2

,
1
2
) ∈ C for 500 steps. Finally, by the numerical experiments

we compared Mann iteration process, Ishikawa iteration process and Thakur iteration process with
our Algorithm (22) (see Table 2). The convergence behaviors of these algorithms are shown in Figure 2.
The conclusion is that xn converges to zero.

Table 2. Numerical results corresponding to x(1) = (
1
2

,
1
2
) for 30 steps.

Numerical Results

Step Our Algorithm Mann Algorithm Ishikawa Algorithm Thakur Algorithm

1 (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
2 (0.705,−0.005) (0.502, 0.495) (0.502, 0.495) (0.499,−0.500)
3 (−0.012,−0.698) (0.504, 0.490) (0.504, 0.490) (−0.500,−0.499)
4 (−0.474, 0.497) (0.506, 0.485) (0.506, 0.485) (−0.499, 0.500)
5 (0.464,−0.487) (0.508, 0.480) (0.508, 0.480) (0.500, 0.499)
6 (0.011, 0.662) (0.510, 0.476) (0.510, 0.475) (0.499,−0.500)
7 (−0.656, 0.005) (0.511, 0.471) (0.511, 0.471) (−0.500,−0.499)
8 (−0.463,−0.462) (0.513, 0.466) (0.513, 0.466) (−0.499, 0.500)
9 (−0.463,−0.462) (0.515, 0.462) (0.515, 0.461) (0.500, 0.499)

10 (−0.652, 0.005) (0.516, 0.457) (0.516, 0.457) (0.499,−0.500)
11 (0.011, 0.646) (0.518, 0.453) (0.518, 0.452) (−0.500,−0.499)
12 (0.439,−0.460) (0.519, 0.448) (0.519, 0.448) (−0.499, 0.500)
13 (−0.431, 0.452) (0.521, 0.444) (0.521, 0.443) (0.500, 0.499)
14 (−0.010,−0.615) (0.522, 0.439) (0.522, 0.439) (0.499,−0.500)
15 (0.610,−0.0048) (0.524, 0.435) (0.523, 0.434) (−0.500,−0.499)
16 (0.431, 0.429) (0.525, 0.431) (0.525, 0.430) (−0.499, 0.500)
17 (0.431, 0.429) (0.526, 0.426) (0.526, 0.426) (0.500, 0.499)
18 (0.607,−0.005) (0.528, 0.422) (0.527, 0.421) (0.499,−0.500)
19 (−0.010,−0.602) (0.529, 0.418) (0.526, 0.417) (−0.500,−0.499)
20 (−0.410, 0.429) (0.530, 0.414) (0.530, 0.413) (−0.499, 0.500)
21 (0.402,−0.421) (0.531, 0.409) (0.531, 0.409) (0.500, 0.499)
22 (0.009, 0.575) (0.532, 0.405) (0.532, 0.405) (0.499,−0.500)
23 (−0.570, 0.004) (0.533, 0.401) (0.533, 0.401) (−0.500,−0.499)
24 (−0.403,−0.401) (0.534, 0.397) (0.534, 0.397) (−0.499, 0.500)
25 (−0.403,−0.401) (0.535, 0.393) (0.535, 0.392) (0.500, 0.499)
26 (−0.567, 0.004) (0.536, 0.389) (0.536, 0.389) (0.499,−0.500)
27 (0.009, 0.563) (0.537, 0.385) (0.537, 0.385) (−0.500,−0.498)
28 (0.384,−0.401) (0.538, 0.382) (0.538, 0.381) (−0.498, 0.500)
29 (−0.378, 0.395) (0.539, 0.378) (0.536, 0.377) (0.500, 0.498)
30 (−0.008,−0.539) (0.540, 0.373) (0.539, 0.373) (0.498,−0.500)
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Figure 2. Convergence behaviors corresponding to x(1) = (
1
2

,
1
2
) for 500 steps.
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