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Abstract:



In this paper, by applying some well-known fixed point theorems, we investigate the existence of positive solutions for a class of nonlinear Caputo type fractional q-difference equations with integral boundary conditions. Finally, some interesting examples are presented to illustrate the main results.
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1. Introduction


Since Al-Salam [1] and Agarwal [2] introduced the fractional q-difference calculus, the theory of fractional q-difference calculus itself and nonlinear fractional q-difference equation boundary value problems have been extensively investigated by many researchers. For some recent developments on fractional q-difference calculus and boundary value problems of fractional q-difference equations, see [3,4,5,6,7,8,9,10,11,12,13,14,15,16] and the references therein. For example, authors [17,18,19,20] considered some anti-periodic boundary value problems of nonlinear fractional q-difference equations. By applying the generalized Banach contraction principle, the monotone iterative method, and the Krasnoselskii’s fixed point theorem. In [21], the authors investigated Caputo q-fractional initial value problems independently of the paper [3] where some open problems raised there. In [22], Mittag-Leffler stabilitry of q-fractional systems was investigated. In [23,24], some important q-fractional inequalities were proved. Those inequalities are necessary for the development of q-fractional systems. Zhao et al. [25] showed some existence results of positive solutions to nonlocal q-integral boundary value problems of nonlinear fractional q-derivative equations.



Under different conditions, Graef and Kong [26,27] investigated the existence of positive solutions for boundary value problems with fractional q-derivatives in terms of different ranges of [image: there is no content], respectively. By applying some standard fixed point theorems, Agarwal et al. [28] and Ahmad et al. [29] showed some existence results for sequential q-fractional integrodifferential equations with q-antiperiodic boundary conditions and nonlocal four-point boundary conditions, respectively. In [30], by applying a mixed monotone method and the Guo-Krasnoselskii fixed point theorem, Zhao and Yang obtained the existence and uniqueness of positive solutions for the singular coupled integral boundary value problem of nonlinear higher-order fractional q-difference equations.



In [31], Ferreira considered the nonlinear fractional q-difference boundary value problem as follows:


(Dqαu)(t)+f(u(t))=0,t∈[0,1],α∈(2,3],u(0)=(Dqu)(0)=0,(Dqu)(1)=β≥0,








where [image: there is no content] is the q-derivative of Riemann-Liouville type of order [image: there is no content]. By applying a fixed point theorem in cones, sufficient conditions for the existence of positive solutions were enunciated.



In [32], Ahmad et al. studied the following nonlocal boundary value problems of nonlinear fractional q-difference equations


(cDqαu)(t)=f(t,u(t)),t∈[0,1],α∈(1,2],a1u(0)-b1(Dqu)(0)=c1u(η1),a2u(1)+b2(Dqu)(1)=c2u(η2),








where cDqα denotes the Caputo fractional q-derivative of order [image: there is no content], and ai,bi,ci,ηi∈R(i=1,2). The existence of solutions for the problem were shown by applying some well-known tools of fixed point theory such as the Banach contraction principle, the Krasnoselskii fixed point theorem, and the Leray-Schauder nonlinear alternative.



In [33], Zhou and Liu investigated the following fractional q-difference system


(cDqαu)(t)=f(t,v(t)),(cDqβv)(t)=f(t,u(t)),t∈[0,1],α,β∈(1,2],a1u(0)-b1(Dqu)(0)=c1u(η1),a2u(1)+b2(Dqu)(1)=c2u(η2),a3u(0)-b3(Dqu)(0)=c3u(η3),a4u(1)+b4(Dqu)(1)=c4u(η4),








where cDqα and cDqα denote the Caputo fractional q-derivative of order [image: there is no content] and [image: there is no content], respectively. The uniqueness and existence of solution were obtained based on the nonlinear alternative of Leray-Schauder type and Banach’s fixed-point theorem.



In [34], the author considered the following coupled integral boundary value problem for systems of nonlinear semipositone fractional q-difference equations


(Dqαu)(t)+λf(t,u(t),v(t))=0,(Dqβv)(t)+λg(t,u(t),v(t))=0,t∈[0,1],λ>0,(Dqju)(0)=(Dqjv)(0)=0,0≤j≤n-2,u(1)=μ∫01v(s)dqs,v(1)=ν∫01u(s)dqs,








where [image: there is no content] are three parameters with [image: there is no content] and [image: there is no content], [image: there is no content] are two real numbers and [image: there is no content], [image: there is no content] are the fractional q-derivative of the Riemann-Liouville type, and [image: there is no content] are sign-changing continuous functions. By applying the nonlinear alternative of Leray-Schauder type and the Krasnoselskii’s fixed point theorems, sufficient conditions for the existence of one or multiple positive solutions were obtained.



In [35], Li and Yang considered the following nonlinear fractional q-difference equation with integral boundary conditions


Dqαu(t)+h(t)f(t,u(t))=0,t∈(0,1),Dqju(0)=0,0≤j≤n-2,u(1)=μ∫01g(s)u(s)dqs,








where [image: there is no content] are a real number and [image: there is no content] is an integer, [image: there is no content] are the fractional q-derivative of the Riemann–Liouville type, [image: there is no content] and [image: there is no content] are two constants, [image: there is no content] are two given continuous functions, and [image: there is no content] is continuous and [image: there is no content] on [image: there is no content]. By applying monotone iterative method and some inequalities associated with the Green’s function, the existence results of positive solutions and two iterative schemes approximating the solutions were established.



Motivated by the wide applications of coupled boundary value problems and the results mentioned above, we consider the following nonlinear Caputo type fractional q-difference equations with integral boundary conditions


(cDqαu)(t)=f(t,u(t)),t∈[0,1],α∈(1,2],au(0)-bu(1)=∫01g(s)u(s)dqs,c(Dqu)(0)-d(Dqu)(1)=∫01h(s)u(s)dqs,



(1)




where cDα is the Caputo type fractional q-derivative of fractional order [image: there is no content], [image: there is no content] are real constants with [image: there is no content] and [image: there is no content], [image: there is no content] and [image: there is no content].



The main aim of this paper is to investigate the existence of positive solutions for a class of nonlinear Caputo type fractional q-difference equations with integral boundary conditions by means of the Guo-Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem. Furthermore, some examples are given to illustrate our main results.




2. Preliminaries


For the convenience of the reader, we present some necessary definitions and lemmas of fractional q-calculus theory to facilitate analysis of the q-fractional boundary value problem (1). These details can be found in the recent literature; see [36,37] and references therein.



Let [image: there is no content] and define


[a]q=qa-1q-1,a∈R.











The q-analogue of the power [image: there is no content] with [image: there is no content] is


(a-b)(0)=1,(a-b)(n)=∏k=0n-1(a-bqk),n∈N0,a,b∈R.











More generally, if [image: there is no content], then


[image: there is no content]











Note that, if [image: there is no content], then [image: there is no content]. Here, we point out that the following equality holds


[image: there is no content]











The q-gamma function is defined by


Γq(x)=(1-q)(x-1)(1-q)1-x,x∈R∖{0,-1,-2,…}








and satisfies [image: there is no content].



The q-derivative of a function f is defined by


(Dqf)(x)=f(x)-f(qx)(1-q)x,(Dqf)(0)=limx→0(Dqf)(x),








and q-derivatives of higher order by


(Dq0f)(x)=f(x)and(Dqnf)(x)=Dq(Dqn-1f)(x),n∈N.











The q-integral of a function f defined in the interval [image: there is no content] is given by


(Iqf)(x)=∫0xf(t)dqt=x(1-q)∑n=0∞f(xqn)qn,x∈[0,b].











If [image: there is no content] and f is defined in the interval [image: there is no content], its integral from a to b is defined by


[image: there is no content]











Similarly as done for derivatives, an operator [image: there is no content] can be defined, namely,


(Iq0f)(x)=f(x)and(Iqnf)(x)=Iq(Iqn-1f)(x),n∈N.











The fundamental theorem of calculus applies to these operators [image: there is no content] and [image: there is no content], i.e.,


[image: there is no content]








and if f is continuous at [image: there is no content], then


[image: there is no content]











Basic properties of the two operators can be found in the book [36]. We now point out five formulas that will be used later (iDq denotes the derivative with respect to variable i)


∫abf(s)(Dqg)(s)dqs=[f(s)g(s)]s=as=b-∫ab(Dqf)(s)g(qs)dqs(q-integrationbyparts),[a(t-s)](α)=aα(t-s)(α),tDq(t-s)(α)=[α]q(t-s)(α-1),sDq(t-s)(α)=-[α]q(t-qs)(α-1),xDq∫0xf(x,t)dqt(x)=∫0xxDqf(x,t)dqt+f(qx,x).











Note that if [image: there is no content] and [image: there is no content], then [image: there is no content] [13].



Definition 1

([2]). Let [image: there is no content] and f be function defined on [image: there is no content]. The fractional q-integral of the Riemann-Liouville type is [image: there is no content] and


(Iqαf)(x)=1Γq(α)∫0x(x-qt)(α-1)f(t)dqt,α>0,x∈[0,1].













Definition 2

([38]). The fractional q-derivative of the Riemann-Liouville type of order [image: there is no content] is defined by [image: there is no content] and


(Dqαf)(x)=(DqmIqm-αf)(x),α>0,








where m is the smallest integer greater than or equal to [image: there is no content].





Definition 3

([38]). The fractional q-derivative of the Caputo type of order [image: there is no content] is defined by


(cDqαf)(x)=(Iqm-αDqmf)(x),α>0,








where m is the smallest integer greater than or equal to [image: there is no content].





Lemma 1

([2]). Let [image: there is no content] and f be a function defined on [image: there is no content]. Then, the next formulas hold:



[image: there is no content][image: there is no content]; [image: there is no content][image: there is no content].





Lemma 2

([3]). Let [image: there is no content] and [image: there is no content]. Then, the following equality holds:


(IqαcDqαf)(x)=f(x)-∑k=0m-1xkΓq(k+1)(Dqkf)(0),








where m is the smallest integer greater than or equal to [image: there is no content].





Lemma 3

([2]). For [image: there is no content], [image: there is no content], the following is valid:


Iqα((x-a)(λ))=Γq(λ+1)Γq(α+λ+1)(x-a)(α+λ),0<a<x<b.













Lemma 4.

Let [image: there is no content], and then the boundary value problem


(cDqαu)(t)=y(t),t∈(0,1),α∈(1,2],au(0)-bu(1)=0,c(Dqu)(0)-d(Dqu)(1)=0,



(2)




has a unique solution u in the form


[image: there is no content]



(3)




where


[image: there is no content]













Proof. 

By applying Lemmas 1 and 2, we see that


[image: there is no content]



(4)







Differentiating both sides of (4), we obtain


[image: there is no content]



(5)







From (4) and (5), we get


u(0)=d1,u(1)=∫01(1-qs)(α-1)Γq(α)y(s)dqs+d1+d2,(Dqu)(0)=d2,(Dqu)(1)=∫01[α-1]q(1-qs)(α-2)Γq(α)y(s)dqs+d2.



(6)







Using (6) to the boundary conditions [image: there is no content] and [image: there is no content], we obtain


[image: there is no content]



(7)







Substituting [image: there is no content] and [image: there is no content] in (7) into Equation (4), we find


u(t)=∫0t(t-qs)(α-1)Γq(α)y(s)dqs+∫01d[α-1]qt(1-qs)(α-2)(c-d)Γq(α)y(s)dqs+∫01b(1-qs)(α-1)(a-b)Γq(α)y(s)dqs+∫01bd[α-1]q(1-qs)(α-2)(a-b)(c-d)Γq(α)y(s)dqs=∫01G(t,qs)y(s)dqs,








which implies that (2) has a unique solution (3). This completes the proof of the lemma. ☐





For the sake of simplicity, we always assume that the following condition (H1) holds:

	(H1)

	
[image: there is no content] and [image: there is no content], where [image: there is no content], [image: there is no content], and


κ1=1-1a-b∫01g(t)dqt,κ2=∫01g(t)ϕ(t)dqt,κ3=1a-b∫01h(t)dqt,κ4=1-∫01h(t)ϕ(t)dqt.

















Now, we will obtain the Green’s function of the boundary value problem (1) and some of its properties.



Lemma 5.

Let [image: there is no content], and then the boundary value problem


(cDqαu)(t)=y(t),t∈(0,1),α∈(1,2],au(0)-bu(1)=∫01g(s)u(s)dqs,c(Dqu)(0)-d(Dqu)(1)=∫01h(s)u(s)dqs,



(8)




has a unique solution u in the form


[image: there is no content]



(9)




where


[image: there is no content]













Proof. 

By applying (6) to the boundary conditions [image: there is no content] and [image: there is no content], we obtain


d1=∫01b(1-qs)(α-1)(a-b)Γq(α)y(s)dqs+∫01bd[α-1]q(1-qs)(α-2)(a-b)(c-d)Γq(α)y(s)dqs+1a-b∫01g(s)u(s)dqs+b(a-b)(c-d)∫01h(s)u(s)dqs,d2=∫01d[α-1]q(1-qs)(α-2)(c-d)Γq(α)y(s)dqs+1c-d∫01h(s)u(s)dqs.



(10)







Substituting [image: there is no content] and [image: there is no content] in Equation (10) into the (4), we have


[image: there is no content]



(11)







Multiplying both sides of the first and second equations of (11) by [image: there is no content] and [image: there is no content], respectively, and integrating the resulting equations obtained with respect to t from 0 to 1, we obtain


∫01g(t)u(t)dqt=∫01g(t)∫01G(t,qs)y(s)dqsdqt+1a-b∫01g(t)dqt∫01g(s)u(s)dqs+∫01g(t)ϕ(t)dqt∫01h(s)u(s)dqs,∫01h(t)u(t)dqt=∫01h(t)∫01G(t,qs)y(s)dqsdqt+1a-b∫01h(t)dqt∫01g(s)u(s)dqs+∫01h(t)ϕ(t)dqt∫01h(s)u(s)dqs.











Solving for [image: there is no content] and [image: there is no content] from the above equations, we have


[image: there is no content]



(12)







Substituting [image: there is no content] and [image: there is no content] in Equation (12) into the (11), we have


u(t)=1κ(a-b)κ4∫01g(t)∫01G(t,qs)y(s)dqsdqt+κ2∫01h(t)∫01G(t,qs)y(s)dqsdqt+ϕ(t)κκ3∫01g(t)∫01G(t,qs)y(s)dqsdqt+κ1∫01h(t)∫01G(t,qs)y(s)dqsdqt+∫01G(t,qs)y(s)dqs=∫01H(t,qs)x(s)dqs,








which implies that (8) has a unique solution (9). This completes the proof of the lemma. ☐





Lemma 6.

The function [image: there is no content] has the following property:


M1ω(qs)≤H(t,qs)≤abM2ω(qs),∀t∈[0,1],s∈(0,1),








where [image: there is no content] and


[image: there is no content]













Proof. 

Let


[image: there is no content]








for [image: there is no content], and


g2(t,s)=d[α-1]qt(1-s)(α-2)(c-d)Γq(α)+b(1-s)(α-1)(a-b)Γq(α)+bd[α-1]q(1-s)(α-2)(a-b)(c-d)Γq(α),0≤t≤s≤1.











For given [image: there is no content], [image: there is no content] are increasing with respect to t for [image: there is no content]. Hence, we have


[image: there is no content]








and


[image: there is no content]











Therefore, we get


ω(qs)≤G(t,qs)≤abω(qs),∀t∈[0,1],s∈(0,1).











Furthermore, we obtain


[image: there is no content]








and


[image: there is no content]











This completes the proof of the lemma. ☐





Let the Banach space [image: there is no content] be endowed with the norm [image: there is no content]. Define the cone [image: there is no content] by P=u∈E:u(t)≥Δ∥u∥,t∈[0,1], where [image: there is no content], [image: there is no content] and [image: there is no content] are defined as in Lemma 6. In addition, define, for [image: there is no content] two positive numbers, [image: there is no content] and [image: there is no content] by [image: there is no content] and [image: there is no content]. Note that [image: there is no content].



Suppose that u is a solution of boundary value problem (1). Then,


u(t)=∫01H(t,qs)f(s,u(s))dqs,t∈[0,1].











We define an operator [image: there is no content] as follows


(Tu)(t)=∫01H(t,qs)f(s,u(s))dqs,t∈[0,1].



(13)







By Lemma 6, we have


∥Tu∥≤abM2∫01ω(qs)f(s,u(s))dqs,(Tu)(t)≥M1∫01ω(qs)f(s,u(s))dqs≥Δ∥Tu∥.











Thus, [image: there is no content]. Then, we have the following lemma.



Lemma 7.

[image: there is no content] is completely continuous.





Proof. 

The operator [image: there is no content] is continuous in view of continuity of [image: there is no content] and [image: there is no content]. By means of the Arzela-Ascoli theorem, [image: there is no content] is completely continuous. ☐





In order to obtain the main results in this paper, we will use the following cone compression and expansion fixed point theorem.



Lemma 8.

(Guo-Krasnoselskii fixed point theorem, see [39]). Let [image: there is no content] be a cone of real Bananch space [image: there is no content], [image: there is no content] and [image: there is no content] be two bounded open sets in [image: there is no content] such that [image: there is no content]. Let the operator [image: there is no content] be completely continuous. Suppose that one of the two conditions is satisfied:

	(i)

	
[image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content],




	(ii)

	
[image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content].









Then, [image: there is no content] has at least one fixed point in [image: there is no content].





Lemma 9.

(Leggett-Williams fixed point theorem, see [40]). Let [image: there is no content] be a cone in a real Banach space [image: there is no content], [image: there is no content], θ be a nonnegative continuous concave functional on [image: there is no content] such that [image: there is no content] for [image: there is no content] and [image: there is no content]. Suppose [image: there is no content] is completely continuous and there exist [image: there is no content] such that

	(i)

	
[image: there is no content] and [image: there is no content], for all [image: there is no content];




	(ii)

	
[image: there is no content], for all [image: there is no content];




	(iii)

	
[image: there is no content], for all [image: there is no content] with [image: there is no content].









Then, [image: there is no content] has at least three fixed points [image: there is no content] and [image: there is no content] satisfying


∥x1∥<μ,ν<θ(x2),and∥x3∥>μ,θ(x3)<ν.













In order to state our main results, we need to introduce the following notations.


f0=lim supu→0maxt∈[0,1]f(t,u)u,f∞=lim supu→∞maxt∈[0,1]f(t,u)u,f0=lim infu→0mint∈[0,1]f(t,u)u,f∞=lim infu→∞mint∈[0,1]f(t,u)u,L1=M1∫01ω(qs)dqs,L2=abM2∫01ω(qs)dqs.












3. Main Results


In this section, we establish the existence of positive solutions for boundary value problem (1) by using the Guo-Krasnoselskii fixed point theorem and the Leggett-Williams fixed point theorem.



Theorem 1.

Assume [image: there is no content] holds. Furthermore, suppose one of the following conditions is satisfied.

	(H2)

	
There exist two constants [image: there is no content] and [image: there is no content] with [image: there is no content] such that


f(t,u)≥μL1-1for(t,u)∈[0,1]×[0,μ],andf(t,u)≤νL2-1for(t,u)∈[0,1]×[0,ν];












	(H3)

	
[image: there is no content] and [image: there is no content](particularly, [image: there is no content] and [image: there is no content]);




	(H4)

	
[image: there is no content] and [image: there is no content](particularly, [image: there is no content] and [image: there is no content]).









Then, the problem [image: there is no content] has at least one positive solution.





Proof. 

Let the operator [image: there is no content] be defined by (13).



[image: there is no content] For [image: there is no content], we have [image: there is no content], which implies [image: there is no content]. Hence, for [image: there is no content], by Lemma 6, we obtain


[image: there is no content]








which implies that


∥Tu∥≥∥u∥,foru∈P∩∂Ωμ.



(14)







Next, for [image: there is no content], we have [image: there is no content], which implies [image: there is no content]. Hence, for [image: there is no content], by Lemma 6, we obtain


[image: there is no content]








which implies that


∥Tu∥≤∥u∥,foru∈P∩∂Ων.



(15)




[image: there is no content] Firstly, in view of [image: there is no content], there exists [image: there is no content] such that [image: there is no content], for [image: there is no content], [image: there is no content], where [image: there is no content] satisfies [image: there is no content] Then, for [image: there is no content], [image: there is no content], which implies [image: there is no content], we have


[image: there is no content]








which implies that


∥Tu∥≥∥u∥,foru∈P∩∂Ωμ.



(16)







Nextly, turning to [image: there is no content], there exists [image: there is no content] large enough such that [image: there is no content], for [image: there is no content], [image: there is no content], where [image: there is no content] satisfies [image: there is no content] Set [image: there is no content]. Then, [image: there is no content]. Choose [image: there is no content] Hence, for [image: there is no content], we have


[image: there is no content]








which implies that


∥Tu∥≤∥u∥,foru∈P∩∂Ων.



(17)




[image: there is no content] Considering [image: there is no content], there exists [image: there is no content] such that [image: there is no content], for any [image: there is no content], [image: there is no content], where [image: there is no content]. Then, if [image: there is no content] is the ball in [image: there is no content] centered at the origin with radius [image: there is no content] and if [image: there is no content], then we have


[image: there is no content]








which implies that


∥Tu∥≤∥u∥,foru∈P∩∂Ωμ.



(18)







On the other hand, we use the assumption [image: there is no content]. Then, there exists [image: there is no content] large enough such that [image: there is no content] for any [image: there is no content], [image: there is no content], where [image: there is no content]. If we define [image: there is no content], for [image: there is no content] and [image: there is no content], we get


[image: there is no content]








which implies that


∥Tu∥≥∥u∥,foru∈P∩∂Ων.



(19)







Applying Lemma 8 to (14) and (15), (16) and (17) or (18) and (19) yields that [image: there is no content] has a fixed point [image: there is no content] with [image: there is no content]. It follows from Lemma 8 that the problem (1) has at least one symmetric positive solution u. The proof is therefore complete. ☐





Theorem 2.

Assume [image: there is no content] holds. Furthermore, suppose the following conditions are satisfied.

	(H5)

	
[image: there is no content] and [image: there is no content](particularly, [image: there is no content]),




	(H6)

	
There exists [image: there is no content] satisfying [image: there is no content], [image: there is no content].









Then, the problem [image: there is no content] has at least two positive solutions [image: there is no content] and [image: there is no content], which satisfy [image: there is no content].





Proof. 

At first, if [image: there is no content], it follows from the proof of (16) that we can choose [image: there is no content] with [image: there is no content] such that


∥Tu∥≥∥u∥,foru∈P∩∂Ωμ.



(20)







If [image: there is no content], then like in the proof of (19), we can choose b with [image: there is no content] such that


∥Tu∥≥∥u∥,foru∈P∩∂Ων.



(21)







Next, for [image: there is no content], we have [image: there is no content], then from [image: there is no content], we obtain [image: there is no content]. Thus, for [image: there is no content], like in the proof of (17), we get


∥Tu∥≤∥u∥,foru∈P∩∂Ωγ.



(22)







Applying Lemma 8 to (20) and (22), or (21) and (22) yields that [image: there is no content] has a fixed point [image: there is no content], and a fixed point [image: there is no content]. It follows from Lemma 8 that problem (1) has at least two positive solutions [image: there is no content] and [image: there is no content], which satisfy [image: there is no content]. The proof is therefore complete. ☐





Theorem 3.

Assume [image: there is no content] holds. Furthermore, suppose the following conditions are satisfied.

	(H7)

	
[image: there is no content] and [image: there is no content](particularly, [image: there is no content]),




	(H8)

	
There exists [image: there is no content] satisfying [image: there is no content], [image: there is no content].









Then, problem [image: there is no content] has at least two positive solutions [image: there is no content] and [image: there is no content], which satisfy [image: there is no content].





Proof. 

It can be proved in a way similar to the third part of Theorems 1 and 2. ☐





Theorem 4.

Assume [image: there is no content] holds. In addition, there exist three positive constants [image: there is no content] and [image: there is no content] with [image: there is no content] such that

	(H9)

	
[image: there is no content], for all [image: there is no content], and [image: there is no content],




	(H10)

	
[image: there is no content], for all [image: there is no content], and [image: there is no content],




	(H11)

	
[image: there is no content], for all [image: there is no content], and [image: there is no content].









Then, the problem [image: there is no content] has at least three positive solutions [image: there is no content] and [image: there is no content] such that


∥u1∥<μ,ν<θ(u2),and∥u3∥>μ,θ(u3)<ν.













Proof. 

We show that all the conditions of Lemma 9 are satisfied. We first assert that there exists a positive number [image: there is no content] such that [image: there is no content]. By [image: there is no content], we obtain


[image: there is no content]











Therefore, we have [image: there is no content]. Especially, if [image: there is no content], then assumption [image: there is no content] yields [image: there is no content]: [image: there is no content].



Next, we show that condition [image: there is no content] of Lemma 9 is satisfied. Now, we define the nonnegative, continuous concave functional [image: there is no content] by [image: there is no content]. Obviously, for every [image: there is no content], we have [image: there is no content]. Clearly, [image: there is no content]. Moreover, if [image: there is no content], then [image: there is no content], so [image: there is no content]. By the definition of [image: there is no content] and [image: there is no content], we obtain


[image: there is no content]











Therefore, condition [image: there is no content] of Lemma 9 is satisfied.



Finally, we address condition [image: there is no content] of Lemma 9. For this, we choose [image: there is no content] with [image: there is no content]. Then, from the definition of [image: there is no content], we deduce


[image: there is no content]











This shows that [image: there is no content] of Lemma 9 holds. By Lemma 9, we then obtain the problem [image: there is no content] has at least three positive solutions [image: there is no content] and [image: there is no content] such that


∥u1∥<μ,ν<θ(u2),and∥u3∥>μ,θ(u3)<ν.











We have finished the proof of Theorem 4. ☐






4. Some Examples


In this section, as applications, we give some examples to illustrate the main results.



Example 1.

Consider the following q-fractional boundary value problem


(cD1/23/2u)(t)=f(t,u(t)),t∈[0,1],2u(0)-u(1)=∫01s22u(s)dqs,2(Dqu)(0)-(Dqu)(1)=∫01s22u(s)dqs,



(23)




where


[image: there is no content]



(24)







By simple calculations, we obtain that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and


[image: there is no content]











Then, condition (H4) holds. With the use of Theorem 1, the problem (23) with (24) has at least one positive solution.





Example 2.

Consider the following q-fractional boundary value problem (23) with


f(t,u(t))=(1+sint)(1/144+u2(t)),∀(t,u)∈[0,1]×[0,∞),



(25)




and other conditions also hold. By simple calculations, we obtain that [image: there is no content], so the condition (H5) holds. On the other hand, choosing [image: there is no content], for [image: there is no content], we have


[image: there is no content]








thus condition (H6) holds. With the use of Theorem 2, the problem (24) with (25) has at least two positive solutions [image: there is no content] and [image: there is no content], which satisfy [image: there is no content].





Example 3.

Consider the following q-fractional boundary value problem (23) with


f(t,u)=1t+9u+110u5,0≤t≤1,u≤1,ut+9u+u1000+1,0≤t≤1,1<u,



(26)




and other conditions also hold. Choosing [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content]. Now, we can verify the validity of conditions (H9)–(H11) in Theorem 4. Indeed, by direct computations, we have



[image: there is no content], for all [image: there is no content], and [image: there is no content];



[image: there is no content], for all [image: there is no content], and [image: there is no content];



[image: there is no content], for all [image: there is no content], and [image: there is no content].



Thus, according to Theorem 4, the problem (24) with (26) has at least three positive solutions [image: there is no content], [image: there is no content], and [image: there is no content] satisfying


∥u1∥<12,2<θ(u2),and∥u3∥>12,θ(u3)<2.














5. Conclusions


In this paper, a class of nonlinear Caputo type fractional q-difference equations with integral boundary conditions are studied. By using some well-known fixed point theorems, the existence of one or multiple positive solutions are established for nonlinear Caputo type fractional q-difference equations with integral boundary conditions. Finally, two examples are presented to illustrate the effectiveness of the obtained results.
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