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1. Introduction

State-dependent delays are ubiquitous in applications, such as 3D printing and oil drilling.
The formulation of the problem working with the control of nonlinear systems with state-dependent
delays on the input can be studied by designing a “nonlinear predictor feedback” law that compensates
the input delay. In [1], the authors introduced the concept of nonlinear predictor feedback starting
from nonlinear systems with constant delays all the way through to predictor feedback for nonlinear
systems with state-dependent delays. In [2], Bekiaris-Liberis considered nonlinear control systems with
long, unknown input delays that depend on either time or the plant state and studied the robustness of
nominal constant-delay predictor feedbacks. He showed that when the delay perturbation and its rate
have sufficiently small magnitude, the local asymptotic stability of the closed-loop system, under the
nominal predictor-based design, is preserved. For the special case of linear systems, and under only
time-varying delay perturbations, he proved robustness of global exponential stability of the predictor
feedback when the delay perturbation and its rate are small in any one of four different metrics.
In addition, he presented two examples, one that is concerned with the control of a Direct Current
(DC) motor through a network and another of a bilateral teleoperation between two robotic systems.

Very recently, Xuetao and Quanxin [3] studied a class of stochastic partial differential equations
with Poisson jumps, which is more realistic for establishing mathematical models and has been widely
applied in many fields. Under reasonable conditions, they not only established the existence and
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uniqueness of the mild solution for the investigated system but proved that the pth moment was
exponentially stable by using fixed point theory. They also proved that the mild solution is almost
surely the pth moment, and, therefore, exponentially stable using the well-known Borel-Cantelli
lemma. In another publication, Xuetao, Quanxin, and Zhangsong [4] discussed the exponential
stability problem of a class of nonlinear hybrid stochastic heat equations (with Markovian switching)
in an infinite state space. Here, the fixed point theory was utilized to discuss the existence, uniqueness,
and pth moment’s exponential stability of the mild solution. Moreover, they acquired the Lyapunov
exponents by combining fixed point theory and the Gronwall inequality. In [5], the authors investigated
the stability problem for this class of new systems since Poisson jumps are considered to fill the
mathematical gap. By using fixed point theory, they first studied the existence and uniqueness of the
solution as well as the pth moment’s exponential stability for the considered system. Then, based on
the well-known Borel-Cantelli lemma, they proved that the solution was almost the pth moment and
exponentially stable.

It is shown in [6], as another application, that the queuing delay involved in the congestion
control algorithm is state-dependent and does not depend on the current time. Then, using an accurate
formulation for buffers, networks with arbitrary topologies are built. At equilibrium, their model
reduces to the widely used set-up. Using this model, the delay derivative is analyzed, and it is proven
that the delay time derivative does not exceed one for the considered topologies. It is then shown
that the considered congestion control algorithm globally stabilizes a delay-free single buffer network.
Finally, using the specific linearization result for systems with state-dependent delays from Cooke
and Huang [7], they showed the local stability of the single bottleneck network. Hartung, Herdman,
and Turi [8] discussed the existence, uniqueness and numerical approximation for neutral equations
with state-dependent delays.

There have been two main foci of mathematical control theory, which, at times, have seemed to
work in entirely different directions. One of these is based on the idea that a good model of the object
to be controlled is available, and one wants to minimize its behavior. For instance, physical principles
and engineering specifications are used in order to calculate the optimal trajectory of a spacecraft that
minimizes total travel time or fuel consumption. The techniques being used here are closely related
to the classical calculus of variations and some areas of optimization; the end result is typically a
preprogrammed flight plan. The other main focus is based on the constraints imposed by uncertainty
about the model or about the environment in which the object operates. The central tool here is the
use of feedback (state-dependent delay) in order to correct for deviations from the desired behavior.
Thus, state-dependent delay systems are very important applicable systems.

The theory of semigroups of bounded linear operators is closely related to the solution of
differential and integro-differential equations in Banach spaces. Using the method of semigroups,
various types of solutions of semilinear evolution equations have been discussed by Pazy [9].
The theory of neutral differential equations in Banach spaces has been studied by several authors [10–15].

The notion of controllability is of great importance in mathematical control theory. It makes it
possible to steer from any initial state of the system to any final state in some finite time using an
admissible control. The concept of controllability plays a major role in finite-dimensional control
theory; thus, it is natural to try to generalize it to infinite dimensions. The controllability of nonlinear
systems, represented by ordinary differential equations in a finite dimensional space, is studied by
means of fixed point principles [16]. This concept has been extended to infinite-dimensional spaces
by applying semigroup theory [9]. Controllability of nonlinear systems, with different types of
nonlinearity, has been studied with the help of fixed point principles [17]. Several authors have studied
the problem of controllability of semilinear and nonlinear systems represented by differential and
integro-differential equations in finite or infinite dimensional Banach spaces [18–21].

The impulsive differential systems can be used to model processes that are subjected to abrupt
changes at certain moments. Examples include population biology, the diffusion of chemicals,
the spread of heat, the radiation of electromagnetic waves, etc. [22–24]. The study of dynamical
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systems with impulsive effects has been an object of investigations [25–28]. It has been extensively
studied under various conditions on the operator A and the nonlinearity f by several authors [29–31].
Chalishajar and Acharya studied controllability of neutral impulsive differential inclusion with
nonlocal conditions [32], (see also [33–36]), Anguraj and Karthikeyan [37] discussed the existence of
solutions for impulsive neutral functional differential equations with nonlocal conditions. Ahmad,
Malar, and Karthikeyan [38] studied nonlocal problems of impulsive integro-differential equations with
a measure of noncompactness. Very recently, Klamka, Babiarz, and Niezabitowaski [39] did the survey
based on Banach fixed point theorem in semilinear controllability problems and studied Schauder’s
fixed-point theorem in approximate controllability problems [40]. In addition, Balasubramaniam and
Tamilalagan [41] studied approximate controllability of fractional neutral stochastic integro-differential
inclusion with infinite delay by using Mainardi’s function and Bohnenblust-Karlin’s fixed point
theorem. They also discussed approximate controllability of fractional stochastic equations driven by
mixed fractional Brownian motion in a Hilber space with Hurst papramenter H ∈ ( 1

2 , 1) (see [42]).
They proved the solvability and optimal controls for fractional stochastic integro differential equations
(see [43]).

Motivated by the above-mentioned works, we show that a particular class of impulsive neutral
evolution integro-differential systems with state-dependent delay in Banach spaces is controllable
provided that some conditions are satisfied, using the theory of resolvent operators. The system
considered here is untreated in the literature, which is a main motivation of the current work. Here,
we have defined a new phase space for state-dependent infinite delay.

2. Preliminaries

In this section, we recall some relevant definitions, notations, and results that we need in the
sequel. Throughout this paper, (X, ‖ · ‖) is a Banach space and A(t) generates the evolution operator
in X. In addition, A(t), G(t, s), 0 ≤ s ≤ t ≤ b are closed linear operators defined on a common
domain D := D(A(t)), which is dense in X. The notation [D(A(t))] represents the domain of A(t)
endowed with the graph norm. Let (Z, ‖ · ‖) and (W, ‖ · ‖) be Banach spaces. The notation L(Z, W)

represents the Banach space of bounded linear operators from Z onto W endowed with the uniform
operator topology, and we abbreviate this notation to L(Z) when Z = W. In this paper, we establish
the controllability of impulsive neutral evolution integro-differential equations with state-dependent
delay described by

d
dt

[
x(t)−

∫ t
−∞ C(t, s)x(s)ds

]
= A(t)x(t) +

∫ t
−∞ G(t, s)x(s)ds + Bu(t)

+g
(
t, xρ(t,xt),

∫ t
0 k1(t, s, xρ(s,xs))ds

)
, t ∈ I, t 6= tk,

(1)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, ...., m, (2)

x0 = φ ∈ Bh, (3)

where the unknown x(·) takes values in a Banach space X and the control function u(·) ∈ L2(I, U),
a Banach space of admissible control functions with U as a Banach space. Furthermore, B is a bounded
linear operator from U to X. C(t, s), for 0 ≤ s ≤ t ≤ b, is a bounded linear operator on X, I is
an interval of the form [0, b]; 0 < t1 < t2 < ... < tk < ... < b are prefixed numbers. The history
xt : (−∞, 0] → X given by xt(θ) = x(t + θ) belongs to some abstract phase space Bh defined
axiomatically with g : [0, b]×Bh × X → X, ρ : [0, b]×Bh → (−∞, b], x(t−k ) ∈ X and Ik : X → X are
appropriate functions. The symbol ∆ξ(t) represents the jump of the function ξ at t, which is defined
by ∆ξ(t) = ξ(t+)− ξ(t−).

To obtain our results, we assume that the abstract impulsive integro-differential system.
System (1)–(3) has an associated resolvent operator of bounded linear operatorsR(t, s) on X.

Consider the space

PC :=
{

x : (−∞, b]→ X such that x(tk) and x(t−k ) exist with x(tk) = x(t−k )
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x(t) = φ(t) for t ∈ (−∞, b], xk ∈ C(Ik, X), k = 1, 2, ..., m
}

.

Definition 1. A resolvent operator of the problems (1)–(3) is a bounded operator-valued function R(t, s),
0 ≤ s ≤ t ≤ b on X, the space of bounded linear operators on X, having the following properties:

(a) R(t, t) = Id, for every t ∈ [0, b] and R(t, .) ∈ PC([0, t], X),R(., s) ∈ PC([s, b], X), for every
x ∈ X, t ∈ [0, b] and s ∈ [0, b]. ‖R(t, s)‖ ≤ Meβ(t−s), t, s ∈ I, for some constants M and β.

(b) For x ∈ D(A),R(t, s)x ∈ PC([0, ∞), [D(A)]) ∩ PC ′((0, ∞), X).
(c) For each x ∈ X,R(t, s)x is continuously differentiable in s ∈ I and

∂R
∂s

(t, s)x = −R(t, s)A(s)x−
∫ t

s
R(t, τ)G(τ, s)xdτ.

(d) For each x ∈ X and s ∈ I,R(t, s)x is continuously differentiable in t ∈ [s, b] and

∂R
∂t

(t, s)x = A(t)R(t, s)x +
∫ t

s
G(τ, s)R(t, τ)xdτ,

with ∂R
∂s and ∂R

∂t strongly continuous on 0 ≤ s ≤ t ≤ b.

Here,R(t, s) can be extracted from the evolution operator of the generator A(t). We need to use
Sadovskii’s fixed point theorem as stated below (see [44]).

Lemma 1 (Sadovskii’s Fixed Point Theorem). Let N be the condensing operator on a Banach space X.
If N(S) ⊂ S for a convex, closed and bounded set S of X, then N has a fixed point in S.

Remark 1. Sadovskii’s fixed point theorem is important for studying the stability of the given system. However,
we have not discussed the stability, as it is a separate problem to study.

In this paper, we present the abstract phase space Bh. Assume that h : (−∞, 0] → (0, ∞) be a
continuous function with l =

∫ 0
−∞ h(s)ds < +∞. Define,

Bh := {φ : (−∞, 0]→ X such that, for any r > 0, φ(θ) is bounded and a measurable

function on [−r, 0] and
∫ 0

−∞
h(s) sups≤θ≤0‖φ(θ)‖ds < +∞}.

Here, Bh is endowed with the norm

‖φ‖Bh =
∫ 0

−∞
h(s) sup

s≤θ≤0
‖φ(θ)‖ds, ∀φ ∈ Bh.

Then, it is easy to show that (Bh, ‖ · ‖Bh) is a Banach space.

Lemma 2. Suppose y ∈ Bh; then, for each t > 0, yt ∈ Bh. Moreover,

l‖y(t)‖ ≤ ‖yt‖Bh ≤ l sup
0≤s≤t

‖y(s)‖+ ‖y0‖Bh ,

where l :=
∫ 0
−∞ h(s)ds < +∞.
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Proof. For any t ∈ [0, b], it is easy to see that yt is bounded and measurable on [−a, 0] for a > 0, and

‖yt‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖yt(θ)‖ds

=
∫ −t

−∞
h(s) sup

θ∈[s,0]
‖y(t + θ)‖ds +

∫ 0

−t
h(s) sup

θ∈[s,0]
‖y(t + θ)‖ds

=
∫ −t

−∞
h(s) sup

θ1∈[t+s,t]
‖y(θ1)‖ds +

∫ 0

−t
h(s) sup

θ1∈[t+s,t]
‖y(θ1)‖ds

≤
∫ −t

−∞
h(s)

[
sup

θ1∈[t+s,0]
‖y(θ1)‖+ sup

θ1∈[0,t]
‖y(θ1)‖

]
ds +

∫ 0

−t
h(s) sup

θ1∈[0,t]
‖y(θ1)‖ds

=
∫ −t

−∞
h(s) sup

θ1∈[t+s,0]
‖y(θ1)‖ds +

∫ 0

−∞
h(s)ds. sup

s∈[0,t]
‖y(s)‖

≤
∫ −t

−∞
h(s) sup

θ1∈[s,0]
‖y(θ1)‖ds + l sup

s∈[0,t]
‖y(s)‖

≤
∫ 0

−∞
h(s) sup

θ1∈[s,0]
‖y(θ1)‖ds + l sup

s∈[0,t]
‖y(s)‖

=
∫ 0

−∞
h(s) sup

θ1∈[s,0]
‖y0(θ1)‖ds + l sup

s∈[0,t]
‖y(s)‖

= l sup
s∈[0,t]

‖y(s)‖+ ‖y0‖Bh .

Since φ ∈ Bh, then yt ∈ Bh. Moreover,

‖yt‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖yt(θ)‖ds ≥ ‖y(t)‖

∫ 0

−∞
h(s)ds = l‖y(t)‖.

The proof is complete.

In this work, we employ an axiomatic definition for the phase space Bh, which is similar to those
introduced in [45]. More precisely, Bh will be a linear space of functions mapping (−∞, 0] into X
endowed with the seminorm ‖ · ‖Bh and satisfying the following axioms:

(A1) If x : (−∞, b] → X, b > 0, is continuous on [0, b] and x0 ∈ Bh, then, for every t ∈ [0, b],
the following conditions hold:

(a) xt is in Bh.
(b) ‖x(t)‖ ≤ H‖xt‖Bh .
(c) ‖xt‖Bh ≤ K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t} + M(t)‖x0‖Bh , where H > 0 is constant;

K, M : [0, ∞) → [1, ∞), K(·) is continuous, M(·) is locally bonded and H, K(·), M(·) are
independent of x(·).

(A2) The space Bh is complete.

Here, we consider some examples of phase spaces.

Example 1 (The phase space PCρ(X)). A function ψ : (−∞, 0] → X is said to be normalized piecewise
continuous if ψ is left continuous and restriction of ψ to any interval [−r, 0] is piecewise continuous.
Let g : (−∞, 0]→ [1, ∞) be a continuous nondecreasing function that satisfies the conditions (g− 1), (g− 2)
in the terminology of [45]. Next, we slightly modify the definition of phase spaces Cg and C0

g in [45].
We denote by PCg(X) the space formed by normalized piecewiese continuous functions ψ such that ψ/g
is bounded on (−∞, 0] and by PC0

g(X), the subspace of PCg(X) consisting of function ψ such that
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[ψ(θ)/g(θ)] → 0 as θ → −∞. It is easy to see that Bh = PCg(X) and Bh = PC0
g(X) endowed with

the norm ‖y‖Bh := supθ∈(−∞,0][‖ψ(θ)‖/g(θ)] are phase spaces in the sense defined above.

Example 2 (The phase space PCr × Lp(g, X)). Let r ≥ 0, 1 ≤ p < ∞ and let g : (−∞,−r] → R be a
nonneagative measurable function that satisfies the condition (g− 5), (g− 6) in the terminology of [45]. Briefly,
this means that ρ is locally integrable and there exists a non-negative, locally bounded function γ on (−∞, 0]
such that g(Ψ + θ) ≤ γ(Ψ)ρ(θ), ∀ Ψ ≤ 0 and θ ∈ (−∞,−r)\NΨ, where NΨ ⊆ (−∞,−r) is a set with
Lebesgue measure zero. The space Bh = PCr × Lp(g, X) consists of all classes of Lebesgue-measurable functions
ψ : (−∞, 0] → X such that ψ|[−r,0] ∈ PC([−r, 0], X) and ρ‖ψ‖p is Lebesgue integrable on (−∞,−r).
The seminorm in this space is defined by

‖ψ‖Bh = sup
{
‖ψ(θ)‖ : −r ≤ θ ≤ 0

}
+
(∫ −r

−∞
g(θ)‖ψ(θ)‖pdθ

) 1
p
.

Proceeding as in the proof of [[45], Theorem 1.3.8], it follows that Bh is a space that satisfies axioms
(A1)–(A3). Moreover, when r = 0, this space coincides with C0 × Lp(g, X), and if, in addition, p = 2, we can

take H = 1, M(t)γ(−t)
1
2 and K(t) = 1 +

(∫ 0

−t
g(θ)dθ

) 1
2

for t ≥ 0.

Remark 2. Let ψ ∈ Bh and t ≤ 0. The notation ψt represents the function defined by ψt(θ) = ψ(t + θ).
Consequently, if the function x(·) in axiom (A1) is such that x0 = ψ, then xt = ψt. We observe that ψt is
well-defined for t < 0 since the domain of ψ is (−∞, 0]. We also note that, in general, ψt /∈ Bh; consider,
for example, functions of the type xµ(t) = (t− µ)−αK(µ,0], µ > 0, where K(µ,0] is the characteristic function of
(µ, 0], µ < −r and αp ∈ (0, 1), in the space PCr × Lp(g, X).

3. A Controllability Result for a Neutral System

In this section, we study the controllability results for the system (1)–(3). Throughout this section,
M1 is a positive constant such that ‖R(t, s)‖ ≤ M1, for every t ∈ I. In the rest of this work, ϕ is a fixed
function in Bh and fi : [0, b]→ X, i = 1, 2 will be the functions defined by f1(t) =

∫ 0
−∞ C(t, s)ϕ(s)ds

and f2(t) =
∫ 0
−∞ G(t, s)ϕ(s)ds. We adopt the notation of mild solutions for (1)–(3) from the one given

in [46].

Definition 2. A function x : (−∞, b] → X is called a mild solution of the impulsive neutral evolution
integro-differential system (1)–(3) on [0,b] iff x0 = ϕ, xρ(s,xs) ∈ Bh, f1 is differentiable on [0,b],
f ′1, f2 ∈ L1([0, b], X) and satisfies the following integral equation:

x(t) = R(t, 0)ϕ(0) +
∫ t

0
R(t, s)

[
f ′1(s) + f2(s)

]
ds

+
∫ t

0
R(t, s)

[
Bu(s) + g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

)]
ds (4)

+ ∑
0<tk<t

R(t, tk)Ik(x(t−k )), t ∈ [0, b].

Definition 3. The system (1)–(3) is said to be controllable on the interval I iff, for every x0, xb ∈ X, there exists
a control u ∈ L2(I, U) such that the mild solution x(t) of (1)–(3) satisfies x(0) = x0 and x(b) = xb [17].

To establish our controllability result, we introduce the following assumptions:

(H1) The function g : [0, b]×Bh ×Bh → X satisfies the following conditions:

(i) For each t ∈ I, the function g(t, ·, ·) : Bh ×Bh → X is continuous.
(ii) For every ψ ∈ Bh, the function g(·, ψ1, ψ2) : I → X is strongly measurable.
(iii) There exists pg ∈ PC([0, b], [0, ∞)) and a continuous non-decreasing function

Ωg : [0, ∞) → (0, ∞) such that
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‖g(t, ψ1, ψ2)‖ ≤ pg(t)Ωg(‖ψ1‖Bh + ‖ψ2‖Bh), for all (t, ψ1, ψ2) ∈ [0, b]×Bh ×Bh.

(H2) (i) The function g is continuous, and there exists a function Ng ∈ L1([0, b], R+) such that

‖g(t, ψ1, η1)− g(t, ψ2, η2)‖ ≤ Ng(t)
[
‖ψ1−ψ2‖+ ‖η1− η2‖

]
, t ∈ [0, b], ψ1, ψ2, η1, η2 ∈ Bh.

(ii) The function g : I ×Bh × X → X is compact.

(H3) The linear operator W : L2(I, U) → X defined by Wu =
∫ b

0 R(b, s)Bu(s)ds has an induced
inverse operator W−1 that takes values in L2(I, U)/ ker W, and there exists a constant K1 such
that ‖BW−1‖ ≤ K1.

(H4) (i) ρ : I ×Bh → X satisfies the Caratheodory condition, which is ρ(t, xt) is measurable with
respect to t and continuous with respect to xt.

(ii) The function t→ ϕt is well-defined and continuous from the set
R(ρ) = {ρ(s, ψ) : (s, ψ) ∈ I ×Bh, ρ(s, ψ) ≤ 0} into Bh, and there exists a continuous and
bounded function Jϕ : R(ρ)→ (0, ∞) such that ‖ϕt‖ ≤ Jϕ(t)‖ϕ‖Bh , for every t ∈ R(⊂).

(H5) For Ik : Bh → X, there exist constants Lk > 0 such that

‖Ik(ψ1)− Ik(ψ2)‖ ≤ Lk‖ψ1 − ψ2‖Bh , ψ1, ψ2 ∈ Bh.

In addition, there exists k > 0 such that ‖Ik(x)‖ ≤ L for all x ∈ X and k = 1, 2, ..., m.

(H6) For k1(t, s, xρ(s,xs)) : I × I ×Bh → X, there exists a function Lg ∈ L1(I, R+) such that

‖k1(t, s, φ1)− k1(t, s, φ2)‖ ≤ Lg(t)‖φ1 − φ2‖, φ1, φ2 ∈ Bh.

(H7) There exists a positive constant Λ defined by

Λ = M1

[(
1 + bK1

)
K̃b‖Ng‖L1([0,b])

(
1 + Lgb

)
+ ∑m

k=1 Lk

]
< 1.

Remark 3. In the remainder of this section, M̃b and K̃b are constants such that M̃b = sups∈[0,b] M(s) and
K̃b = sups∈[0,b] K(s).

Lemma 3. Let x : (−∞, b] → X be continuous on [0,b] and x0 = φ. If (H4) holds, then ‖xs‖Bh ≤
(M̃b + Jϕ)‖ϕ‖Bh + K̃b sup {‖x(θ)‖ : θ ∈ [0, max{0, s}]}, s ∈ R(ρ) ∪ I, where Jϕ = supt∈R(ρ) Jϕ(t) [47].

Theorem 1. If the assumptions (H1)–(H4) are satisfied, f1 ∈W1,1([0, b], X) and f2 ∈ L1([0, b], X), then the
system (1)–(3) is controllable on I provided

M1

[
K̃b(1 + bK1 + bLg) lim

ζ→∞
inf

Ωg(ζ)

ζ

∫ b

0
pg(s)ds + L

]
< 1.

Proof. Using assumption (H3) for an arbitrary function x(·), we define the control

u(t) = W−1
[

xb −R(b, 0)ϕ(0)−
∫ b

0 R(b, s)
[

f ′1(s) + f2(s)
]
ds−

∫ b
0 R(b, s)

g
(
s, xρ(s,xs),

∫ s
0 k1(s, τ, xρ(τ,xτ))dτ

)
−∑m

k=1R(b, tk)Ik(x(t−k ))
]
(t).

(5)

Consider the space S(b) = {x ∈ PC(I, X) : x(0) = φ(0) ∈ Bh} endowed with the uniform
convergence topology. For any x ∈ S(b), ‖x‖b = ‖x0‖Bh + sups∈[0,b]‖x(s)‖ = sups∈[0,b]‖x(s)‖.
Thus, (S(b), ‖.‖b) is a Banach space. For each positive number r, set

Br := {x ∈ PC : ‖x‖ ≤ r}.

It is clear that Br is a bounded, closed, convex set in S(b).
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Consider the map Γ : S(b)→ S(b) by Γx(σ) = φ(σ), for σ < 0, and for all t ∈ I,

Γx(t) = R(t, 0)ϕ(0)−
∫ t

0
R(t, s)

[
f ′1(s) + f2(s)

]
ds +

∫ t

0
R(t, s)BW−1

[
xb −R(b, 0)ϕ(0)

−
∫ b

0
R(b, s)

[
f ′1(s) + f2(s)

]
ds−

∫ b

0
R(b, s)g

(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ

)
−

m

∑
k=1
R(b, tk)Ik(x̄(t−k ))

]
(s)ds +

∫ t

0
R(t, s)g

(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτds

+ ∑
0<tk<t

R(t, tk)Ik(x̄(t−k )),

where x̄ : (−∞, b] → X is such that x̄0 = φ and x̄ = x on I. From (A1), the strong continuity of
(R(t, s))t≥s, and our assumption on φ; we infer that Γx(·) is well-defined and continuous.

It is easy to see that ΓS(b) ⊂ S(b). We prove that there exists r > 0 such that Γ(Br(ϕ|I ,S(b)) ⊆
Br(ϕ|I ,S(b)). If this property fails, then for every r > 0, ∃ xr ∈ Br(ϕ|I ,S(b)) and tr ∈ I such that
r < ‖Γxr(tr)− ϕ(0)‖. Then, from Lemma 3, we find that

r < ‖Γxr(tr)− ϕ(0)‖ ≤ ‖R(t, 0)ϕ(0)− ϕ(0)‖+
∫ tr

0
‖R(t, s)‖‖ f ′1(s) + f2(s)‖ds

+
∫ tr

0
‖R(t, s)‖‖BW−1‖

[
‖xb‖+ ‖R(b, 0)ϕ(0)‖+

∫ b

0
‖R(b, s)‖‖ f ′1(s) + f2(s)‖ds

+
∫ tr

0
‖R(b, s)‖‖g

(
s, x̄r

ρ(s,x̄r s),
∫ s

0
k1(s, τ, x̄r

ρ(τ,x̄r
τ))dτ)‖

+
m

∑
k=1
‖R(b, tk)‖‖Ik(x(t−k ))

]
(s)ds

+
∫ tr

0
‖R(t, s)‖‖g

(
s, x̄r

ρ(s,x̄r s),
∫ s

0
k1(s, τ, x̄r

ρ(τ,x̄r
τ))dτ)‖

]
ds

+ ∑
0<tk<t

‖R(t, tk)‖‖Ik(x(t−k ))‖

≤ [M1 + 1]H‖ϕ‖Bh + M1‖ f ′1(s) + f2(s)‖L1([0,b],X)

+ bM1K1

[
‖xb‖+ [M1 + 1]‖Hϕ‖Bh + M1‖ f ′1(s) + f2(s)‖L1([0,b],X)

+ M1Ωg[1 + bLg]
[
(M̃b + Jϕ)‖ϕ‖Bh + K̃b(r + ‖ϕ(0)‖)

] ∫ b

0
pg(s)ds

+ M1L
]
+ M1Ωg[1 + bLg]

[
(M̃b + Jϕ)‖ϕ‖Bh + K̃b(r + ‖ϕ(0)‖)

] ∫ b

0
pg(s)ds

+ M1L.

Therefore,

1 ≤ M1

[
K̃b(1 + bK1 + bLg) lim

ζ→∞
inf

Ωg(ζ)

ζ

∫ b

0
pg(s)ds + L

]
,

which contradicts our assumption.
Let r > 0 be such that Γ(Br(φ|I ,S(b))) ⊂ Br(ϕ|I ,S(b)), r∗ is the number defined by

r∗ = [1 + bLg](M̃b + Jϕ)‖ϕ‖Bh + K̃b(r + ‖ϕ(0)‖) and r∗∗ = Ωg(r∗)
∫ b

0 pg(s)ds.
To prove that Γ is a condensing operator, we introduce the decomposition Γ = Γ1 + Γ2, where
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Γ1x(t) = R(t, 0)ϕ(0) +
∫ t

0
R(t, s)

[
f ′1(s) + f2(s)

]
ds

+
∫ t

0
R(t, s)BW−1

[
xb −R(b, 0)ϕ(0)−

∫ b

0
R(b, s)

[
f ′1(s) + f2(s)

]
ds

+
∫ b

0
R(b, s)g

(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ)ds−

m

∑
k=1
R(b, tk)Ik(x̄(t−k ))

]
(s)ds

Γ2x(t) =
∫ t

0

[
R(t, s)g

(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ

)]
ds + ∑

0<tk<t
R(t, tk)Ik(x̄(t−k )), t ∈ I.

On the other hand, for x, y ∈ Br(φ|I ,S(b)) and t ∈ [0, b], we see that

‖Γ1x(t)− Γ1y(t)‖ ≤ M1

∫ t

0
Ng(s)

[
‖x̄r

ρ(s,x̄r s) − ȳr
ρ(s,ȳr

s)
‖Bh + Lgb‖x̄r

ρ(s,x̄r s) − ȳr
ρ(s,ȳr

s)
‖Bh

]
ds

+ M1K1

∫ t

0
Kg(s)

[
‖x̄r

ρ(s,x̄r s) − ȳr
ρ(s,ȳr

s)
‖Bh

+ Lgb‖x̄r
ρ(s,x̄r s) − ȳr

ρ(s,ȳr
s)
‖Bh

]
ds +

m

∑
k=1

M1‖ Ik(x̄(t−k )− Ik(ȳ(t−k )‖Bh

≤ M1

∫ t

0
Ng(s)

[
1 + Lgb

]
‖x̄r

ρ(s,x̄r s) − ȳr
ρ(s,ȳr

s)
‖Bh ds

+ M1K1

∫ t

0
Kg(s)

[
1 + Lgb

]
‖x̄r

ρ(s,x̄r s) − ȳr
ρ(s,ȳr

s)
‖Bh ds

+
m

∑
k=1

M1‖ Ik(x̄(t−k )− Ik(ȳ(t−k )‖Bh

≤ M1
[
1 + bK1

]
K̃b

∫ t

0
Ng(s)

[
1 + Lg(s)b

]
sup0≤ζ≤s‖x(ζ)− y(ζ)‖ds

+ M1

m

∑
k=1

Lksup0≤ζ≤s‖x(ζ)− y(ζ)‖

≤
[

M1
[
1 + bK1

]
K̃b

∫ t

0
Ng(s)

[
1 + Lg(s)b

]
ds

+ M1

m

∑
k=1

Lk

]
sup0≤ζ≤s‖x(ζ)− y(ζ)‖

≤ Λ‖x(ζ)− y(ζ)‖,

where Λ = M1

[(
1 + bK1

)
K̃b‖Ng‖L1([0,b])

(
1 + Lgb

)
+ ∑m

k=1 Lk

]
< 1, which implies that Γ1(·) is a

contraction to Br(φ|I ,S(b)).
Now, we prove that Γ2(·) is completely continuous from Br(φ|I ,S(b)) into Br(φ|I ,S(b)).
First, we prove that the set Γ2(Br(φ|I ,S(b))) is relatively compact on X, for every t ∈ [0, b].
The case t = 0 is trivial. Let 0 < ε < t < b. From the assumptions, we can fix the

numbers 0 = t0 < t1 < . . . tn = t − ε such that ‖R(t, s) − R(t, s′)‖ ≤ ε if s, s′ ∈ [ti, ti+1],
for some i = 0, 1, 2, . . . , n− 1. Let x ∈ Br(φ|I ,S(b)). From the mean value theorem for the Bochner
integral (see [48]), we see that
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Γ2(t) =
n

∑
i=1

∫ ti

ti−1

R(t, ti)g
(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ

)
ds

+
n

∑
i=1

∫ ti

ti−1

(
R(t, s)−R(t, ti)

)
g
(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ

)
ds

+
∫ t

tn
R(t, s)g

(
s, x̄ρ(s,x̄s),

∫ s

0
k1(s, τ, x̄ρ(τ,x̄τ))dτ

)
ds + ∑

0<tk<t
R(t, tk)Ik(x̄(t−k )),

∈
n

∑
i=1

(ti − ti−1)co({R(t, ti)g(s, ψ1, ψ2) : ψ1, ψ2 ∈ Br(0,Bh), s ∈ [0, b]})

+ εr∗∗ + M1Ωg(r∗)
∫ t

t−ε
pg(s)ds + ∑

0<tk<t
co({R(t, tk)ψk(x) : ψ ∈ Br(0,Bh)

∈
n

∑
i=1

(ti − ti−1)co({R(t, ti)g(s, ψ1, ψ2) : ψ1, ψ2 ∈ Br(0,Bh), s ∈ [0, b]})

+ εBr∗∗(0, X) + Cε + ∑
0<tk<t

co({R(t, tk)ψk(x) : ψ ∈ Br(0,Bh),

where dia (Cε)→ 0 when ε→ 0. This proves that Γ2(Br(φ|I ,S(b)))(t) is totally bounded and hence
relatively compact in X, for every t ∈ [0, b].

Second, we prove that the set Γ2(Br(φ|I ,S(b))) is equicontinuous on [0, b].
Let 0 < ε < t < b and 0 < δ < ε be such that ‖R(t, s)−R(t, s′)‖ ≤ ε, for every s, s′ ∈ [ε, b] with

|s− s′| ≤ δ. Under these conditions, x ∈ Br(φ|I ,S(b)) and 0 < h ≤ δ with t + h ∈ [0, b]. We get

‖Γ2x(t + h)− Γ2x(t)‖ =
∥∥∥ ∫ t+h

0

[
R(t + h, s)g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

]
ds

+ ∑
0<tk<t+h

R(t + h, tk)Ik(x(t−k ))

−
[ ∫ t

0

[
R(t, s)g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

]
ds

+ ∑
0<tk<t

R(t, tk)Ik(x(t−k ))
]∥∥∥

≤
∥∥∥ ∫ t+h

0

[
R(t + h, s)g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

]
ds

−
∫ t

0

[
R(t, s)g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

]
ds
∥∥∥

+
∥∥∥ ∑

0<tk<t+h
R(t + h, tk)Ik(x(t−k ))− ∑

0<tk<t
R(t, tk)Ik(x(t−k ))

]∥∥∥
≤ I1 + I2,

where

I1 ≤
∫ t−ε

0

∥∥∥[R(t + h, s)−R(t, s)
]
g
(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ)dτ

)∥∥∥ds

+
∫ t

t−ε

∥∥∥[R(t + h, s)−R(t, s)
]
g
(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

)∥∥∥ds

+
∫ t+h

t

∥∥∥R(t + h, s)g
(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

)∥∥∥ds

≤ εr∗∗ + 2M1Ωg(r∗)
∫ t

t−ε
pg(s)ds + M1Ωg(r∗)

∫ t+h

t
pg(s)ds,
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I2 ≤
∥∥∥ ∑

0<tk<t+h
R(t + h, tk)Ik(x(t−k ))− ∑

0<tk<t
R(t + h, tk)Ik(x(t−k )

∥∥∥
+
∥∥∥ ∑

0<tk<t
R(t + h, tk)Ik(x(t−k )− ∑

0<tk<t
R(t, tk)Ik(x(t−k ))

]∥∥∥
≤
∥∥∥ ∑

t<tk<t+h
R(t + h, tk)Ik(x(t−k ))

∥∥∥+ ∑
0<tk<t

∥∥∥R(t + h, tk)Ik(x(t−k )−R(t, tk)Ik(x(t−k ))
∥∥∥,

which shows that the set of functions Γ2(Br(φ|I ,S(b))) is right-equicontinuous at t ∈ (0, b].
A similar procedure proves the right-equicontinuity at zero and left-equicontinuity at t ∈ (0, b].
Thus, Γ2(Br(φ|I ,S(b))) is equicontinuous on I.

Finally, we show that the map Γ2(·) is continuous on Br(φ|I ,S(b)).
Let (xn)n∈N be a sequence in Br(φ|I ,S(b)) and x ∈ Br(φ|I ,S(b)) such that xn → x in S(b).

At first, we study the convergence of sequences (x̄n
ρ(s,x̄n

s )
)n∈N , s ∈ I.

If s ∈ I is such that ρ(s, x̄s) > 0, we can fix N ∈ N such that ρ(s, x̄ns) > 0, for every n > N
( by assumption (H4)(i)). In this case, for n > N, we see that∥∥∥xn

ρ(s,xn
s )
− xρ(s,xs)

∥∥∥
Bh

+
∥∥∥ ∫ s

0
k1(s, τ, xn

ρ(τ,xn
τ)dτ −

∫ s

0
k1(s, τ, xρ(τ,xτ)dτ

∥∥∥
Bh

= I3 + I4,

where

I3 ≤
∥∥∥xn

ρ(s,xn
s )
− xρ(s,xn

s )

∥∥∥
Bh

+
∥∥∥xρ(s,xn

s )
− xρ(s,xs))

∥∥∥
Bh

≤ K̃b

∥∥∥xn(θ)− x(θ)
∥∥∥

ρ(s,xn
s )
+
∥∥∥xρ(s,xn

s )
− xρ(s,xs))

∥∥∥
Bh

≤ K̃b

∥∥∥xn − x
∥∥∥

b
+
∥∥∥xρ(s,xn

s )
− xρ(s,xs))

∥∥∥
Bh

,

and

I4 ≤
∫ s

0

∥∥∥k(s, τ, xn
ρ(τ,xn

τ) − k(s, τ, xρ(τ,xτ)

∥∥∥
Bh

dτ

≤ bLg(s)
∥∥∥xn

ρ(s,xns) − xρ(s,xs)

∥∥∥
Bh

≤ bLg(s)
[
K̃b

∥∥∥xn − x
∥∥∥

b
+
∥∥∥xρ(s,xn

s )
− xρ(s,xs))

∥∥∥
Bh

]
,

which proves that (xn
ρ(s,xn

s )
) → (xρ(s,xs)), and

∫ s
0 k1(s, τ, xn

ρ(τ,xn
τ))dτ →

∫ s
0 k1(s, τ, xρ(τ,xτ))dτ in Bh

as n → ∞, for every s ∈ I such that ρ(s, x̄s) > 0. Similarly, if ρ(s, x̄s) < 0 and N ∈ N such that
ρ(s, x̄n

s ) < 0 , for every n > N, we get∥∥∥xn
ρ(s,xn

s )
− xρ(s,xs)

∥∥∥
Bh

=
∥∥∥ϕρ(s,xn

s )
− ϕρ(s,xs)

∥∥∥
Bh

,

and ∥∥∥ ∫ s

0
k1(s, τ, xn

ρ(τ,xn
τ)dτ −

∫ s

0
k1(s, τ, xρ(τ,xτ)dτ

∥∥∥
Bh

= bLg(s)
∥∥∥ϕρ(s,xn

s )
− ϕρ(s,xs)

∥∥∥
Bh

,

which also shows that (xn
ρ(s,xn

s )
) → (xρ(s,xs)) and

∫ s
0 k1(s, τ, xn

ρ(τ,xn
τ))dτ →

∫ s
0 k1(s, τ, xρ(τ,xτ))dτ in

Bh as n→ ∞, for every s ∈ I such that ρ(s, x̄s) < 0. Combining the previous arguments, we can prove
that (xn

ρ(s,xn
s )
)→ ϕ, for every s ∈ I such that ρ(s, xs) = 0.

From previous remarks,

g
(
s, xn

ρ(s,xn
s )

,
∫ s

0
k1(s, τ, xn

ρ(τ,xn
τ))dτ

)
→ g

(
s, xρ(s,xs),

∫ s

0
k1(s, τ, xρ(τ,xτ))dτ

)
, ∀ s ∈ [0, b].
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Now, assumption (H1) and the Lebesgue Dominated Convergence Theorem permit us to assert
that Γxn → Γx in S(b). Thus, Γ(·) is continuous, which completes the proof that Γ2(·) is completely
continuous. Those arguments enable us to conclude that Γ = Γ1 + Γ2 is a condensing map on S(b).
By Lemma 1, there exists a fixed point x(·) for Γ on S(b). Obviously, x(·) is a mild solution of the
system (1)–(3) satisfying x(b) = xb.

4. Example

Consider the partial integro-differential equation:

∂
∂t

[
z(t, ξ) +

∫ t
−∞(t− s)βe−η(t−s)z(s, ξ)ds

]
= ∂2z(t,ξ)

∂ξ2 + a0(t, ξ)z(t, ξ) +
∫ t
−∞ e−γ(t−s) ∂2z(s,ξ)

∂ξ2 ds + µ(t, ξ)

+
∫ t
−∞ a1(s− t)z

(
s− ρ1(t)ρ2

( ∫ π
0 a2(θ)|z(s, θ)|2dθ, ξ

))
ds,

+
∫ t
−∞

∫ s
0 k1(s, ξ, τ − s)z

(
τ − ρ1(s)ρ2

( ∫ π
0 k2(θ)|z(τ, θ)|2dθ, ξ

))
dτds,

(6)

z(t, 0) = z(t, π) = 0, (7)

z(τ, ξ) = ϕ(τ, π), τ ≤ 0, 0 ≤ ξ ≤ π, (8)

∆|t=tk = Ik(z(ξ)) = (ζk|z(ξ)|+ tk)
−1, z ∈ X, 1 ≤ k ≤ m, (9)

where a0(t, ξ) is continuous on 0 ≤ ξ ≤ π, 0 ≤ t ≤ b and the constant ζi is small, 0 < t1 < t2 <

... < tm. In this system, β ∈ (0, 1), η, γ are positive numbers, ai : R→ R, ρi : [0, ∞) → [0, ∞), i = 1, 2
are continuous, and the function a2(·) is positive. Moreover, we have identified ϕ(θ)(ξ) = ϕ(θ, ξ).
Put x(t) = z(t, ξ) and u(t) = µ(t, ξ), where µ(t, ξ) : I × [0, π]→ [0, π] is continuous and

g(t, xρ(t,xt), H(xρ(t,xt)) =
∫ t

−∞
a1(s− t)z

(
s− ρ1(t)ρ2

( ∫ π

0
a2(θ)|z(s, θ)|2dθ, ξ

))
ds

+ H(xρ(t,xt)),

where

H(xρ(t,xt)) =
∫ t

−∞

∫ s

0
k1(s, ξ, τ − s)z

(
τ − ρ1(s)ρ2

( ∫ π

0
k2(θ)|z(τ, θ)|2dθ, ξ

))
dτds.

The system (6)–(9) is the abstract forms of (1)–(3). We choose the space X = L2([0, π]) and
Bh = C0 × L2(g, X) (see Example 1 for details). We also consider the operators A, G(t, s) : D(A) ⊂
X → X, 0 ≤ s ≤ t ≤ b, given by Ax = x′′, G(t, s)x = e−γ(t−s)Ax, for x ∈ D(A) := {x ∈ X :
x′′, x(0) = x(π) = 0} and C(t, s) = tβe−η(t−s)x, for x ∈ X. It is well-known that A is the infinitesimal
generator of an analytic semigroup (T(t))t≥0 on X. Furthermore, A has a discrete spectrum with

eigenvalues −n2, n ∈ N, and corresponding normalized eigenfunctions are given by zn(y) =
√

2
π sin ny.

In addition, {zn : n ∈ N} is an orthonormal basis of X, and

T(t)z =
∞

∑
n=1

e−n2t(z, zn)zn,

for z ∈ X and t ≥ 0. In addition, for α ∈ (0, 1), the fractional power (−A)α : D((−A)α) ⊂ X → X of
A is given by

(−A)αz =
∞

∑
n=1

n2α(z, zn)zn,

where D((−A)α) := {z ∈ X : (−A)αz ∈ X}.
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Now, we define operator A(t)z = Az(ξ) + a0(t, ξ)z, z ∈ D(A(t)), t ≥ 0, y ∈ [0, π],
where D(A(t)) = D(A), t ≥ 0. By assuming that ξ → a0(t, ξ) is continuous in t, and there exists ω > 0
such that a0(t, ξ) ≤ −ω for all t ∈ I, ξ ∈ [0, π], it follows that the system

z′(t) = A(t)z(t), t ≥ s,

z(s) = x ∈ X

has an (associated) evolution family (U(t, s))t≥s with U(t, s)y = T(t− s)e
∫ t

s a(τ,x)dτ)y, for y ∈ X and
‖U(t, s)‖ ≤ e−(1+ρ)(t−s), for every t ≥ s.

Under the above conditions, we can represent the system

∂

∂t

[
z(t, ξ) +

∫ t

−∞
(t− s)βe−η(t−s)z(s, ξ)ds

]
=

∂2z(t, ξ)

∂ξ2 + a0(t, ξ)z(t, ξ) +
∫ t

−∞
e−γ(t−s) ∂2z(s, ξ)

∂ξ2 ds + µ(t, ξ), (10)

z(t, 0) = z(t, π) = 0, t ≥ 0, (11)

∆|t=tk = Ik(z(ξ)) = (ζk|z(ξ)|+ tk)
−1, (12)

in the abstract form (1)–(3).
Lemma 4 below is a consequence of [27].

Lemma 4. There exists an operator resolvent for the system (6)–(9). Consider the problem of controllability for
the system (6)–(9). For this, the following conditions are assumed:

(i) The function a1(·) is continuous, and Lg(
∫ 0
−∞

(a1(s))2

g(s) ds)
1
2 < ∞.

(ii) The functions ρi : [0, ∞)→ [0, ∞), i = 1,2 are continuous.
(iii) The functions ϕ, Aϕ belong to Bh, and the expressions

supt∈[0,b][
∫ 0
−∞

(t−τ)2α

g(τ) × e2ητdτ] and (
∫ 0
−∞

e2γτ

g(τ)dτ)
1
2 are finite.

Define the operators g : I ×Bh → X, fi : I → X, i = 1, 2; and Ii : Bh → X, given by

g(t, ψ1, ψ2)(ξ) =
∫ 0

−∞
a1(s)

(
ψ1(s, ξ) + ψ2(s, ξ)

)
ds,

f1(t)(ξ) =
∫ 0

−∞
(t− s)αeω(t−s)ψ(s, ξ)ds,

f2(t)(ξ) =
∫ 0

−∞
eγ(t−s)Aψ(s, ξ)ds,

Ii(z(ξ)) = (ζi|z(ξ)|+ ti)
−1,

ρ(s · ψ) = s− ρ1(s)ρ2

( ∫ π

0
a2(θ)|ψ(0, ξ)

∣∣∣2)dθ,

which are well-defined, then the system (6)–(9) are represented in the abstract forms (1)–(3). Moreover,
g is a bounded linear operator ‖g(·)‖ ≤ Kg. With these choices of g, f1, f2, ρ and B = I, the identity
operator, assume that the linear operator W from L2(J, U)/ ker W into X, defined by

Wu =
∫ b

0
T(b− s)e

∫ b
s a(τ,x)dτµ(s, ·)ds,

has an invertible operator and satisfies the condition (H3).
Furthermore, all of the conditions stated in Theorem 1 are satisfied, and it is possible to choose

a1, a2 and check (5). Hence, by Theorem 1, the system (6)–(9) controllable on I.
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5. Conclusions

This paper contains some controllability results for the impulsive neutral evolution
integro-differential equations with state-dependent delay in Banach spaces using the theory of resolvent
operators and Sadovskii’s fixed point theorem. It is proved that, under some constraints, the first-order
impulsive neutral evolution integro-differential system is exactly controllable. The result shows
that Sadovskii’s fixed point theorem can effectively be used in control problems to obtain sufficient
conditions.

We have considered the deterministic model without considering the noise disturbance, but one
can extend the same problem to stochastic state delay differential equations/inclusions with Markovian
switching or with the Gaussian process. Stability and robust stability of state delay systems are the
future aspects of the current work.
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