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1. Introduction

The Banach contraction principle [1] is one of the most important analytical results and considered
as the main source of metric fixed point theory. It is the most widely applied fixed point result
in many branches of mathematics. This result has been generalized in many different directions.
Subsequently, in 2012, Wordowski [2] introduced the concept of F-contraction which generalized the
Banach contraction principal in many ways. Further, Sgroi et al. [3] obtained a multivalued version of
Wordowski’s result.

On other hand, Chistyakov [4] introduced the concept of modular metric spaces and gave some
fundamental results on this topic. The fixed point property in this space has been defined and
investigated by many authors [5–9]. It is important to note that in the classical Banach contraction,
the contractive condition of the mapping implies that any orbit is bounded (see [10]). In case of
modular metric space, due to failure of triangle inequality, it is not always true that the contractive
condition of the mapping implies the boundedness of the orbit. Therefore, it is very important to
handle this obstacle when dealing with a fixed point in modular metric space. Keeping the above facts
in mind, in this paper, we define multivalued F-contraction in the setting of modular metric spaces
with specific modular situations. Our result is a partial extension of Nadler [11], Wardowski [2] and
Sgroi [3] to modular metric spaces. We also give an application of our main results to establish the
existence of the solution of a non-linear integral equation.

2. Preliminaries

Throughout the article N, R+ and R will denote the set of natural numbers, positive real numbers
and real numbers respectively.
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Let X be a nonempty set. Throughout this paper, for a function w : (0, ∞)× X × X → [0, ∞],
we write

wλ(x, y) = w(λ, x, y)

for all λ > 0 and x, y ∈ X.

Definition 1. [4,5] Let X be a nonempty set. A function w : (0, ∞)× X× X → [0, ∞] is said to be a metric
modular on X, it satisfies, for all x, y, z ∈ X the following conditions:

(i) wλ(x, y) = 0 for all λ > 0 if and only if x = y;
(ii) wλ(x, y) = wλ(y, x) for all λ > 0;
(iii) wλ+µ(x, y) ≤ wλ(x, z) + wµ(z, y) for all λ, µ > 0.

If instead of (i) we have only the condition (i
′
)

wλ(x, x) = 0 for all λ > 0, x ∈ X

then w is said to be a pseudomodular (metric) on X. A modular metric w on X is said to be regular if
the following weaker version of (i) is satisfied:

x = y if and only if wλ(x, y) = 0 for some λ > 0

This condition play a significant role to insure the existence of fixed point for contractive type
mapping in the setting of modular metric.

Example 2. Let X = R and w is defined by wλ(x, y) = ∞ if λ < 1, and wλ(x, y) = 1
λ |x− y| if λ ≥ 1, it is

easy to verify that w is regular but not metric modular on X.

Finally, w is said to be convex if, for λ, µ > 0 and x, y, z ∈ X, it satisfies the inequality

wλ+µ(x, y) ≤ λ

λ + µ
wλ(x, z) +

µ

λ + µ
wµ(z, y)

Note that for a metric pseudomodular w on a set X, and any x, y ∈ X, the function λ −→ wλ(x, y)
is nonincreasing on (0, ∞). Indeed, if 0 < µ < λ, then

wλ(x, y) ≤ wλ−µ(x, x) + wµ(x, y) = wµ(x, y)

Definition 3. [4,5] Let w be a pseudomodular on X. Fix x0 ∈ X. The set

Xw = Xw(x0) = {x ∈ X : wλ(x, x0) −→ 0 as λ −→ ∞}

is said to be modular spaces (around x0).

Definition 4. [5] Let Xw be a modular metric space.

(i) The sequence (xn)n∈N in Xw is said to be w-convergent to x ∈ Xw if and only if w1(xn, x)→ 0, as n→ ∞.
(ii) The sequence (xn)n∈N in Xw is said to be w-Cauchy if w1(xm, xn)→ 0, as m, n→ ∞.
(iii) A subset D of Xw is said to be w-complete if any w-Cauchy sequence in D is a convergent sequence and its

limit is in D.
(iv) A subset D of Xw is said to be w-closed if the w-limit of a w-convergent sequence of D always belongs to D.
(v) A subset D of Xw is said to be w-bounded if for some λ > 0, we have

δw(D) = sup{w1(x, y); x, y ∈ D} < ∞
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(vi) A subset D of Xw is said to be w-compact if for any {xn} in D there exists a subset sequence {xnk} and
x ∈ D such that w1(xnk , x) −→ 0.

In general, if lim
n−→∞

wλ(xn, x) = 0, for some λ > 0, then we may not have lim
n−→∞

wλ(xn, x) = 0,

for all λ > 0. Therefore, as is done in modular function spaces, we will say that w satisfies the
∆2-condition (see page 4 in [5] ) if this the case, i.e., lim

n−→∞
wλ(xn, x) = 0, for some λ > 0 implies

lim
n−→∞

wλ(xn, x) = 0, for all λ > 0.

The motivation of the following definition can easily be predicted from the last step of proof of
Cauchy sequence in Theorems 13 and 15 (given below).

Definition 5. [12] Let Xw be a modular metric space and {xn}n∈N be sequence in Xw. We will say that w
satisfies the ∆M-condition if this the case, i.e., lim

m,n−→∞
wm−n(xn, xm) = 0 for (m, n ∈ N, m > n) implies

lim
m,n−→∞

wλ(xn, xm) = 0 for some λ > 0.

Let CB(D) := {C : C is nonempty w-closed and w-bounded subsets of D}, K(D) := {C : C is
nonempty w-compact subsets of D} and the Hausdorff metric modular defined on CB(D) by

Hw(A, B) := max{sup
x∈A

w1(x, B), sup
y∈B

w1(A, y)}

where w1(x, B) = inf
y∈B

w1(x, y).

Lemma 6. [5] Let (X, w) be a modular metric space. Assume that w satisfies ∆2-condition. Let D be a
nonempty subset of Xw. Let An be a sequence of sets in CB(D), and suppose lim

n−→∞
Hw(An, A0) = 0 where

A0 ∈ CB(D). Then if xn ∈ An and lim
n−→∞

xn = x0, it follows that x0 ∈ A0.

3. Fixed Point Results for Multivalued F-Contractions

Definition 7. [2] Let F : R+ −→ R satisfying the following condition:

(F1) F is strictly increasing on R+,
(F2) for every sequence {sn} in R+, we have lim

n−→∞
sn = 0 if and only if lim

n−→∞
F(sn) = −∞,

(F3) there exists a number k ∈ (0, 1) such that lim
s−→0+

skF(s) = 0.

We denote by F the family of all function that satisfy the conditions (F1)–(F3).

Example 8. The following functions F : R+ → R belong to F :

(i) F(s) = ln s, with s > 0,
(ii) F(s) = − 1√

s , s > 0

Definition 9. Let (X, w) be a modular metric space. Let D be non empty bounded subset of X. A multivalued
mapping T : D −→ CB(D) is called F-contraction on X if F ∈ F , and τ ∈ R+, for all x, y ∈ D with y ∈ Tx
there exists z ∈ Ty such that w1(y, z) > 0, the following inequality holds:

τ + F(w1(y, z)) ≤ F(M(x, y)) (3.1)

whereM(x, y) = max
{

w1(x, y), w1(x, Tx), w1(y, Ty), w1(y, Tx)
}

.
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Definition 10. Let (X, w) be a modular metric space. Let D be a nonempty subset of Xw. A multivalued
mapping T : D −→ CB(D) is said to be F-contraction of Hardy-Rogers-type if F ∈ F and τ ∈ R+ such that,

2τ + F(Hw(Tx, Ty)) ≤ F(αw1(x, y) + βw1(x, Tx) + γw1(y, Ty) + Lw1(y, Tx)) (3.2)

for all x, y ∈ D with Hw(Tx, Ty) > 0, where α, β, γ, L ≥ 0, α + β + γ = 1 and γ 6= 1.

Example 11. Let F : R+ −→ R be given by F(s) = ln s. For each multivalued mapping T : D −→ CB(D)

satisfying Equation (3.1) we have

w1(y, z) ≤ e−τM(x, y), for all x, y ∈ D, y 6= z

It is clear that for z, y ∈ D such that y = z the previous inequality also holds.

Example 12. Let F : R+ −→ R be given by F(s) = ln s. It is clear that F satisfies (F1)− (F3) for any
k ∈ (0, 1). Each mapping T : D −→ CB(D) satisfying Equation (3.2) is an F-contraction such that

Hw(Tx, Ty) ≤ e−τw1(x, y), for all x, y ∈ D, Tx 6= Ty

It is clear that for x, y ∈ D such that Tx = Ty the previous inequality also holds and hence T is
a contraction.

Theorem 13. Let (X, w) be a modular metric space. Assume that w is a regular modular satisfying
∆M-condition and ∆2-condition. Let D be a nonempty w-bounded and w-complete subset of Xw. Let T :
D −→ CB(D) be a continuous F-contraction. Then T has a fixed point.

Proof. Let x0 ∈ D be an arbitrary point of D and choose x1 ∈ Tx0. If x1 = x0, then x1 is a fixed point
of T and the proof is completed. Suppose that x1 6= x0. Since T is an F-contraction, then there exists
x2 ∈ Tx1 such that

τ + F(w1(x1, x2) ≤ F(M(x0, x1)) and x1 6= x2

Therefore, we have that there exists x3 ∈ Tx2 such that

τ + F(w1(x2, x3) ≤ F(M(x1, x2)) and x2 6= x3

Repeating this process, we find that there exists a sequence {xn} with initial point x0 such that
xn+1 ∈ Txn, xn+1 6= xn and

τ + F(w1(xn, xn+1)) ≤ F(M(xn−1, xn)) for all n ∈ N

This implies
F(w1(xn, xn+1)) < F(M(xn−1, xn)) for all n ∈ N

Consequently,

w1(xn, xn+1) < M(xn−1, xn) (Since F is strictly increasing.)
= max{w1(xn−1, xn), w1(xn−1, Txn−1), w1(xn, Txn), w1(xn, Txn−1)}
= max{w1(xn−1, xn), w1(xn, Txn)}
≤ max{w1(xn−1, xn), w1(xn, xn+1)}

Obviously, if max{w1(xn−1, xn), w1(xn, xn+1)} = w1(xn, xn+1), we have a contradiction and so
max{w1(xn−1, xn), w1(xn, xn+1)} = w1(xn−1, xn).

Consequently, By (F1) we have

τ + F(w1(xn, xn+1) ≤ F(w1(xn−1, xn)) for all n ∈ N (3.3)
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By Equation (3.3), we have

F(w1(xn, xn+1)) ≤ F(w1(xn−1, xn))− τ ≤ · · · ≤ F(w1(x0, x1))− nτ, for all n ∈ N (3.4)

and hence lim
n→∞

F(w1(xn, xn+1) = −∞. By (F2) we have that w1(xn, xn+1) → 0 as n → ∞. Now,

let k ∈ (0, 1) such that lim
n→∞

((w1(xn, xn+1))
kF(w1(xn, xn+1)). By Equation (3.4), the following holds for

all n ∈ N : (
w1(xn+1, xn)

)k
(

F
(
w1(xn+1, xn)

)
− F

(
w1(x0, x1)

))
≤ −

(
w1(xn+1, xn)

)knτ ≤ 0 (3.5)

Taking n→ ∞ in Equation (3.5), we deduce

lim
n→∞

(
n
(
w1(xn+1, xn)

)k
)
= 0

Then there exists n1 ∈ N such that n
(
w1(xn+1, xn)

)k ≤ 1 for all n ≥ n1, that is,

w1(xn, xn+1) ≤
1

n1/k for all n ≥ n1

Now, For all m, n ≥ n1 with m > n, we have

wm−n(xn, xm) ≤ w1(xn, xn+1) + w1(xn+1, xn+2) + · · ·+ w1(xm−1, xm)

≤ 1
n1/k +

1
(n+1)1/k + · · ·+ 1

m1/k

< Σ∞
i=n

1
i1/k

Since the series Σ∞
i=n

1
i1/k is convergent, this implies

lim
m,n→∞

(
wm−n(xn, xm)

)
= 0

Since w satisfies ∆M-condition. Hence, we have

lim
m,n−→∞

w1(xn, xm) = 0

This shows that {xn} is a w-Cauchy sequence. D is w-complete, there exists v ∈ D such that
xn −→ v as n −→ ∞. Now, we prove that v is a fixed point of T.

Let Txn be a sequence in CB(D). Since T is continuous then we have Txn −→ Tv so
lim

n−→∞
Hw(Txn, Tv) = 0, where Tv ∈ CB(D). Then if xn+1 ∈ Txn and lim

n−→∞
xn+1 = v, it follows

from Lemma 6 that v ∈ Tv. Hence v is a fixed point of T.

Example 14. Let Xw = D = {xn = n(n+1)
2 : n ∈ N} and w1(x, y) = 1

λ |x− y|, x, y ∈ D. Then (X, w) is a
w-complete modular metric space. Define the mapping T : D → CB(D) by the:

T(x) =

{
{x1} , x = x1

{x1, x2, · · · , xn−1} , x = xn

Then, as shown in Example 3 of [13], T is a multivalued F-contraction with respect to
F(s) = ln s + s and τ = 1. Therefore, Theorem 13 are satisfied and so T has a fixed point in Xw.

On the other hand, since

lim
n→∞

Hw(Txn, Tx1)

M(xn, x1)
= lim

n→∞

xn−1 − 1
xn − 1

= 1
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then T is not multivalued contraction.
Next, we give a fixed point result for multivalued F-contractions of Hardy-Rogers-type in modular

metric space.

Theorem 15. Let (X, w) be a modular metric space. Assume that w is a regular modular satisfying
∆M-condition and ∆2-condition. Let D be a nonempty w-bounded and w-complete subset of Xw and
T : X −→ K(D) be an F-contractions of Hardy-Rogers-type. Then T has a fixed point.

Proof. Let x0 be an arbitrary point in D. As Tx is nonempty for all x ∈ X, we can choose x1 ∈ Tx0.
If x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is complete. Assume x1 /∈ Tx1. Then, since
Tx1 is closed, w(x, Tx1) > 0. On the other hand, from w(x1, Tx1) ≤ Hw(Tx0, Tx1) and (F1)

F(w(x1, Tx1)) ≤ F(Hw(Tx0, Tx1))

From Equation (3.2), we can write that

F(w(x1, Tx1) ≤ F(Hw(Tx0, Tx1)) ≤ F(αw1(x0, x1) + βw1(x0, Tx0) + γw1(x1, Tx1)

+Lw1(x1, Tx0))− 2τ

Since Tx1 is compact, there exists x2 ∈ Tx1 such that

w1(x1, x2) = w1(x1, Tx1)

Then,

F(w1(x1, x2)) = F(w(x1, Tx1) ≤ F(Hw(Tx0, Tx1))

≤ F(αw1(x0, x1) + βw1(x0, Tx0) + γw1(x1, Tx1)

+Lw1(x1, Tx0))− 2τ

Thus,

F(w1(x1, x2)) ≤ F(Hw(Tx0, Tx1))

≤ F(αw1(x0, x1) + βw1(x0, Tx0) + γw1(x1, Tx1)

+Lw1(x1, Tx0))− 2τ

≤ F(αw1(x0, x1) + βw1(x0, x1) + γw1(x1, x2))− 2τ

≤ F((α + β)w1(x0, x1) + γw1(x1, x2))

Thus,
F(w1(x1, x2)) ≤ F((α + β)w1(x0, x1) + γw1(x1, x2))

Since F is strictly increasing, we deduce that

w1(x1, x2) ≤ (α + β)w1(x0, x1) + γw1(x1, x2)

and hence
(1− γ)w1(x1, x2) < (α + β)w1(x0, x1)

From α + β + γ = 1 and γ 6= 1, we deduce that 1− γ > 0 and so

w1(x1, x2) <
α + β

1− γ
w1(x0, x1) = w1(x0, x1)
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Consequently,
τ + F(w1(x1, x2)) ≤ F(w1(x0, x1))

Continuing in this manner, we can define a sequence {xn} ⊂ D such that xn /∈ Txn, xn+1 ∈ Txn and

τ + F(w1(xn+1, xn+2)) ≤ F(w1(xn, xn+1)) for all n ∈ N∪ {0}

Proceeding as in the proof of Theorem 13, we obtain that {xn} is a w-Cauchy sequence. Since D is
a w-complete modular metric space, there exists v ∈ D such that xn −→ v as n −→ ∞. Now, we prove
that v is a fixed point of T. If there exists an increasing sequence {nk} ⊂ N such that xnk ∈ Tv for all
k ∈ N, since Tv is w-closed and xnk −→ v, we have v ∈ Tv and the proof is completed. So we can
assume that there exists n0 ∈ N such that xn /∈ Tv for all n ≥ n0. This implies that Txn−1 6= Tv for all
n ≥ n0. Now, using Equation (3.2) with x = xn and y = v, we obtain

2τ + F(Hw(Txn, Tv)) ≤ F(αw1(xn, v) + βw1(xn, Txn) + γw1(v, Tv)
+Lw1(v, Txn))

which implies

2τ + F(w1(xn+1, Tv)) ≤ 2τ + F(Hw(Txn, Tv))
≤ F(αw1(xn, v) + βw1(xn, Txn) + γw1(v, Tv)

+Lw1(v, Txn))

≤ F(αw1(xn, v) + βw1(xn, xn+1) + γw1(v, Tv)
+Lw1(v, xn+1))

Since F is strictly increasing, we have

w1(xn+1, Tv) < αw1(xn, v) + βw1(xn, xn+1) + γw1(v, Tv)

+Lw1(v, xn+1).

Letting n −→ ∞ in the previous inequality, as γ < 1 we have w1(v, Tv) ≤ γw1(v, Tv) < w1(v, Tv),
which implies w1(v, Tv) = 0. Since Tv is w-closed, we obtain that v ∈ Tv, that is, v is a fixed point of T.

Remark 16. If we consider T : X −→ CB(T) in Theorem 15 i.e., we are relaxing compactness of co-domain of
mapping T but then we have to assume T be continuous. In this case, we can write proof as Theorem 15 upto
Cauchy. Further, by the completeness of D, we have v ∈ D such that xn → v. Since T is continuous, we have

lim
n−→∞

Hw(Txn, Tv) = 0 and as xn+1 ∈ Txn with xn+1 → v then by Lemma 6 we obtain v ∈ Tv. Hence v is
fixed point of T.

4. Application to Integral Equations

Integral equations arise in many scientific and engineering problems. A large class of initial
and boundary value problem can be converted to Volterra or Fredholm integral equation (see for
instant [14]).

In this section we consider the following integral equation:

u(t) = βA
(
u(t)

)
+ γB

(
u(t)

)
+ g(t), t ∈ [0, T], T > 0 (4.1)

where

A
(
u(t)

)
=
∫ t

0
K1
(
t, s, u(s)

)
ds, B

(
u(t)

)
=
∫ t

0
K2
(
t, s, u(s)

)
ds and β, γ ≥ 0

Let C(I,R) be the space of all continuous functions on I, where I = [0, T] with the norm
‖u‖ = supt∈I |u(t)| and the metric wλ(u, v) := 1

λ‖u− v‖ = 1
λ d(u, v) for all u, v ∈ C(I,R). For r > 0



Mathematics 2016, 4, 51 8 of 9

and u ∈ C(I,R) we denote by Bλ(u, r) = {v ∈ C(I,R) : wλ(u, v) ≤ r} the closed ball concerned at u
and of radius r.

Theorem 17. Let r > 0 be a fixed real number and the following conditions are satisfied:

(i) K : I × I ×R→ R and g : I → R are continuous;
(ii) there exists u0 ∈ C(I,R) such that βA

(
u0(t)

)
+ γB

(
u0(t)

)
+ g(t) ∈ B(u0, r);

(iii) if v ∈ Bλ(u, r), λ > 0, then

|Ki
(
t, s, u(s)

)
− Ki

(
t, s, v(s)

)
| ≤ Li(t, s, u(s), v(s))

|u(s)− v(s)|(
1 + τ

√
|u(s)−v(s)|

λ

)2 , i = 1, 2

for all t, s ∈ I, u, v ∈ R and for some continuous functions L1, L2 : I × I ×R×R→ R+.

such that Li
(
t, s, u(s), v(s)

)
(β + γ)T ≤ 1, i = 1, 2 for all s, t ∈ I, then the integral Equation (4.1) admit

a solution.

Proof. Note that
(
C(I,R), wλ

)
is a complete modular metric space. Define T : C(I,R)→ C(I,R) by

T
(
u(t)

)
= βA

(
u(t)

)
+ γB

(
u(t)

)
+ g(t), t ∈ I

Since v ∈ Bλ(u, r), then by the definition of T and (iii) we have

wλ(Tu, Tv) =
1
λ

sup
t∈I
|βA

(
u(t)

)
+ γB

(
u(t)

)
− βA

(
v(t)

)
− γB

(
v(t)

)
|

=
1
λ

sup
t∈I

∣∣∣∣β ∫ t

0
[K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
]ds

+ γ
∫ t

0
[K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
]ds
∣∣∣∣

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
|ds

+ γ
∫ t

0
|K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
|ds
}

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|L1(t, s, u(s), v(s))

|u(s)− v(s)|(
1 + τ

√
|u(s)−v(s)|

λ

)2 ds

+ γ
∫ t

0
|L2(t, s, u(s), v(s))

|u(s)− v(s)|(
1 + τ

√
|u(s)−v(s)|

λ

)2 ds
}

≤ |u(s)− v(s)|
λ

1(
1 + τ

√
|u(s)−v(s)|

λ

)2 sup
t∈I

{
β
∫ t

0

1
(β + γ)T

ds + γ
∫ t

0

1
(β + γ)T

ds
}

≤ wλ(u, v)(
1 + τ

√
wλ(u, v)

)2 sup
t∈I

{
t
T

}

This implies

wλ(Tu, Tv) ≤ wλ(u, v)(
1 + τ

√
wλ(u, v)

)2
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Now, we observe that the function F : R+ → R defined by F(α) = − 1√
α

, α > 0 is in F and so we
deduce that the mapping T satisfies all condition of Theorem 13 withM(u, v) = wλ(u, v) for λ = 1.
Hence there exists a solution of the integral Equation (4.1).

Remark 18. Our above Theorem 4.1 is an abstract application of F- contraction mapping which can not be
covered by Banach contraction principle.

Acknowledgments: The authors thank Editor-in-Chief and Referee(s) for their valuable comments and
suggestions, which were very useful to improve the paper significantly. The first author thanks for the support
of Petchra Pra Jom Klao Doctoral Scholarship Academic. This work was completed while the second author
(Dhananjay Gopal) was visiting Theoretical and Computational Science Center (TaCS), Science Laboratory
Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand,
during 15 October–8 November 2015. He thanks Professor Poom Kumam and the University for their hospitality
and support.

Author Contributions: All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux équations intégrales.
Fund. Math. 1922, 3, 133–181.

2. Wardowski, D. Fixed points of new type of contractive mappings in complete metric space. Fixed Point
Theory Appl. 2012, 94, doi:10.1186/1687-1812-2012-94.

3. Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations.
Filomat 2013, 27, 1259–1268.

4. Chistyakov, V.V. Modular metric spaces I basic concepts. Nonlinear Anal. 2010, 72, 1–14.
5. Abdou, A.A.N.; Khamsi, M.A. Fixed points of multivalued contraction mappings in modular metric spaces.

Fixed Point Theory Appl. 2014, 2014, 249.
6. Abdo, A.A.N.; Khamsi, M.A. Fixed point results of pointwise contractions in modular metric spaces.

Fixed Point Theory Appl. 2013, 2013, 163.
7. Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular

metric spaces. Fixed Point Theory Appl. 2011, 2011, 93.
8. Alfuraidan, M.R. Fixed points of multivalued contraction mappings in modular metric spaces. Fixed Point

Theory Appl. 2015, 2015, 46.
9. Chaipunya, P.; Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed-point theorems for multivalued

mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 2012, 503504.
10. Kadelburg, Z.; Radenovic, S. Remarks on some recent M. Borcut’s results in partially ordered metric spaces.

Int. J. Nonlinear Anal. Appl. 2015, 6, 96–104.
11. Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488.
12. Padcharoen, A.; Kumam, P.; Gopal, D.; Chaipunya, P. Fixed points and periodic point results for α-type

F-contractions in modular metric spaces. Fixed Point Theory Appl. 2016, 39, doi:10.1186/s13663-016-0525-4.
13. Acar, O.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces.

Bull. Iranian Math. Soc. 2014, 40, 1469–1478.
14. Moradi, S.; Mohammadi Anjedani, M.; Analoei, E. On existence and uniqueness of solutions of a nonlinear

Volterra-Fredholm integral equation. Int. J. Nonlinear Anal. Appl. 2015, 6, 62–68.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Fixed Point Results for Multivalued F-Contractions
	Application to Integral Equations

