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Abstract: Coherence of a quantum state intrinsically depends on the choice of the reference basis.
A natural question to ask is the following: if we use two or more incompatible reference bases,
can there be some trade-off relation between the coherence measures in different reference bases?
We show that the quantum coherence of a state as quantified by the relative entropy of coherence
in two or more noncommuting reference bases respects uncertainty like relations for a given state of
single and bipartite quantum systems. In the case of bipartite systems, we find that the presence
of entanglement may tighten the above relation. Further, we find an upper bound on the sum
of the relative entropies of coherence of bipartite quantum states in two noncommuting reference
bases. Moreover, we provide an upper bound on the absolute value of the difference of the relative
entropies of coherence calculated with respect to two incompatible bases.
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1. Introduction

The linearity of quantum mechanics gives rise to the concept of superposition of quantum states
of a quantum system and is one of the characteristic properties that makes a clear distinction between
the ways a classical and a quantum system can behave. Recently, there has been a considerable effort
devoted towards quantifying quantum superposition (quantum coherence) from a resource theoretic
perspective [1–31]. Also, quantum coherence has been deemed to play a key role in the emerging
fields such as quantum thermodynamics [32–42] and quantum biology [43–49]. This makes the
advancement of a quantitative framework for coherence even more desirable. In particular, a resource
theory of coherence, developed in Ref. [2], provides a set of conditions on a real valued function of
quantum states for it to be a bona fide quantifier of quantum coherence. This resource theory is
based on the set of incoherent operations as the free operations and the set of incoherent states as the
set of free states. The set of incoherent states and the set of incoherent operations depend crucially
on the choice of basis—the reference basis—and it is determined by the experimental situation at
hand. Therefore, the quantification of quantum coherence intrinsically depends on the basis that we
choose to define the incoherent states and incoherent operations. This seems very unsettling as any
physical quantity should not depend on some arbitrary choice of basis. However, the choice of basis
is provided naturally by the experimental situation at hand.

Uncertainty relations play an important role in foundations of quantum mechanics as well as
in quantum information science. After the discovery of the Heisenberg uncertainty principle [50,51],
Robertson and Schrödinger proved the uncertainty relations for two incompatible observables [52,53].
Recently, two stronger uncertainty relations are proved which go beyond the Robertson-Schrödinger
uncertainty relation [54]. Undoubtedly, uncertainty relations continue to play pivotal role in quantum
theory as well as quantum information science [55]. In addition to the variance based uncertainty
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relation, there are entropic uncertainty relations [56–60] which capture the notion of uncertainty
for two incompatible observables. Entropic uncertainty relations prove to be of fundamental and
practical importance in quantum information.

In this work, we explore how the coherence of a given quantum state in one reference basis
is restricted by the coherence of the same quantum state in other reference bases for single and
bipartite quantum systems. For single quantum systems, the trade-offs between the coherences with
respect to the mutually unbiased bases (MUBs) have been obtained in Ref. [16]. Moreover, the exact
complementarity relation for the l1 norm of coherence [2] of qubit systems with respect to three MUBs
is also obtained in Ref. [16]. Here, we go beyond the restriction of the reference bases being MUBs to
any set of incompatible bases. Also, we focus on the trade-off relations for bipartite quantum systems
and the role of entanglement in these relations. In particular, we provide lower and upper bounds on
the sum of the relative entropies of coherence of a given state with respect to two or more incompatible
bases. The lower bounds on the sum of the relative entropies of coherence for single and bipartite
quantum systems are facilitated through the use of entropic uncertainty relations with and without
memory effects. Thus, entropic uncertainty relations may be viewed as restrictions on coherence
of a quantum system in two incompatible bases. For bipartite quantum systems, we find an upper
bound on the sum of the relative entropies of coherence via Lewenstein-Sanpera decomposition [61]
of bipartite quantum states. We then show that this upper bound can be tightened. We also provide
a non trivial upper bound on the absolute value of the differences between the relative entropy of
coherence obtained in two different bases.

Let us formally introduce the measures of coherence in the framework of resource theory, that
is based on the set of incoherent operations and incoherent states. First we fix a reference basis and
choose it to be the computational basis {|i〉} (without loss of any generality). A maximally coherent
state in this basis is given by |ψd〉 = 1√

d ∑d−1
i=0 |i〉 as any other state can be created from |ψd〉 using

only the set of incoherent operations. Also, the coherence of this state naturally provide a reference
to gauge the coherence of other quantum states. The set of all the states of the form ρI = ∑i di|i〉〈i|,
where di ≥ 0 and ∑i di = 1, forms the set I of all incoherent states. Any quantum state that does
not belong to the set I will be called a coherent state and will act as a resource. In quantum theory, a
physical operation is represented by a completely positive trace preserving (CPTP) map. Any CPTP
map can be expressed in terms of a set of Kraus operators {Mk} such that the state ρ of the system is
transformed to ρ → ∑k pkρk, where ρk = MkρM†

k /pk and pk = Tr[MkρM†
k ]. An operator is said to be

an incoherent operator if it maps diagonal states to some other diagonal states in the reference basis.
Any quantum channel whose Kraus elements are the incoherent operators for a reference basis is said
to be an incoherent channel (ICPTP map) and such an ICPTP map ΛI satisfies ΛI [I ] ⊆ I . In the
following, we list the conditions for a real valued function of quantum states that make the function a
bona fide measure of quantum coherence. Following Ref. [2], a function on the quantum state C(i)(ρ)

(the superscript i is used to denote the reference basis) is said to be a valid measure of quantum
coherence of the state ρ if it satisfies following conditions: (1) C(i)(ρ) = 0 iff ρ ∈ I . (2) C(i)(ρ)

is non increasing under the incoherent operations, i.e., for any incoherent channel denoted by ΛI ,
we have C(i)(ΛI [ρ]) ≤ C(i)(ρ). (3) C(i)(ρ) decreases on an average under the selective incoherent
operations, i.e., ∑k pkC(i)(ρk) ≤ C(i)(ρ), where ρk = MkρM†

k /pk, pk = Tr[MkρM†
k ] and Mk are the

Kraus elements of an incoherent channel. (4) C(i)(ρ) is a convex function of quantum states, i.e.,
C(i)(∑k pkρk) ≤ ∑k pkC(i)(ρk). It may be noted that the conditions (3) and (4) together imply condition
(2). The bona fide measures of coherence include the relative entropy of coherence, the l1 norm of
coherence [2], the coherence of formation and the distillable coherence [7]. In this work, we will work
only with the relative entropy of coherence, which for a density matrix ρ and a reference basis {|i〉},
is defined as

C(i)(ρ) = S(ρ(i)d )− S(ρ) (1)
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where S(ρ) = −Tr[ρ log ρ] is the von Neumann entropy. Here and in the rest of the paper, all the
logarithms are taken with respect to base 2. The superscript i in C(i)(ρ) indicates that coherence is
calculated in reference basis {|i〉}. If ρ is a pure density operator and ρ = |ψ〉 〈ψ|, then we have
C(i)(ρ) = S(ρ(i)d ), where ρ

(i)
d is the diagonal part of ρ = |ψ〉 〈ψ| in the basis {|i〉}.

2. Uncertainty Like Relation for Quantum Coherence Expressed in Two Different
Non-Commuting Bases

Let us first consider the relation between the coherence of a single d-level quantum system in a
state ρ expressed in two different non commuting bases. Let the sets P = {|i〉 〈i|} and Q = {|a〉 〈a|}
denote two non-commuting projective measurements on the given quantum system. The state of the
system after the projective measurements by P and Q, is given, respectively, by

ρP = ∑
i

pi|i〉〈i| and (2)

ρQ = ∑
a

qa|a〉〈a| (3)

where pi = 〈i| ρ |i〉 and qa = 〈a| ρ |a〉. Now the entropic uncertainty relation [58,59] for these two
measurements reads

H(P) + H(Q) ≥ −2 log C + S(ρ) (4)

where H(P) = −∑i pi log pi, H(Q) = −∑a qa log qa, S(ρ) = −Tr[ρ log ρ] and C = maxi,a | 〈i| a〉|.
Also, H(P) = S(ρ(i)d ) and H(Q) = S(ρ(a)

d ), where ρ
(i)
d and ρ

(a)
d are the diagonal parts of the density

matrix ρ in bases {|i〉} and {|a〉}, respectively. Now, Equation (4) can be rewritten as

C(i)(ρ) + C(a)(ρ) ≥ −2 log C− S(ρ) (5)

where C(i)(ρ) = S(ρ(i)d )− S(ρ) and C(a)(ρ) = S(ρ(a)
d )− S(ρ) are the coherences of the density matrix ρ

in the bases {|i〉} and {|a〉}, respectively. The above relation can be termed as the uncertainty relation
for the coherences of a density matrix measured in two different (non-commuting) bases. Since the
coherence of a quantum system is a basis dependent notion, above relation gives us insight about the
coherences of a same density matrix measured in two different bases.

Now let us consider a bipartite quantum system in a state ρAB. Also, let ρB = TrA[ρAB] =

∑µ λµ|µ〉〈µ|, where λµ are the eigenvalues and |µ〉 are the eigenvectors of ρB. Consider two projective
measurements on the state ρAB, given by PAB = {|i〉〈i| ⊗ |µ〉〈µ|} and QAB = {|a〉〈a| ⊗ |µ〉〈µ|}.
Note that these projective measurements do not disturb the density operator ρB. The state of the
bipartite system after the projective measurements by PAB and QAB, is given, respectively, by

ρPR = ∑
i,µ

piµ|i〉〈i| ⊗ |µ〉〈µ| and (6)

ρQT = ∑
a,µ

qaµ|a〉〈a| ⊗ |µ〉〈µ| (7)

where piµ = 〈i, µ| ρAB |i, µ〉 and qaµ = 〈a, µ| ρAB |a, µ〉. Noting that the projective measurements
always increase entropy, we have S(ρPR) ≥ S(ρPB) and similarly, S(ρQT) ≥ S(ρQB).
Here, ρPB = ∑i |i〉〈i| ⊗ IρAB|i〉〈i| ⊗ I and similarly ρQB = ∑a |a〉〈a| ⊗ IρAB|a〉〈a| ⊗ I. Also note
that S(ρR) = S(ρT) = S(ρB). Therefore, H(P|R) ≥ H(P|B) and H(Q|T) ≥ H(Q|B),
where H(X|Y) = S(ρXY)− S(ρY). This gives

H(P|R) + H(Q|T) ≥ H(P|B) + H(Q|B)
≥ −2 log C + S(A|B) (8)
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where the last inequality follows from entropic uncertainty relation in the presence of memory,
first given in the Ref. [59], and C = maxi,a | 〈i| a〉|. Now H(P|R) = S(ρPR) − S(ρB) =

C(iµ)(ρAB) + S(ρAB) − S(ρB) = C(iµ)(ρAB) + S(A|B). Similarly, H(Q|T) = C(aµ)(ρAB) + S(A|B).
Therefore, Equation (8) becomes

C(iµ)(ρAB) + C(aµ)(ρAB) ≥ −2 log C− S(A|B) (9)

For pure bipartite entangled states S(A|B) is negative, and hence the above uncertainty like relation
for quantum coherence is tightened. This is in contrast to the memory assisted uncertainty relation,
where entanglement reduces the uncertainty. Therefore, in the presence of entanglement, quantum
coherence and entropic uncertainty relation seemingly behave in opposite ways. The entropic
uncertainty relation in the presence of quantum memory has been improved in Ref. [62] and using it,
we have

H(P|R) + H(Q|T) ≥ H(P|B) + H(Q|B)
≥ −2 log C + S(A|B)−max{0,D −J }

where D is quantum discord across AB partition [63–65] and J is the classical correlation [63–65].
Therefore the Equation (9) is improved to

C(iµ)(ρAB) + C(aµ)(ρAB) ≥ −2 log C− S(A|B)−max{0,D −J } (10)

If D < J , the bound in Equation (10) becomes even more tighter.
For a tripartite state ρABD, one may ask how does the entanglement across AB and AD affects the

uncertainty like relation for quantum coherence. Similar to Equation (9), one can have a uncertainty
like relation for quantum coherence for the density operator ρAD, which is given by

C(iν)(ρAD) + C(aν)(ρAD) ≥ −2 log C− S(A|D) (11)

It turns out that entanglement cannot tighten uncertainty like relation for quantum coherence across
AB and AD at the same time. This is because, we have S(A|B) + S(A|D) ≥ 0 for any tripartite
quantum state, which follows from the strong subadditivity of the von Neumann entropy [66,67].
This shows that whenever we have S(A|B) < 0 , we have S(A|D) > 0. This means that if one tightens
the uncertainty like relation for quantum coherence across AB partition, the uncertainty like relation
for quantum coherence across AD partition cannot be improved despite the presence of entanglement
in the state ρABD.

3. Uncertainty Like Relation for Quantum Coherence Expressed in Many Different
Non-Commuting Bases

Let us first consider a single d-level quantum system in a state ρ. Let the sets P1 = {|i1〉 〈i1|} and
P2 = {|i2〉 〈i2|}, . . . , Pn = {|in〉 〈in|} denote n non-commuting projective measurements on the given
quantum system. The state of the system after the projective measurements by P1, . . . , Pn is given,
respectively, by ρP1 = ∑i1 pi1 |i1〉〈i1|, . . . , ρPn = ∑in pin |in〉〈in|, where pi1 = 〈i1| ρ |i1〉 , . . . , pin = 〈in| ρ |in〉.
Now the entropic uncertainty relation [68] for multiple measurements read

n

∑
i=1

H(Pi) ≥ − log b + (n− 1)S(ρ) (12)
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where H(Pk) = −∑ik pik log pik , (k = 1, . . . , n), S(ρ) = −Tr[ρ log ρ] and

b = max
in

{
∑

i2,.,in−1

max
i1

[c(i1, i2)]
n−1

∏
k=2

c(ik, ik+1)

}
(13)

where c(ik, jl) = |〈ik|jl〉|2. Also, H(Pk) = S(ρ(ik)d ) with k = 1, . . . , n, where ρ
(ik)
d are the diagonal parts

of the density matrix ρ in bases {|ik〉}. Now, Equation (12) can be rewritten as

n

∑
k=1

S(ρ(ik)d ) ≥ − log b + (n− 1)S(ρ), or

n

∑
k=1

C(ik)(ρ) ≥ − log b− S(ρ) (14)

where C(ik)(ρ) = S(ρ(ik)d )− S(ρ) is the coherences of the density matrix ρ in the {|ik〉} basis.
Now let us consider a bipartite quantum system in a state ρAB, where ρB = TrA[ρAB] =

∑µ λµ|µ〉〈µ|, and n projective measurements on the state ρAB, given by Pi
AB = {|ik〉〈ik| ⊗ |µ〉〈µ|}with

k = 1, . . . , n. The state of the bipartite system after the projective measurements by Pk
AB is given by

ρPk Rk = ∑
ik ,µ

pikµ|ik〉〈ik| ⊗ |µ〉〈µ| (15)

where pikµ = 〈ik, µ| ρAB |ik, µ〉. Noting that the projective measurements always increase entropy,
we have S(ρPk Rk ) ≥ S(ρPk B), with ρPk B = ∑ik |ik〉〈ik| ⊗ IρAB|ik〉〈ik| ⊗ I. Also note that S(ρRk ) = S(ρB).
Therefore, H(Pk|Rk) ≥ H(Pk|B). Now,

n

∑
k=1

H(Pk|Rk) ≥
n

∑
k=1

H(Pk|B)

≥ − log b + (n− 1)S(A|B) (16)

where the last inequality follows from the many measurement generalization of entropic uncertainty
relation in presence of memory [59] and is obtained in Ref. [68], and b is given by Equation (13).
Now H(Pk|Rk) = S(ρPk Rk ) − S(ρB) = C(ikµ)(ρAB) + S(ρAB) − S(ρB) = C(ikµ)(ρAB) + S(A|B).
Therefore, Equation (16) becomes

n

∑
k=1

C(ikµ)(ρAB) ≥ − log b− S(A|B) (17)

For bipartite pure entangled states, the above inequality is tightened.

4. Complementarity Like Relation for Quantum Coherence for a Bipartite State

For a bipartite quantum system, there exists an optimal decomposition of every density matrix
ρAB of the bipartite system, called as the Lewenstein-Sanpera (LS) decomposition, in terms of a
separable state and an entangled state [61,69–72], i.e.,

ρAB = λρs + (1− λ)ρe; λ ∈ [0, 1] (18)

where ρs is a separable state on the separable-entangled boundary and ρe is an entangled state.
The parameter λ is taken to be optimal in the sense that any other decomposition of the form
λ′ρ′s + (1 − λ′)ρ′e with λ′ ∈ [0, 1] and ρs 6= ρ′s necessarily implies λ′ < λ. For optimal λ, ρs is
called the optimal separable approximation (OSA) of the state ρAB. For a bipartite qubit system the
optimal LS decomposition becomes unique with the entangled part of the decomposition being a pure
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entangled projector [61]. Using the concavity of the von Neumann entropy, Equation (18) implies
S(ρAB) ≥ λS(ρs). Let us denote the quantum coherence of the bipartite state ρAB in two different
bases {|ij〉} and {|ab〉} as Cij(ρAB) and Cab(ρAB), respectively, then

Cij(ρAB) + Cab(ρAB) = S(ρij
d ) + S(ρab

d )− 2S(ρAB)

≤ 2 log dAdB − 2K(ρAB) (19)

where K(ρAB) = λS(ρs) + (1 − λ)S(ρe) and dA(B) being the dimension of the system A(B).
This tightens the trivial upper bound on the sum of coherences, namely 2 log dAdB. For bipartite
qubit systems, since the entangled part in the optimal separable approximation becomes pure,
K(ρAB) becomes λS(ρs) and we have

Cij(ρAB) + Cab(ρAB) ≤ 4− 2λS(ρs) (20)

In the following, we provide some examples of optimal LS decomposition and calculate the
bound on the sum of the coherences in two different bases. Consider a 2⊗ 2 Bell diagonal state

ρAB =
4

∑
i=1

di |Bi〉 〈Bi| (21)

where |B1〉 = (|00〉+ |11〉)/
√

2, |B2〉 = (|00〉 − |11〉)/
√

2, |B3〉 = (|01〉+ |10〉)/
√

2, |B4〉 = (|01〉 − |10〉)/
√

2
and {di} is a probability vector. The optimal LS decomposition, ρAB = λρs + (1 − λ)ρe of the
above Bell diagonal state is obtained for ρe = |B1〉 〈B1| and ρs = ∑4

i=1 d′i |Bi〉 〈Bi| where d′1 = 1/2,
d′j = dj/λ (j = 2, 3, 4) and λ = 1− µ [70]. Here, µ is the concurrence [73,74] of the initial state ρAB.

The quantity K(ρAB), here, is given by (1−µ)
2 log 2 + (1− d1) log(1− µ)−∑4

i=2 di log di. For a specific
example, take d1 = 0.6, d2 = 0.2, d3 = 0.1 = d4. In this case µ = 0.2 and K(ρAB) = 1.4, where log is
calculated using base 2. Therefore, sum of the coherences for the Bell diagonal state, given by above
parameters, satisfy

Cij(ρAB) + Cab(ρAB) ≤ 1.2 (22)

This bound gives a value which is well below the trivial bound which is four. Another example that
we consider is the case of bipartite qutrit state which contains bound entanglement [75] in it. The state
is given by

ρ =
2
7
|ψ+〉〈ψ+|+

γ

7
P+ +

5− γ

7
P−; 2 ≤ γ ≤ 5 (23)

where |ψ+〉 = (|00〉 + |11〉 + |22〉)/
√

3, P+ = (|01〉 〈01| + |12〉 〈12| + |20〉 〈20|)/3 and
P− = (|10〉 〈10|+ |21〉 〈21|+ |02〉 〈02|)/3. The optimal LS decomposition, ρ = λρs + (1− λρe) of the
state ρ is obtained for ρe =

2
7 |ψ+〉〈ψ+|+ 5

7 P+, ρs =
2
7 |ψ+〉〈ψ+|+ 3

7 P+ + 2
7 P− and λ = (5− γ)/2 [70].

The quantity K(ρAB), here, is given by 0.8631 + 0.6935λ. Therefore, sum of the coherences for the
state ρ, satisfy

Cij(ρAB) + Cab(ρAB) ≤ 2 log 9− 2(0.8631 + 0.6935λ) (24)

The bound, Equation (19), can be tightened as follows. Let us consider a bipartite state ρAB.
Also, assume that the marginal density matrix ρB for subsystem B is diagonal in the basis |µ〉, i.e.,
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ρB = ∑µ dµ|µ〉〈µ|. Now let us consider a projective measurement on the bipartite system in the basis
{|i〉 ⊗ |µ〉}. The state of the total system after the measurement, is given by

ρPR = ∑
i,µ
〈i, µ| ρAB |i, µ〉 |i, µ〉〈i, µ| (25)

The marginal density matrix ρR of the subsystem B after the measurement is same as ρB.
Now, H(P|R) = H(PR)− H(R) = S(ρPR)− S(ρB) = C(iµ)(ρAB) + S(A|B). Therefore,

C(iµ)(ρAB) = H(P|R)− S(A|B) = H(P)− I(P : R)− S(A|B)
≤ H(P)− S(A|B)
≤ log dA − S(A|B) (26)

where dA is the dimension of the subsystem A. Now, if we consider the projective measurement of
the total system in the basis {|a, µ〉}, we get

C(aµ)(ρAB) ≤ log dA − S(A|B) (27)

Therefore,

C(iµ)(ρAB) + C(aµ)(ρAB) ≤ 2 log dA − 2S(A|B) (28)

Again we consider the example of the Bell diagonal state ρAB = ∑4
i=1 di|Bi〉〈Bi|,

where |B1〉 = (|00〉 + |11〉)/
√

2, |B2〉 = (|01〉 + |10〉)/
√

2, |B3〉 = (|01〉 − |10〉)/
√

2, and
|B4〉 = (|00〉+ |11〉)/

√
2. For d1 > 1/2, the optimal LS decomposition is given by: λ = 2(1− d1),

ρe = |B1〉〈B1|, and

ρs =
4

∑
i=1

d′i|Bi〉〈Bi| (29)

where d′1 = 1/2, d′j = dj/λ (j = 2, 3, 4). Note that the previous bound in Equation (19) is given by

2 log dAdB − λS(ρs)

= 4− (1− d1)(2 + log[1− d1]) +
4

∑
i=2

di log di (30)

However, the bound in Equation (28) is given by

2 log dA − 2S(A|B) = 2− 2S(ρAB) + 2S(B)

= 4 + 2
4

∑
i=1

di log di (31)

For Bell diagonal states with d1 > 1/2, the new bound (Equation (28)) is always smaller than the
bound (Equation (19)) (see also Figure 1).
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Figure 1. The plot shows the left hand and right hand sides of the uncertainty like relations for
quantum coherence, given by Equations (19) and (28), for Bell diagonal states. It clearly shows that
the bound in Equation (28) is tighter than that in Equation (19). (a) d1 = 0.52, d2 = 0.1; (b) d1 = 0.6,
d2 = 0.05.

5. State Dependent Upper Bound for Coherence

One may ask that if diagonal parts of a density operator in two different reference bases are close,
does this mean the closeness of coherences of the density operator in the given two reference bases?
Let us consider a quantum system in a state ρ, with ρ

(i)
d being the diagonal part of the density matrix

in {|i〉} basis. For, ||ρ(i)d − ρ||1 = 2ε, with ||.||1 being the trace norm, defined as ||M||1 = Tr
√

M† M,
the Fannes-Audenaert inequality [76,77] implies

C(i)(ρ) = |S(ρ(i)d )− S(ρ)| ≤ ε log(d− 1) + H(ε) (32)

where d is the dimension of the Hilbert space of the quantum system and H(ε) is the binary
entropy. Let the diagonal part of the density matrix ρ in the basis {|a〉} be denoted by ρ

(a)
d .

For ||ρ(i)d − ρ
(a)
d ||1 = 2η, again using the Fannes-Audenaert inequality [66,76,77], we have

|S(ρ(i)d )− S(ρ(a)
d )| ≤ η log(d− 1) + H(η) (33)

Note that S(ρ(i)d )− S(ρ(a)
d ) = [S(ρ(i)d )− S(ρ)]− [S(ρ(a)

d )− S(ρ)] = C(i)(ρ)− C(a)(ρ). Now, Equation (33) implies

|C(i)(ρ)− C(a)(ρ)| ≤ η log(d− 1) + H(η) (34)

When η = ||ρ(i)d − ρ
(a)
d ||1/2 is small, i.e., the diagonal parts of a quantum state in two different bases

are close to each other with respect to the trace distance, the relative entropies of coherence of the
state in these two bases are also close to each other.

6. Summary

In quantum theory, uncertainty relation is a fundamental consequence of superposition principle
and incompatible nature of observables. As quantum coherence is a basis dependent notion, it is
pertinent to ask if coherence respects some kind of uncertainty relation for two or more incompatible
bases. In this paper, we have explored the interplay of the relative entropy of coherence of a quantum
system in a given state in two or more incompatible bases. We have proved trade-off relations for the
relative entropy of coherence in two or more non-commuting bases for single and bipartite quantum
systems. This shows that the relative entropies of coherence of a quantum system in two or more
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incompatible bases are not independent of one another. If, in one basis, the density matrix shows a
larger value of the relative entropy of coherence, in another basis it may not show the same value.
In the case of bipartite states, the presence of entanglement tightens the trade-off relation for the
relative entropy of coherence. However, because of strong subadditivity of conditional entropy, one
cannot have tightened trade-off relations for quantum coherence measure across two different parties.
Also, we have proved complementarity like relations for the relative entropy of coherence in two
different bases. Moreover, we have provided an upper bound on the absolute value of the differences
of the relative entropy of coherence obtained in two different bases.
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39. Ćwikliński, P.; Studziński, M.; Horodecki, M.; Oppenheim, J. Limitations on the Evolution of Quantum

Coherences: Towards Fully Quantum Second Laws of Thermodynamics. Phys. Rev. Lett. 2015, 115, 210403.
40. Gardas, B.; Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 2015,

92, 042126.
41. Misra, A.; Singh, U.; Bera, M.N.; Rajagopal, A.K. Quantum Rényi relative entropies affirm universality of

thermodynamics. Phys. Rev. E 2015, 92, 042161.
42. Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in

thermodynamics—A topical review. 2015, arXiv:1505.07835. arXiv.org e-Print archive. Available online:
http://arxiv.org/abs/1505.07835 (accessed on 28 May 2015).

43. Abbott, D.; Davies, P.C.W.; Pati, A.K. Quantum Aspects of Life; Imperial College Press: London, UK, 2008.
44. Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys.

2008, 10, 113019.
45. Levi, F.; Mintert, F. A quantitative theory of coherent delocalization. New J. Phys. 2014, 16, 033007.



Mathematics 2016, 4, 47 11 of 12

46. Rebentrost, P.; Mohseni, M.; Aspuru-Guzik, A. Role of quantum coherence and environmental fluctuations
in chromophoric energy transport. J. Phys. Chem. B 2009, 113, 9942.

47. Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 2011, 302, 012037.
48. Li, C.M.; Lambert, N.; Chen, Y.N.; Chen, G.Y.; Nori, F. Witnessing Quantum Coherence: From solid-state to

biological systems. Sci. Rep. 2012, 2, 885.
49. Huelga, S.; Plenio, M. Vibrations, quanta and biology. Contemp. Phys. 2013, 54, 181–207.
50. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik.

Z. Phys. 1927, 43, 172–198.
51. Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352.
52. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164.
53. Schrödinger, E. Zum Heisenbergschen Unschärfeprinzip. Ber. Kgl. Akad. Wiss. Berlin 1930, 24, 296.
54. Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett.

2014, 113, 260401.
55. Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. 2007, 452, 155–176.
56. Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics.

Commun. Math. Phys. 1975, 44, 129–132.
57. Deutsch, D. Uncertainty in Quantum Measurements. Phys. Rev. Lett. 1983, 50, 631–633.
58. Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106.
59. Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of

quantum memory. Nat. Phys. 2010, 6, 659–662.
60. Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic Uncertainty Relations and their Applications.

2015, arXiv:1511.04857. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1511.04857
(accessed on 16 November 2015).

61. Lewenstein, M.; Sanpera, A. Separability and Entanglement of Composite Quantum Systems.
Phys. Rev. Lett. 1998, 80, 2261–2264.

62. Pati, A.K.; Wilde, M.M.; Devi, A.R.U.; Rajagopal, A.K.; Sudha. Quantum discord and classical correlation
can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 2012, 86, 042105.

63. Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Gen. 2001, 34, 6899.
64. Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett.

2001, 88, 017901.
65. Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations:

Discord and related measures. Rev. Mod. Phys. 2012, 84, 1655–1707.
66. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:

Cambridge, UK, 2010.
67. Hu, M.L.; Fan, H. Competition between quantum correlations in the quantum-memory-assisted entropic

uncertainty relation. Phys. Rev. A 2013, 87, 022314.
68. Liu, S.; Mu, L.Z.; Fan, H. Entropic uncertainty relations for multiple measurements. Phys. Rev. A 2015,

91, 042133.
69. Karnas, S.; Lewenstein, M. Separable approximations of density matrices of composite quantum systems.

J. Phys. A Math. Gen. 2001, 34, 6919.
70. Akhtarshenas, S.J.; Jafarizadeh, M.A. Optimal Lewenstein-Sanpera decomposition for some bipartite

systems. J. Phys. A Math. Gen. 2004, 37, 2965.
71. Thiang, G.C.; Raynal, P.; Englert, B.G. Optimal Lewenstein-Sanpera decomposition of two-qubit states

using semidefinite programming. Phys. Rev. A 2009, 80, 052313.
72. Thiang, G.C. Degree of separability of bipartite quantum states. Phys. Rev. A 2010, 82, 012332.
73. Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022–5025.
74. Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998,

80, 2245–2248.
75. Horodecki, M.; Horodecki, P. Reduction criterion of separability and limits for a class of distillation

protocols. Phys. Rev. A 1999, 59, 4206–4216.



Mathematics 2016, 4, 47 12 of 12

76. Fannes, M. A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys.
1973, 31, 291–294.

77. Audenaert, K.M.R. A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 2007,
40, 8127.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Uncertainty Like Relation for Quantum Coherence Expressed in Two Different Non-Commuting Bases
	Uncertainty Like Relation for Quantum Coherence Expressed in Many Different Non-Commuting Bases
	Complementarity Like Relation for Quantum Coherence for a Bipartite State
	State Dependent Upper Bound for Coherence
	Summary

