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Abstract: We focus on inverse preconditioners based on minimizing F(X) = 1− cos(XA, I), where
XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze
gradient-type methods to minimize F(X) on a suitable compact set. For this, we use the geometrical
properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the
special properties of F(X) on the feasible set. Preliminary and encouraging numerical results are
also presented in which dense and sparse approximations are included.
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1. Introduction

The development of algebraic inverse preconditioning continues to be an active research area
since they play a key role in a wide variety of applications that involve the solution of large and
sparse linear systems of equations; see e.g., [1–11].

A standard and well-known approach to build preconditioning strategies is based on incomplete
factorizations of the coefficient matrix: incomplete LU (ILU), incomplete Choleksy (IC), among others.
However, preconditioners built with this approach, while popular and fairly easy to implement, are
not suitable for parallel platforms, especially Graphics Processing Units (GPUs) [12], and moreover
are not always reliable since the incomplete factorization process may yield a very ill-conditioned
factorization (see, e.g., [13]). Even for symmetric positive definite matrices, existence of the standard
IC factorization is guaranteed only for some special classes of matrices (see, e.g., [14]). In the
symmetric positive definite case, variants of IC have been developed to avoid ill-conditioning and
breakdown (see, e.g., [15,16]). Nevertheless, usually these modifications are expensive and introduce
additional parameters to be chosen in the algorithm.

For a given square matrix A, there exist several proposals for constructing robust sparse inverse
approximations which are based on optimization techniques, mainly based on minimizing the
Frobenius norm of the residual (I − XA) over a set P of matrices with a certain sparsity pattern; see
e.g., [5,6,15,17–22]. An advantage of these approximate inverse preconditioners is that the process
of building them, as well as applying them, is well suited for parallel platforms. However, we
must remark that when A is symmetric and positive definite, minimizing the Frobenius norm of
the residual without imposing additional constraints can produce an inverse preconditioner which is
neither symmetric nor positive definite; see, e.g., (p. 312 [15]).

There is currently a growing interest, and understanding, in the rich geometrical structure of the
non-polyhedral cone of symmetric and positive semidefinite matrices (PSD); see e.g., [19,22–27]. In this
work, we focus on inverse preconditioners based on minimizing the positive-scaling-invariant
function F(X) = 1 − cos(XA, I), instead of minimizing the Frobenius norm of the residual.
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Our approach takes advantage of the geometrical properties of the PSD cone, and also of the special
properties of F(X) on a suitable compact set, to introduce specialized constrained gradient-type
methods for which we analyze their convergence properties.

The rest of the document is organized as follows. In Section 2, we develop and analyze
two different gradient-type iterative schemes for finding inverse approximations based on
minimizing F(X), including sparse versions. In Section 3, we present numerical results on some
well-known test matrices to illustrate the behavior and properties of the introduced gradient-type
methods. Finally, in Section 4 we present some concluding remarks.

2. Gradient-Type Iterative Methods

Let us recall that the cosine between two n× n real matrices A and B is defined as

cos(A, B) =
〈A, B〉
‖A‖F‖B‖F

(1)

where 〈A, B〉 = trace(BT A) is the Frobenius inner product in the space of matrices and ‖ . ‖F is the
associated Frobenius norm. By the Cauchy–Schwarz inequality, it follows that

| cos(A, B)| ≤ 1

and the equality is attained if and only if A = γB for some nonzero real number γ.
To compute the inverse of a given symmetric and positive definite matrix A, we consider

the function
F(X) = 1− cos(XA, I) ≥ 0 (2)

for which the minimum value zero is reached at X = ξ A−1, for any positive real number ξ. Let us
recall that any positive semidefinite matrix B has nonnegative diagonal entries and so trace(B) ≥ 0.
Hence, if XA is symmetric, we need to impose that 〈XA, I〉 = trace(XA) ≥ 0 as a necessary condition
for XA to be in the PSD cone (see [24,26,27]). Therefore, in order to impose uniqueness in the PSD
cone, we consider the constrained minimization problem

Min
X∈S∩T

F(X) (3)

where S = {X ∈ IRn×n | ‖XA‖F =
√

n} and T = {X ∈ IRn×n | trace(XA) ≥ 0}. Notice that S ∩ T is a
closed and bounded set, and so problem (3) is well-posed. Notice also that T is convex while S is not.

Remark 2.1. For any β > 0, F(βX) = F(X), and so the function F is invariant under positive scaling.

The derivative of F(X), denoted by ∇F(X), plays an important role in our work.

Lemma 2.1.

∇F(X) =
1

‖I‖F‖XA‖F

(
〈XA, I〉
‖XA‖2

F
XA− I

)
A

Proof. For fixed matrices X and Y, we consider the function ϕ(t) = F(X + tY). It is well-known that
ϕ′(0) = 〈∇F(X), Y〉. We have

F(X + tY) = 1− 1
‖I‖F‖XA‖F

〈XA, I〉+ t〈YA, I〉√
1 + 2t 〈XA,YA〉

‖XA‖2
F

+ t2 ‖YA‖2

‖XA‖2
F
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and we obtain after differentiating ϕ(t) and some algebraic manipulations

ϕ′(0) = 〈 1
‖I‖F‖XA‖F

(
〈XA, I〉
‖XA‖2

F
XA− I

)
A, Y〉

and the result is established.

Theorem 2.1. Problem (3) possesses the unique solution X = A−1.

Proof. Notice that ∇F(X) = 0 for X ∈ S, if and only if X = βA−1 for β = ±1. Now, F(−A−1) = 2
and so X = −A−1 is the global maximizer of the function F on S, but −A−1 /∈ T; however, F(A−1) =

0 and A−1 ∈ T. Therefore, X = A−1 is the unique feasible solution of (3).

Before discussing different numerical schemes for solving problem (3), we need a couple of
technical lemmas.

Lemma 2.2. If X ∈ S and XA = AX, then

〈∇F(X), X〉 = 0

Proof. Since X ∈ S then ‖XA‖2
F = n, and we have

∇F(X) =
1
n

( 〈XA, I〉
n

XA− I
)

A

hence

〈∇F(X), X〉 = 1
n
〈XA, I〉

n
〈XAA, X〉 − 1

n
〈A, X〉

However, 〈XAA, X〉 = ‖XA‖2
F = n, so

〈∇F(X), X〉 = 〈XA, I〉
n

− 1
n
〈A, X〉 = 0

since 〈A, X〉 = 〈AX, I〉 = 〈XA, I〉.

Lemma 2.3. If X ∈ S, then √
n

‖A‖F
≤ ‖X‖F ≤

√
n‖A−1‖F

Proof. For every X, we have X = A−1 AX, and so

‖X‖F = ‖A−1 AX‖F ≤
√

n‖A−1‖F

On the other hand, since X ∈ S,
√

n = ‖XA‖F ≤ ‖X‖F‖A‖F, and hence

‖X‖F ≥
√

n
‖A‖F

and the result is established.
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2.1. The Negative Gradient Direction

For the numerical solution of (3), we start by considering the classical gradient iterations that,
from an initial guess X0, are given by

X(k+1) = X(k) − αk∇F(X(k))

where αk > 0 is a suitable step length. A standard approach is to use the optimal choice i.e., the
positive step length that (exactly) minimizes the function F(X) along the negative gradient direction.
We present a closed formula for the optimal choice of step length in a more general setting, assuming
that the iterative method is given by:

X(k+1) = X(k) + αkDk

where Dk is a search direction in the space of matrices.

Lemma 2.4. The optimal step length αk, that optimizes F(X(k) + αDk), is given by

αk =

(
〈X(k)A, I〉〈X(k)A, Dk A〉 − n 〈Dk A, I〉

)
(
〈Dk A, I〉〈X(k)A, Dk A〉 − 〈X(k)A, I〉〈Dk A, Dk A〉

)
Proof. Consider the auxiliary function in one variable

ψ(α) = F(X(k) + αDk) = 1− 〈X
(k)A, I〉+ α〈Dk A, I〉√
n‖X(k)A + αDk A‖F

Differentiating ψ(α), using that 〈X(k)A, X(k)A〉 = n, and also that

∂

∂α
‖X(k)A + αDk A‖F =

〈X(k)A, Dk A〉+ α〈Dk A, Dk A〉
‖X(k)A + αDk A‖F

and then forcing ψ′(α) = 0 the result is obtained, after some algebraic manipulations.

Remark 2.2. For our first approach, Dk = −∇F(X(k)), and so for the optimal gradient method (also known
as Cauchy method or steepest descent method) the step length is given by

αk =

(
n 〈∇F(X(k))A, I〉 − 〈X(k)A, I〉〈X(k)A,∇F(X(k))A〉

)
(
〈∇F(X(k))A, I〉〈X(k)A,∇F(X(k))A〉 − 〈X(k)A, I〉‖∇F(X(k))A‖2

F

) (4)

Notice that if instead of using the descent direction Dk = −∇F(X(k)), we use the ascent direction
Dk = ∇F(X(k)), in Lemma 2.4, the obtained αk that also forces ψ′(αk) = 0, is given by (4) but with a negative
sign in front. Hence, to guarantee that the step length αk is positive to minimize F along the negative gradient
direction to approximate A−1, instead of maximizing F along the gradient direction to approximate −A−1,
we will choose the step length αk as the absolute value of the expression in (4).

Since ‖I‖F =
√

n, the gradient iterations can be written as

X(k+1) = X(k) − αk√
n ‖X(k)A‖F

(
〈X(k)A, I〉
‖X(k)A‖2

F
X(k)A− I

)
A
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which can be further simplified by imposing the condition for uniqueness ‖X(k)A‖F =
√

n. In that
case, we set

Z(k+1) = X(k) − αk
n

(
〈X(k)A, I〉

n
X(k)A− I

)
A (5)

and then we multiply the matrix Z(k+1) by the factor
√

n/‖Z(k+1)A‖F to guarantee that X(k+1) ∈ S,
i.e., such that ‖X(k+1)A‖F =

√
n.

Concerning the condition that the sequence {X(k)} remains in T, in our next result, we establish
that if the step length αk remains uniformly bounded from above, then trace(X(k)A) > 0 for all k.

Lemma 2.5. Assume that trace(X(0)A) > 0 and that 0 < αk ≤ n3/2

‖A‖2
F

. Then,

trace(X(k)A) = 〈X(k)A, I〉 > 0 for all k

Proof. We proceed by induction. Let us assume that

wk := trace(X(k)A) = 〈X(k)A, I〉 > 0

It follows that
Z(k+1)A = X(k)A− αk

n

(wk
n

X(k)A− I
)

A2

and so
trace(Z(k+1)A) = wk −

αk
n

(wk
n

trace(X(k)A3)− trace(A2)
)

Now, since trace(A2) = 〈A, A〉 = ‖A‖2
F and

trace(X(k)A3) ≤ ‖X(k)A‖F‖A‖2
F =
√

n‖A‖2
F

we obtain that
trace(Z(k+1)A) ≥ (1− αk

n2

√
n‖A‖2

F)wk +
αk
n
‖A‖2

F

Since 0 < αk ≤ n3/2

‖A‖2
F

, then (1− αk
n2
√

n‖A‖2
F) > 0, and we conclude that

trace(Z(k+1)A) > 0

Since X(k+1) is obtained as a positive scaling factor of Z(k+1), then wk+1 > 0, and the result
is established.

Now, for some given matrices A, we cannot guarantee that the step length computed as the
absolute value of (4) will satisfy αk ≤ (n3/2)/‖A‖2

F for all k. Therefore, if trace(X(k+1)A) =

〈X(k+1)A, I〉 < 0, then we will set in our algorithm X(k+1) = −X(k+1) to guarantee that
trace(X(k+1)A) ≥ 0, and hence that the cosine between X(k+1)A and I is nonnegative, which is a
necessary condition to guarantee that X(k+1) remains in the PSD cone (see, e.g., [24,26,27].

We now present our steepest descent gradient algorithm that will be referred as the
CauchyCos Algorithm.
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Algorithm 1 : CauchyCos (Steepest descent approach on F(X) = 1− cos(XA, I))

1: Given X0 ∈ PSD
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set wk = 〈X(k)A, I〉
4: Set ∇F(X(k)) = 1

n
(wk

n X(k)A− I
)

A

5: Set αk =

∣∣∣∣∣ n 〈∇F(X(k))A, I〉 − wk〈X(k)A,∇F(X(k))A〉
〈∇F(X(k))A, I〉〈X(k)A,∇F(X(k))A〉 − wk‖∇F(X(k))A‖2

F

∣∣∣∣∣
6: Set Z(k+1) = X(k) − αk∇F(X(k))

7: Set X(k+1) = s
√

n Z(k+1)

‖Z(k+1)A‖F
, where s = 1 if trace(Z(k+1)A) > 0, s = −1 else

8: end for

We note that if we start from X(0) such that ‖X(0)A‖F =
√

n then by construction ‖X(k)A‖F =
√

n,
for all k ≥ 0; for example, X(0) = (

√
n/‖A‖F)I is a convenient choice. For that initial guess,

trace(X(0)A) = 〈X(0)A, I〉 > 0 and again by construction all the iterates will remain in the PSD
cone. Notice also that, at each iteration, we need to compute the three matrix–matrix products:
X(k)A, (wk

n X(k)A − I)A, and ∇F(X(k))A, which, for dense matrices, require n3 floating point
operations (flops) each. Every one of the remaining calculations (inner products and Frobenius
norms) are obtained with n column-oriented inner products that require n flops each. Summing
up, in the dense case, the computational cost of each iteration of the CauchyCos Algorithm
is 3n3 + O(n2) flops. In Section 2.5, we will discuss a sparse version of the CauchyCos Algorithm and
its computational cost.

2.2. Convergence Properties of the CauchyCos Algorithm

In spite of the resemblance with the classical Cauchy method for convex constrained
optimization, the CauchyCos algorithm involves certain key ingredients in its formulation that
splits it apart from the Cauchy method. Therefore, a specialized convergence analysis is required.
In particular, we note that the constraint set S on which the iterates are computed, thanks to the
scaling step 7, is not a convex set.

We start by establishing the commutativity of all iterates with the matrix A.

Lemma 2.6. If X(0)A = AX(0), then X(k)A = AX(k), for all k ≥ 0 in the CauchyCos Algorithm.
Furthermore, if X(0) is symmetric, then X(k) and X(k)A are symmetric for all k ≥ 0.

Proof. We proceed by induction. Assume that X(k)A = AX(k). It follows that:

AZ(k+1) = AX(k) − αk
n

(
〈X(k)A, I〉

n AX(k)A− A
)

A

= X(k)A− αk
n

(
〈X(k)A, I〉

n AX(k) − I
)

AA

=

(
X(k) − αk

n

(
〈X(k)A, I〉

n X(k)A− I
)

A
)

A

= Z(k+1)A

and since Z(k+1) and X(k+1) differ only by a scaling factor, then AX(k+1) = X(k+1)A. Hence, since
X(0)A = AX(0), the result holds for all k. The second property is proven similarly by induction.

It is worth noticing that, using Lemma 2.6 and (5), it follows by simple calculations that Z(k) as
well as X(k) are symmetric matrices for all k. In turn, if X(0)A = AX(0), this clearly implies using
Lemma 2.6 that X(k)A is also a symmetric matrix for all k.
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Our next result establishes that the sequences generated by the CauchyCos Algorithm are
uniformly bounded away from zero, and hence the algorithm is well-defined.

Lemma 2.7. If X(0)A = AX(0), then the sequences {X(k)}, {Z(k)}, and {Z(k)A} generated by the
CauchyCos Algorithm are uniformly bounded away from zero.

Proof. Using Lemmas 2.2 and 2.6 we have that

〈Z(k+1), X(k)〉 = ‖X(k)‖2
F − αk〈∇F(X(k)), X(k)〉 = ‖X(k)‖2

F

which combined with the Cauchy–Schwarz inequality and Lemma 2.3 implies that

‖Z(k+1)‖F ≥ ‖X(k)‖F ≥
√

n
‖A‖F

> 0

for all k. Moreover, since A is nonsingular then

‖Z(k+1)A‖F ≥
‖Z(k+1)‖F

‖A−1‖F
≥

√
n

‖A‖F ‖A−1‖F
> 0

is bounded away from zero for all k.

Theorem 2.2. The sequence {X(k)} generated by the CauchyCos Algorithm converges to A−1.

Proof. The sequence {X(k)} ⊂ S ∩ T, which is a closed and bounded set; therefore, there exist limit
points in S ∩ T. Let X̂ be a limit point of {X(k)}, and let {X(kj)} be a subsequence that converges to
X̂. Let us suppose, by way of contradiction, that ∇F(X̂) 6= 0.

In that case, the negative gradient, −∇F(X̂) 6= 0, is a descent direction for the function F at X̂.
Hence, there exists α̂ > 0 such that

δ = F(X̂)− F(X̂− α̂∇F(X̂)) > 0

Consider now an auxiliary function θ : IRn×n → IR given by

θ(X) = F(X)− F(X− α̂∇F(X))

Clearly, θ is a continuous function, and then θ(X(kj)) converges to θ(X̂) = δ. Therefore, for all k j
sufficiently large,

F(X(kj))− F(X(kj) − α̂∇F(X(kj))) = θ(X(kj)) ≥ δ/2

Now, since αkj
was obtained using Lemma 2.4 as the exact optimal step length along the negative

gradient direction, then using Remark 2.1, it follows that

F(X(kj+1)) = F(Z(kj+1)) = F(X(kj) − αkj
∇F(X(kj)))

< F(X(kj) − α̂∇F(X(kj))) ≤ F(X(kj))− δ

2

and thus,

F(X(kj))− F(X(kj+1)) ≥ δ

2
(6)

for all k j sufficiently large.
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On the other hand, since F is continuous, F(X(kj)) converges to F(X̂). However, the whole
sequence {F(X(k))} generated by the CauchyCos Algorithm is decreasing, and so F(X(k)) converges
to F(X̂), and since F is bounded below then for k j large enough

F(X(kj))− F(X(kj+1))→ 0

which contradicts (6). Consequently, ∇F(X̂) = 0.
Now, using Lemma 2.1, it follows that ∇F(X̂) = 0 implies X̂ = A−1. Hence, the subsequence

{X(kj)} converges to A−1. Nevertheless, as we argued before, the whole sequence F(X(k)) converges
to F(A−1) = 0, and by continuity the whole sequence {X(k)} converges to A−1.

Notice that Theorem 2.2 states that the sequence X(k) converges to A−1 which is in the PSD cone.
Hence, if X(0) is symmetric and X(0)A = AX(0), then X(k)A is symmetric (Lemma 2.6), and after a k
iterations (k large enough), the eigenvalues of X(k)A are strictly positive: as a consequence, X(k)A is
in the PSD cone.

Remark 2.3. The optimal choice of step length αk, as it usually happens when combined with the
negative gradient direction (see e.g., [28,29]), produces an orthogonality between consecutive gradient
directions, that in our setting becomes 〈∇F(Z(k+1)),∇F(X(k))〉 = 0. Indeed, αk minimizes
ψ(α) = F(X(k) − α∇F(X(k))), which means that

0 = ψ′(αk) = −〈∇F(X(k) − α∇F(X(k))),∇F(X(k))〉 = −〈∇F(Z(k+1)),∇F(X(k))〉

This orthogonality is responsible for the well-known zig-zagging behavior of the optimal gradient method,
which in some cases induces a very slow convergence.

2.3. A Simplified Search Direction

To avoid the zig-zagging trajectory of the optimal gradient iterates, we now consider a different
search direction:

D̂k ≡ D̂(X(k)) = − 1
n

(
〈X(k)A, I〉

n
X(k)A− I

)
(7)

to move from X(k) ∈ S ∩ T to the next iterate. Notice that D̂k A = −∇F(X(k)) and so D̂k can
be viewed as a simplified version of the search direction used in the classical steepest descent
method. Moreover, the direction D̂k in (7) is obtained from the direction Dk used by CauchyCos
by multiplying on the right by the matrix (A)−1, so it can be viewed as a right-preconditioning of
the method CauchyCos. Notice also that D̂k resembles the residual direction (X(k)A − I) used in
the minimal residual iterative method (MinRes) for minimizing ‖I − XA‖F in the least-squares sense
(see e.g., [6,10]). Nevertheless, the scaling factors in (7) differ from the scaling factors in the classical
residual direction at X(k). Note that MinRes here should not be confused with the Krylov method
MINRES [10].

For solving (3), we now present a variation of the CauchyCos Algorithm, that will be referred as
the MinCos Algorithm, which from a given initial guess X0 produces a sequence of iterates using the
search direction D̂k, while remaining in the compact set S ∩ T. This new algorithm consists of simply
replacing −∇F(X(k)) in the CauchyCos Algorithm by D̂k.
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Algorithm 2 : MinCos (simplified gradient approach on F(X) = 1− cos(XA, I))

1: Given X0 ∈ PSD
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do

3: Set wk = 〈X(k)A, I〉
4: Set D̂k = − 1

n
(wk

n X(k)A− I
)

5: Set αk =

∣∣∣∣∣ n 〈D̂k A, I〉 − wk〈X(k)A, D̂k A〉
〈D̂k A, I〉〈X(k)A, D̂k A〉 − wk‖D̂k A‖2

F

∣∣∣∣∣
6: SetZ(k+1) = X(k) + αkD̂k

7: Set X(k+1) = s
√

n Z(k+1)

‖Z(k+1)A‖F
, where s = 1 if trace(Z(k+1)A) > 0, s = −1 else

8: end for

As before, we note that if we start from X(0) = (
√

n/‖A‖F)I then by construction ‖X(k)A‖F =
√

n,
for all k ≥ 0. For that initial guess, trace(X(0)A) = 〈X(0)A, I〉 > 0 and again by construction all
the iterates remain in the PSD cone. Notice also that, at each iteration, we now need to compute
the two matrix–matrix products: X(k)A, and D̂k A, which for dense matrices require n3 flops each.
Every one of the remaining calculations (inner products and Frobenius norms) are obtained with
n column-oriented inner products that require n flops each. Summing up, in the dense case, the
computational cost of each iteration of the MinCos Algorithm is 2n3 +O(n2) flops. In Section 2.5, we
will discuss a sparse version of the MinCos Algorithm and its computational cost.

2.4. Convergence Properties of the MinCos Algorithm

We start by noticing that, unless we are at the solution, the search direction D̂k is a
descent direction.

Lemma 2.8. If X ∈ S ∩ T and ∇F(X) 6= 0, the search direction D̂(X) is a descent direction for the function
F at X.

Proof. We need to establish that, for a given X ∈ S ∩ T, 〈D̂(X),∇F(X)〉 < 0. Since A−1 is symmetric
and positive definite, then it has a unique square root which is also symmetric and positive definite.
This particular square root will be denoted as A−1/2. Therefore, since D̂(X)A = −∇F(X), and using
that trace(E1E2) = trace(E2E1), for given square matrices E1 and E2, it follows that

〈D̂(X),∇F(X)〉 = 〈D̂(X)AA−1,∇F(X)〉 = −〈∇F(X)A−1,∇F(X)〉
= −〈∇F(X)A−1/2,∇F(X)A−1/2〉 = −‖∇F(X)A−1/2‖2

F < 0

Remark 2.4. The step length in the MinCos Algorithm is obtained using the search direction D̂k in
Lemma (2.4). Notice that if we use −D̂k instead of D̂k, the obtained αk which also forces ψ′(αk) = 0 is the
one given by Lemma (2.4) but with a negative sign. Therefore, as in the CauchyCos Algorithm, to guarantee
that αk > 0 minimizes F along the descent direction D̂k to approximate A−1, instead of maximizing F along the
ascent direction−D̂kto approximate−A−1, we choose the step length αk as the absolute value of the expression
in Lemma (2.4).

We now establish the commutativity of all iterates with the matrix A.

Lemma 2.9. If X(0)A = AX(0), then X(k)A = AX(k), for all k ≥ 0 in the MinCos Algorithm.
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Proof. We proceed by induction. Assume that X(k)A = AX(k). We have that

AZ(k+1) = AX(k) − αk
n

(
〈X(k)A, I〉

n AX(k)A− A
)

= X(k)A− αk
n

(
〈X(k)A, I〉

n AX(k) − I
)

A

=

(
X(k) − αk

n

(
〈X(k)A, I〉

n X(k)A− I
)

A
)

= Z(k+1)A

and since Z(k+1) and X(k+1) differ only by a scaling factor, then AX(k+1) = X(k+1)A. Hence, since
X(0)A = AX(0), the result holds for all k.

It is worth noticing that using Lemma 2.9 and (5), it follows by simple calculations that Z(k),
X(k), and X(k)A in the MinCos Algorithm are symmetric matrices for all k. These three sequences
generated by the MinCos Algorithm are also uniformly bounded away from zero, and so the
algorithm is well-defined.

Lemma 2.10. If X(0)A = AX(0), then the sequences {X(k)}, {Z(k)}, and {Z(k)A} generated by the MinCos
Algorithm are uniformly bounded away from zero.

Proof. From Lemma 2.3, the sequence {X(k)} is uniformly bounded. For the sequence {Z(k)},
using Lemmas 2.2 and 2.9, we have that

〈Z(k+1)A1/2, X(k)A1/2〉 = 〈Z(k+1)A, X(k)〉 = 〈X(k)A, X(k)〉+ αk〈Dk A, X(k)〉
= 〈X(k)A, X(k)〉 − αk〈∇F(X(k)), X(k)〉 = 〈X(k)A, X(k)〉
= 〈X(k)A1/2, X(k)A1/2〉 = ‖X(k)A1/2‖2

F

where A1/2 is the unique square root of A, which is also symmetric and positive definite. Combining
the previous equality with the Cauchy–Schwarz inequality, and using the consistency of the Frobenius
norm, we obtain

‖Z(k+1)‖F‖A1/2‖F ≥ ‖Z(k+1)A1/2‖F ≥ ‖X(k)A1/2‖F (8)

Since X(k) ∈ S, then
√

n = ‖X(k)A‖F ≤ ‖X(k)A1/2‖F‖A1/2‖F, which combined with (8)
implies that

‖Z(k+1)‖F ≥
√

n
‖A1/2‖2

F
> 0

is bounded away from zero for all k. Moreover, since A is nonsingular then

‖Z(k+1)A‖F ≥
‖Z(k+1)‖F

‖A−1‖F
≥

√
n

‖A1/2‖2
F ‖A−1‖F

> 0

is also bounded away from zero for all k.

Theorem 2.3. The sequence {X(k)} generated by the MinCos Algorithm converges to A−1.

Proof. From Lemma 2.8, the search direction D̂(X) is a descent direction for F at X, unless
∇F(X) = 0. Therefore, since αk in the MinCos Algorithm is obtained as the exact minimizer of
F along the direction D(Xk) for all k, the proof is obtained repeating the same arguments shown in
the proof of Theorem 2.2, simply replacing −∇F(Y) by D(Y) for all possible instances Y.
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2.5. Connections between the Considered Methods and Sparse Versions

For a given matrix A, the merit function Φ(X) = 1
2‖I − XA‖2

F has been widely used for
computing approximate inverse preconditioners (see, e.g., [5,6,15,17–20,22]). In that case, the
properties of the Frobenius norm permit in a natural way the use of parallel computing. Moreover, the
minimization of Φ(X) can also be accomplished imposing a column-wise numerical dropping
strategy leading to a sparse approximation of A−1. Therefore, when possible, it is natural to compare
the CauchyCos and the MinCos Algorithms applied to the angle-related merit function F(X) with
the optimal Cauchy method applied to Φ(X) (referred from now on as the CauchyFro method), and
also to the Minimal Residual (MinRes) method applied to Φ(X) (see, e.g., [6,15]). Notice that, as we
mentioned before in Section 2.3, with respect to CauchyCos and MinCos, MinRes can be seen as a
right-preconditioning version of the method CauchyFro.

The gradient of Φ(X) is given by∇Φ(X) = −AT(I−XA), and so the iterations of the CauchyFro
method, from the same initial guess X(0) = (

√
n/‖A‖F)I used by MinCos and CauchyCos, can be

written as
X(k+1) = X(k) + αkGk (9)

where Gk = −∇Φ(X(k)) and the step length αk > 0 is obtained as the global minimizer of Φ(X(k) + αGk)

along the direction Gk, as follows

αk =
〈Rk, AGk〉
〈AGk, AGk〉

(10)

where Rk = I − AX(k) is the residual matrix at X(k). The iterations of the MinRes method can be
obtained replacing Gk by the residual matrix Rk in (9) and (10) (see [6] for details). We need to
remark that in the dense case, the CauchyFro method needs to compute two matrix-matrix products
per iteration, whereas the MinRes method by using the recursion Rk+1 = Rk − αk ARk needs one
matrix-matrix product per iteration.

We now discuss how to dynamically impose sparsity in the sequence of iterates {X(k)} generated
by either the CauchyCos Algorithm or the MinCos Algorithm, to reduce their required storage and
computational cost.

A possible way of accomplishing this task is to prescribe a sparsity pattern beforehand, which
is usually related to the sparsity pattern of the original matrix A, and then impose it at every
iteration (see e.g., [4,20–22]). At this point, we would like to mention that although there exist some
special applications for which the involved matrices are large and dense [30,31], frequently in real
applications the involved matrices are large and sparse. However, in general, the inverse of a sparse
matrix is dense anyway. Moreover, with very few exceptions, it is not possible to know a priori the
location of the large or the small entries of the inverse. Consequently, it is very difficult in general to
prescribe a priori a nonzero sparsity pattern for the approximate inverse.

As a consequence, to force sparsity in our gradient related algorithms, we use instead a
numerical dropping strategy to each column (or row) independently, using a threshold tolerance,
combined with a fixed bound on the maximum number of nonzero elements to be kept at each
column (or row) to limit the fill-in. This combined strategy will be fully described in our numerical
results section.

In the CauchyCos and MinCos Algorithms, the dropping strategy must be applied to the matrix
Zk+1 right after it is obtained at Step 6, and before computing Xk+1 at Step 7. That way, Xk+1 will
remain sparse at all iterations, and we guarantee that Xk+1 ∈ S ∩ T. The new Steps 7 and 8, in the
sparse versions of both algorithms, are given by

7 : Apply numerical dropping to Z(k+1) with a maximum number of nonzero entries;

8 : Set X(k+1) = s
√

n Z(k+1)

‖Z(k+1)A‖F
, where s = 1 if trace(Z(k+1)A) > 0, s = −1 else.



Mathematics 2016, 4, 46 12 of 20

Notice that, since all the involved matrices are symmetric, the matrix-matrix products required
in both algorithms can be performed using sparse-sparse mode column-oriented inner products (see,
e.g., [6]). The remaining calculations (inner products and Frobenius norms), required to obtain the
step length, must be also computed using sparse-sparse mode. Using this approach, which takes
advantage of the imposed sparsity, the computational cost and the required storage of both algorithms
are drastically reduced. Moreover, using the column oriented approach both algorithms have a
potential for parallelization.

3. Numerical Results

We present some numerical results to illustrate the properties of our gradient-type algorithms
for obtaining inverse approximations. All computations are performed in MATLAB using double
precision. To test the robustness of our methods, we present hereafter a variety of problems with
large scale matrices and very badly conditioned ones (non necessarily of big size) but for which the
building of an approximate inverse is difficult. Most of the matrices are taken from the Matrix Market
collection [32], which contains a large choice of benchmarks that are widely used.

It is worth mentioning that Schulz method [33] is another well-known iterative method for
computing the inverse of a given matrix A. From a given X(0), it produces the following iterates
X(k+1) = X(k)(2I − AX(k)), and so it needs two matrix–matrix products per iteration. Schulz method
can be obtained applying Newton’s method to the related map F̂(X) = X−1 − A, and hence it
possesses local q-quadratic convergence; for recent variations and applications see [34–36]. However,
the q-quadratic rate of convergence requires that the scheme is performed without dropping (see
e.g., [34]). As a consequence, Schulz method is not competitive with CauchyCos, CauchyFro, MinRes,
and MinCos for large and sparse matrices (see Section 2.5).

For our experiments, we consider the following test matrices in the PSD cone:

• from the Matlab gallery: Poisson, Lehmer, Wathen, Moler, and miij. Notice that the Poisson
matrix, referred in Matlab as (Poisson, N) is the N2 × N2 finite differences 2D discretization
matrix of the negative Laplacian on [0, 1]2 with homogeneous Dirichlet boundary conditions.

• Poisson 3D (that depends on the parameter N) is the N3 × N3 finite differences 3D
discretization matrix of the negative Laplacian on the unit cube with homogeneous Dirichlet
boundary conditions.

• from the Matrix Market [32]: nos1, nos2, nos5, and nos6.

In Table 1, we report the considered test matrices with their size, sparsity properties, and
two-norm condition number κ(A). Notice that the Wathen matrices have random entries so we
cannot report their spectral properties. Moreover, Wathen (N) is a sparse n × n matrix with
n = 3N2 + 4N + 1. In general, the inverse of all the considered matrices are dense, except the inverse
of the Lehmer matrix which is tridiagonal.

Table 1. Considered test matrices and their characteristics.

Matrix A Size (n × n) κ(A) A

Poisson (50) n = 2500 1.05 × 10+3 sparse
Poisson (100) n = 1000 6.01 × 10+3 sparse
Poisson (150) n = 22500 1.34 × 10+4 sparse
Poisson (200) n = 400000 2.38 × 10+4 sparse

Poisson 3D (10) n = 1000 79.13 sparse
Poisson 3D (15) n = 3375 171.66 sparse
Poisson 3D (30) n = 27,000 388.81 sparse
Poisson 3D (50) n = 125,000 1.05 × 10+3 sparse
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Table 1. Cont.

Matrix A Size (n × n) κ(A) A

Lehmer (100) n = 100 1.03 × 10+4 dense
Lehmer (200) n = 200 4.2 × 10+4 dense
Lehmer (300) n = 300 9.5 × 10+4 dense
Lehmer (400) n = 400 1.7 × 10+5 dense
Lehmer (500) n = 500 2.6 × 10+5 dense

minij (20) n = 20 677.62 dense
minij (30) n = 30 1.5 × 10+3 dense
minij (50) n = 50 4.13 × 10+3 dense

minij (100) n = 100 1.63 × 10+4 dense
minij (200) n = 200 6.51 × 10+4 dense

moler (100) n = 100 3.84 × 10+16 dense
moler (200) n = 200 3.55 × 10+16 dense
moler (300) n = 300 3.55 × 10+16 dense
moler (500) n = 500 3.55 × 10+16 dense

moler (1000) n = 1000 3.55 × 10+16 dense

nos1 n = 237 2.53 × 10+7 sparse
nos2 n = 957 6.34 × 10+9 sparse
nos5 n = 468 2.91 × 10+4 sparse
nos6 n = 675 8.0 × 10+7 sparse

3.1. Approximation to the Inverse with No Dropping Strategy

To add understanding to the properties of the new CauchyCos and MinCos Algorithms, we
start by testing their behavior, as well as the behavior of CauchyFro and MinRes, without imposing
sparsity. Since the goal is to compute an approximation to A−1, it is not necessary to carry on the
iterations up to a very small tolerance parameter ε, and we choose ε = 0.01 for our experiments.
For all methods, we stop the iterations when min{F(X(k)), Φ(X(k))} ≤ ε.

Table 2 shows the number of required iterations by the four considered algorithms when
applied to some of the test functions, and for different values of n. No information in some of
the entries of the table indicates that the corresponding method requires an excessive amount of
iterations as compared with the MinRes and MinCos Algorithms. We can observe that CauchyFro
and CauchyCos are not competitive with MinRes and MinCos, except for very few cases and for
very small dimensions. Among the Cauchy-type methods, CauchyCos requires less iterations than
CauchyFro, and in several cases the difference is significant. The MinCos and MinRes Algorithms
were able to accomplish the required tolerance using a reasonable amount of iterations, except for the
Lehmer(n) and minij(n) matrices for larger values of n, which are the most difficult ones in our list
of test matrices. The MinCos Algorithm clearly outperforms the MinRes Algorithm, except for the
Poisson 2D (n) and Poisson 3D (n) for which both methods require the same number of iterations. For
the more difficult matrices and especially for larger values of n, MinCos reduces in the average the
number of iterations with respect to MinRes by a factor of 4.

Table 2. Number of iterations required for all considered methods when ε = 0.01.

Matrix Size (n × n) CauchyCos CauchyFro MinRes MinCos

Poisson 2D (50) n = 2500 88 132 7 6
Poisson 2D (70) n = 4900 7 6

Poisson 2D (100) n = 1000 7 7
Poisson 2D (200) n = 40,000 7 7
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Table 2. Cont.

Matrix Size (n × n) CauchyCos CauchyFro MinRes MinCos

Poisson 3D (10) n = 1000 9 12 3 2
Poisson 3D (15) n = 3375 10 14 3 2
Poisson 3D (30) n = 27,000 3 3
Poisson 3D (50) n = 125,000 3 3

Lehmer (10) n = 10 888 1141 21 15
Lehmer (20) n = 20 9987 49,901 123 51
Lehmer (30) n = 30 355 109
Lehmer (40) n = 40 645 190
Lehmer (50) n = 50 987 293
Lehmer (70) n = 70 1399 423

Lehmer (100) n = 100 3905 1178
Lehmer (200) n = 200 16,189 4684

Minij (20) n = 20 31,271 63,459 209 45
Minij (30) n = 30 153,456 629,787 553 102
Minij (50) n = 50 1565 307

Minij (100) n = 100 6771 1259
Minij (200) n = 200 26,961 5057

Moler (100) n = 100 7 83 3 3
Moler (200) n = 200 77 15243 19 12
Moler (300) n = 300 105 22
Moler (500) n = 500 381 48

Moler (1000) n = 1000 1297 152

Wathen (10) n = 341 10,751 17,729 68 57
Wathen (20) n = 1281 495 1112 22 16
Wathen (30) n = 2821 24 17
Wathen (50) n = 7701 20 15

In Figure 1, we show the (semilog) convergence history for the four considered methods and for
both merit functions: F(X) and Φ(X), when applied to the Wathen matrix for n = 20 and ε = 0.01.
Once again, we can observe that CauchyFro and CauchyCos are not competitive with MinRes and
MinCos, and that MinCos outperforms MinRes. Moreover, we observe in this case that the function
F(X) is a better merit function than Φ(X) in the sense that it indicates with fewer iterations that a
given iterate is sufficiently close to the inverse matrix. The same good behavior of the merit function
F(X) has been observed in all our experiments.

Based on these preliminary results, we will only report the behavior of MinRes and MinCos for
the forthcoming numerical experiments.

3.2. Sparse Approximation to the Inverse

We now build sparse approximations by applying the dropping strategy, described in Section 2.5,
which is based on a threshold tolerance with a limited fill-in (l f il) on the matrix Z(k+1), at each
iteration, right before the scaling step to guarantee that the iterate X(k+1) ∈ S ∩ T. We define thr as
the percentage of coefficients less than the maximum value of the modulus of all the coefficients in a
column. To be precise, for each i-th column, we select at most l f il off-diagonal coefficients among the
ones that are larger in magnitude than thr× ‖(Z(k+1))i‖∞, where (Z(k+1))i represents the i-th column
of Z(k+1). Once the sparsity has been imposed at each column and a sparse matrix is obtained, say
sp(Z(k+1)), we guarantee symmetry by setting Z(k+1) = (sp(Z(k+1)) + sp(Z(k+1))T)/2.
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Figure 1: Convergence history for CauchyFro and CauchyCos (left), and MinRes and
MinCos (right) for two merit functions: F (X) (up) and Φ(X) (down), when applied to
the Wathen matrix for n = 20 and ε = 0.01.

3.2 Sparse approximation to the inverse

We now build sparse approximations by applying the dropping strategy, described in
Section 2.5, which is based on a threshold tolerance with a limited fill-in (lfil) on the
matrix Z(k+1), at each iteration, right before the scaling step to guarantee that the iterate
X(k+1) ∈ S ∩ T . We define thr as the percentage of coefficients less than the maximum
value of the modulus of all the coefficients in a column. To be precise, for each i-th column
we select at most lfil off-diagonal coefficients among the ones that are larger in magnitude
than thr × ‖(Z(k+1))i‖∞, where (Z(k+1))i represents the i-th column of Z(k+1). Once the
sparsity has been imposed at each column and a sparse matrix is obtained, say sp(Z(k+1)),
we guarantee symmetry by setting Z(k+1) = (sp(Z(k+1)) + sp(Z(k+1))T )/2.

We have implemented the relatively simple dropping strategy, described above, for both
MinRes and MinCos to make a first validation of the new method. Of course, we could use
a more sophisticated dropping procedure for both methods as one can find in [13]. The
current numerical comparison is preliminary and indicates the potential of MinCos versus
MinRes. We begin by comparing both methods when we apply the numerical described
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Figure 1. Convergence history for CauchyFro and CauchyCos (left), and MinRes and MinCos (right)
for two merit functions: F(X) (up) and Φ(X) (down), when applied to the Wathen matrix for n = 20
and ε = 0.01.

We have implemented the relatively simple dropping strategy, described above, for both MinRes
and MinCos to make a first validation of the new method. Of course, we could use a more
sophisticated dropping procedure for both methods as one can find in [6]. The current numerical
comparison is preliminary and indicates the potential of MinCos versus MinRes. We begin by
comparing both methods when we apply the numerical described dropping strategy on the Matrix
Market matrices.

Table 3 shows the performance of MinRes and MinCos when applied to the matrices nos1, nos2,
nos5, and nos6, for ε = 0.01, thr = 0.01, and several values of l f il. We report the iteration k (Iter)
at which the method was stopped, the interval [λmin, λmax] of (X(k)A), the quotient κ(X(k)A)/κ(A),
and the percentage of fill-in (% fill-in) at the final matrix X(k). We observe that, when imposing the
dropping strategy to obtain sparsity, MinRes fails to produce an acceptable preconditioner. Indeed,
as it has been already observed (see [6,15]) quite frequently that MinRes produces an indefinite
approximation to the inverse of a sparse matrix in the PSD cone. We also observe that, in all
cases, the MinCos method produces a sparse symmetric and positive definite preconditioner with
relatively few iterations and a low level of fill-in. Moreover, with the exception of the matrix nos6,
the MinCos method produces a preconditioned matrix (X(k)A) whose condition number is reduced
by a factor of approximately 10 with respect to the condition number of A. In some cases, MinRes
was capable of producing a sparse symmetric and positive definite preconditioner, but in those cases,
the MinCos produced a better preconditioner in the sense that it exhibits a better reduction of the
condition number, and also a better eigenvalues distribution. Based on these results, for the remaining
experiments, we only report the behavior of the MinCos Algorithm.
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Table 3. Performance of MinRes and MinCos when applied to the Matrix Market matrices nos1, nos2,
nos5, and nos6, for ε = 0.01, thr = 0.01, and different values of l f il.

Matrix Method κ(X(k)A)/κ(A) [λmin, λmax] of (X(k)A) Iter % Fill-in

nos1 (l f il = 10) MinCos 0.0835 [2.44 × 10−6,2.3272] 20 3.71
nos1 (l f il = 10) MinRes [−98.66,5.40]

nos6 (l f il = 10) MinCos 0.4218 [5.07 × 10−6,3.1039] 20 0.45
nos6 (l f il = 20) MinCos 0.2003 [8.51 × 10−6,3.0702] 20 0.82
nos6 (l f il = 10) MinRes [−0.7351,2.6001]
nos6 (l f il = 20) MinRes [−0.2256,2.2467]

nos5 (l f il = 5) MinCos 0.068 [0.002,1.36] 10 1.18
nos5 (l f il = 10) MinCos 0.0755 [00.0024,1.3103] 10 2.47
nos5 (l f il = 5) MinRes [−20.31,2.16]
nos5 (l f il = 10) MinRes 0.1669 [0.0021,1.7868] 10 2.36

nos2 (l f il = 5) MinCos 0.1289 [5.2 × 10−9,2.73] 10 0.52
nos2 (l f il = 10) MinCos 0.0891 [7.95 × 10−9,2.2873] 10 0.80
nos2 (l f il = 20) MinCos 0.0700 [9.7 × 10−9,1.9718] 10 1.14

nos2 (l f il = 5) MinRes [−0.3326,2.4869]
nos2 (l f il = 10) MinRes 0.0970 [4.21 × 10−9,1.5414] 10 0.93
nos2 (l f il = 20) MinRes 0.0861 [4.21 × 10−9,1.1638] 10 1.14

Table 4 shows the performance of the MinCos Algorithm when applied to the Wathen matrix
for different values of n and a maximum of 20 iterations. For this numerical experiment, we fix
ε = 0.01, thr = 0.04, and l f il = 20. For the particular case of the Wathen matrix when n = 50, we
show in Figure 2 that the (semilog) convergence history of the norm of the residual when solving
a linear system with a random right-hand side vector, using the Conjugate Gradient (CG) method
without preconditioning, and also using the preconditioner generated by the MinCos Algorithm after
20 iterations, fixing ε = 0.01, thr = 0.04, and l f il = 20. We also report in Figure 3 the eigenvalues
distribution of A and of X(k)A, at k = 20, for the same experiment with the Wathen matrix and n = 50.
Notice that the eigenvalues of A are distributed in the interval [0, 350], whereas the eigenvalues of
X(k)A are located in the interval [0.03, 1.4] (see Table 4). Even better, we can observe that most of
the eigenvalues are in the interval [0.3, 1.4], and very few of them are in the interval [0.03, 0.3], which
clearly accounts for the good behavior of the preconditioned CG method (see Figure 2).

Table 4. Performance of MinCos applied to the Wathen matrix for different values of n and a
maximum of 20 iterations, when ε = 0.01, thr = 0.04, and l f il = 20.

Matrix A Size (n × n) κ(X(k)A)/κ(A) [λmin, λmax] of (X(k)A) Iter % Fil-in

wathen (30) n=2821 0.0447 [0.0109, 1.3889] 20 0.73
wathen (50) n=7701 0.0461 [0.0366, 1.4012] 20 0.27
wathen (70) n=14981 0.0457 [0.0086, 1.3894] 20 0.14
wathen (100) n=30401 0.0467 [0.0289, 1.4121] 20 6.8436 × 10−2

Table 5. Performance of MinCos applied to the Poisson 2D matrix, for different values of n and a
maximum of 20 iterations, when ε = 0.01, thr = 0.04, and l f il = 40.

Matrix A Size n × n κ(X(k)A)/κ(A) [λmin, λmax] of (X(k)A) Iter % Fil-in

Poisson 2D (50) n = 2500 0.1361 [0.0138, 1.2961] 6 1.65
Poisson 2D (100) n = 10000 0.1249 [0.0039, 1.1452] 7 0.41
Poisson 2D (150) n = 22500 0.1248 [0.0017, 1.1459] 7 0.18
Poisson 2D (200) n = 40000 0.1246 [9.78 × 10−4,1.1484] 7 0.10
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Table 6. Performance of MinCos applied to the Poisson 3D matrix, for different values of n and a
maximum of 20 iterations, when ε = 0.01, thr = 0.01, and l f il = 40.

Matrix A Size n × n κ(X(k)A)/κ(A) [λmin, λmax] of (X(k)A) Iter % Fil-in

Poisson 3D (10) n=1000 0.3393 [0.1161, 1.4410] 2 2.09
Poisson 3D(15) n=3375 0.3357 [0.0561, 1.4639] 2 0.66
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Figure 2. Convergence history of the CG method applied to a linear system with the Wathen matrix,
for n = 50, 20 iterations, ε = 0.01, thr = 0.01, and l f il = 20, using the preconditioned generated by
the MinCos Algorithm and without preconditioning.
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Figure 3. Eigenvalues distribution of A (down) and of X(k)A (up) after 20 iterations of the MinCos
Algorithm when applied to the Wathen matrix for n = 50, ε = 0.01, thr = 0.01, and l f il = 20.

Tables 5–7 show the performance of the MinCos Algorithm when applied to the Poisson 2D, the
Poisson 3D, and the Lehmer matrices, respectively, for different values of n, and different values of
the maximum number of iterations, ε, thr, and l f il. We can observe that, for the Poisson 2D and 3D
matrices, the MinCos Algorithm produces a sparse symmetric and positive definite preconditioner
with very few iterations, a low level of fill-in, and a significant reduction of the condition number.
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Table 7. Performance of MinCos applied to the Lehmer matrix, for different values of n and a
maximum of 40 iterations, when ε = 0.01, thr = 0.06, and l f il = 100.

Matrix A κ(X(k)A)/κ(A) [λmin, λmax] of (X(k)A) Iter % Fil-in

Lehmer (100) 0.0150 [0.0223, 3.4270] 40 37.04
Lehmer (200) 0.0180 [0.0069, 5.0768] 40 38.34

For the Lehmer matrix, which is one of the most difficult considered matrices, we observe in
Table 7 that the MinCos Algorithm produces a symmetric and positive definite preconditioner with a
significant reduction of the condition number, but after 40 iterations and fixing l f il = 100, for which
the preconditioner accepts a high level of fill-in. If we impose a low level of fill-in, by reducing the
value of l f il, MinCos still produces a symmetric and positive definite matrix, but the reduction of the
condition number is not significant.

We close this section mentioning that both methods (MinCos and MinRes) produce sparse
approximations to the inverse with comparable sparsity as shown in Table 3 (last column). Notice also
that MinCos produces a sequence X(k) such that the eigenvalues of X(k)A are strictly positive at
convergence, which, in turn, implies that the matrices X(k) are invertible after a sufficiently large k.
This important property cannot be satisfied by MinRes.

4. Conclusions

We have introduced and analyzed two gradient-type optimization schemes to build sparse
inverse preconditioners for symmetric positive definite matrices. For that, we have proposed the
novel objective function F(X) = 1 − cos(XA, I), which is invariant under positive scaling and
has some special properties that are clearly related to the geometry of the PSD cone. One of the
new schemes, the CauchyCos Algorithm, is closely related to the classical steepest descent method,
and as a consequence, it shows in most cases a very slow convergence. The second new scheme,
denoted as the MinCos Algorithm, shows a much faster performance and competes favorably with
well-known methods. Based on our numerical results, by choosing properly the numerical dropping
parameters, the MinCos Algorithm produces a sparse inverse preconditioner in the PSD cone for
which a significant reduction of the condition number is observed, while keeping a low level of fill-in.
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