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Abstract: We perform a classification of the Lie point symmetries for the Black-Scholes-Merton
Model for European options with stochastic volatility, σ, in which the last is defined by a stochastic
differential equation with an Orstein-Uhlenbeck term. In this model, the value of the option is given
by a linear (1 + 2) evolution partial differential equation in which the price of the option depends
upon two independent variables, the value of the underlying asset, S, and a new variable, y. We find
that for arbitrary functional form of the volatility, σ(y), the (1 + 2) evolution equation always admits
two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of
solution symmetries. However, when σ(y) = σ0 and as the price of the option depends upon the
second Brownian motion in which the volatility is defined, the (1 + 2) evolution is not reduced to the
Black-Scholes-Merton Equation, the model admits five Lie point symmetries in addition to the linear
symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of
the Lie symmetries and we reduce the (1 + 2) evolution equation to a linear second-order ordinary
differential equation. Finally, we study two models of special interest, the Heston model and the
Stein-Stein model.

Keywords: lie point symmetries; financial mathematics; stochastic volatility; Black-Scholes
-Merton equation
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1. Introduction

The Black-Scholes-Merton Model for European options is based upon some Ansatz for the stock
price. Specifically, the process for the stock price is characterized by continuity, and it has the ability to
hedge continuously with transaction costs and has constant volatility [1–3].

In the Black-Scholes-Merton Model, the price of a financial asset is given by the soluton of the
stochastic differential equation

dSt = rStdt + σStdWt (1)
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where Wt is a Brownian motion, and the value u = u (t, S) of the option is given by the solution of the
(1 + 1) evolution equation,

1
2

σ2S2u,SS + rSu,S − ru + u,t = 0 (2)

in which t is time, S is the current value of the underlying asset, for example a stock price, and r is the
rate of return on a safe investment. The value of the option is subject to the satisfaction of the terminal
condition, u (T, S) = U (S), when t = T. Finally, σ is the volatility of the model.

The Black-Scholes-Merton Model assumes constant volatility σ. However, in real problems, σ is
not a constant. One possible generalisation of the model, Equation (2), is to consider that the volatility
depends upon the time, t, and on the value of the stock, S, i.e., σ = σ (t, S). It has been proposed that σ

is a function of a mean Orstein–Uhlenbeck process [4].
Consider that σ = f (y), where y is given by the stochastic differential equation with the

Orstein–Uhlenbeck term [5–7]:
dyt = α (m− yt) dt + βdẐt (3)

The new Brownian motion Ẑt can be correlated with Wt and be expressed as follows:

Ẑt = ρWt +
√

1− ρ2Zt (4)

in which Zt describes a Brownian motion independent of Wt and ρ is the correlation factor with
values |ρ| ≤ 1.

Hence, the Black-Scholes Equation (2) in the case of stochastic volatility is modified and the value
u of the option is given by the (1 + 2) evolution equation(

M̂1 + M̂2 + M̂3 + M̂4
)

u (t, S, y) = 0 (5)

where the operators, M̂1, M̂2, M̂3, M̂4, are defined as follows:

M̂1 =
1
2

f 2 (y) S2 ∂2

∂S2 + rS
∂

∂S
− r +

∂

∂t
(6)

M̂2 = ρβS f (y)
∂2

∂S∂y
, M̂3 = −βΛ (t, S, y)

∂

∂y
, and (7)

M̂4 =
1
2

β2 ∂2

∂y2 + α (m− y)
∂

∂y
(8)

The function Λ (t, S, y) is

Λ (t, S, y) = ρ
µ− r
f (y)

+ γ (t, S, y)
√

1− ρ2 (9)

and u (t, S, y) satisfies the terminal condition u (T, S, y) = U (S) at time t = T.
The operator M̂1 gives the Black-Scholes-Merton Equation (2) with volatility σ = f (y), M̂2

expresses the correlation term between the two Brownian motions, Wt and Ẑt, of the European option
and of the volatility, respectively, and M̂4 is the Orstein-Uhlenbeck process term. Finally. the term M̂3,
the so called premium term, expresses the market price of the volatility risk [6]. The function γ (t, S, y)
in Equation (9) is the risk-premium factor which drives the volatility and follows from the second
Brownian motion, Zt, where in the case of absolute correlation, i.e., |ρ| = 1, γ (t, S, y) does not play
any role in the model. The first term of the rhs side of Equation (9) is called the excess return-to-risk
ratio [6]. The statistical importance of stochastic volatility has been confirmed in [8].

The purpose of this work is the study of the Black-Scholes-Merton Model with stochastic volatility,
Equation (5), by using the method of group invariant transformations, specifically the Lie (point)
symmetries of the equation. The importance of Lie symmetries is that they provide a systematic method
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to facilitate the solution of differential equations because they provide first-order invariants which can
be used to reduce the differential equations. Moreover, Lie symmetries can be used for the classification
of differential equations. Furthermore, we can extract important information for the differential
equation, consequently for the model, from the group of invariant transformations admitted.

The first application of the Lie symmetries in financial modeling was performed by
Gazizov & Ibragimov in [9]. They studied the admitted group of invariant transformations for
the Black-Scholes-Merton Equation (2), with constant volatility and they proved that Equation (2)
admits as Lie symmetries the elements of Lie algebra, {A3,8 ⊕s A3,1} ⊕s ∞A1 ( In the Mubarakzyanov
Classification Scheme [10–13]). This means that Equation (2) is maximally symmetric and according to
the Theorem of Sophus Lie [14] there exists a transformation on the space of variables {t, S, u} in which
Equation (2) can be written in the form of the heat equation. The last was an important result because
the mathematical methods from physical science can be used for the study of differential equations in
financial mathematics. A similar result has been found for the one-factor model of commodities [15],
which means that the three different equations, the heat equation, the Black-Scholes-Merton equation
and the one-factor model of commodities equation, are equivalent at the mathematical level even if
they describe different subjects.

In recent years, Lie symmetries have covered a big range of applications in financial mathematics.
For instance, the group invariants of the Cox-Ingersoll-Ross Pricing Equation have been studied
in [16] and the nonlinear Merton model in [17]. As far as concerns the Asian option, a Lie symmetry
classification has been performed in [18]. As for generalisations of the Black-Scholes-Merton Model,
the Lie symmetries and the reduction process of the nonautonomous model can be found in [19,20],
while another generalisation of Equation (2) with a “source” was studied in [21].

Furthermore, in [22,23], the symmetry analysis of the space- and time-dependent one-factor model
of commodities and of the nonautonomous two-dimensional Black-Scholes-Merton Equations were
performed. For other applications of Lie symmetries in financial mathematics, see, for instance, [24–26],
and references therein.

The stochastic volatility model, Equation (5), is a (1 + 2) evolution equation. Below, we perform
a symmetry analysis and we determine the group invariant solutions. In particular, we restrict our
analysis to the model in which the risk premium factor vanishes without necessarily |ρ| = 1 and
from Equation (9), only the term which expresses the return-to-risk ratio survives. Moreover, we
study two models for European options with stochastic volatility, the Heston model [27] and the
Stein–Stein model [28]. The latter is a model without correlation between the two Brownian motions,
Wt and Ẑt, i.e., ρ = 0 in Equation (4). The plan of the paper is as follows.

In Section 2, we give the basic properties and definitions for the Lie point symmetries of differential
equations and we perform the symmetry classification for our model. We find that Equation (5) without
the risk premium factor is always invariant under the {3A1} opluss∞A1 Lie algebra. However, when
f (y) is constant, Equation (5) is invariant under a larger Lie algebra. The application of the Lie
symmetries to Equation (5) can be found in Section 3, in which we reduce the (1 + 2) evolution
equation by using the zeroth-order invariants provided by the Lie symmetries and we derive invariant
solutions. In Sections 4 and 5 we study two models of stochastic volatility for European options,
the Heston model and the Stein-Stein model, respectively. For these two models, we find that both
are invariant under the Lie algebra {3A1} ⊕s ∞A1, and we apply the Lie symmetries to solve the
equations of the two models. For the Heston model, the closed-form solution is expressed in terms of
Kummer Functions, whereas for the Stein–Stein model, the closed-form solution is expressed in terms
of Hypergeometric Functions. Furthermore, we give some numerical solutions for the two models.
Finally, in Section 6, we discuss our results and draw our conclusions
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2. Lie Symmetry Analysis

We consider the Black-Scholes-Merton Equation with stochastic volatility governed by the
evolution Equation (5) for which the premium term depends only upon the return-to-risk ratio.
For a time-independent rate-of-return, Equation (5) becomes

H : 0 =
1
2

f 2 (y) S2u,SS + ρβS f (y) u,Sy +
1
2

β2u,yy

+rSu,S +

[
α (m− y)− βρ

µ− r
f (y)

]
u,y − ru + u,t (10)

Let Φ be the map of an one-parameter point transformation such as

Φ (u (t, S, y)) = u′
(
t′, S′, y′

)
(11)

with infinitesimal transformation (ε is the parameter of smallness.)

t′ = t + εξ1 (t, S, y, u) (12)

S′ = S + εξ2 (t, S, y, u) (13)

y′ = y + εξ3 (t, S, y, u) (14)

u′ = u + εη (t, S, y, u) (15)

and generator

X =
∂t′

∂ε
∂t +

∂S′

∂ε
∂S +

∂y′

∂ε
∂y +

∂u′

∂ε
∂u (16)

Consider now that u (t, S, y) is a solution of Equation (10) and under the map Φ, Equation (11),
u′ (t′, S′, y′) is also a solution of Equation (10). Then, we say that the generator X, of the infinitessimal
transformation of the one-parameter point transformation, Φ, is a Lie (point) symmetry of
(Equation 10) and Equation (10) is invariant under the action of the map Φ. That means that there
exists a function ψ such that the following condition holds [29]

X[2] (H) = ψH, mod (H) = 0 (17)

or, equivalently,
X[2] (H) = 0 (18)

where X[2] is the second prologation/extension of X in the space of variables{
t, S, y, u, u,S, u,y, u,SS, u,Sy, uyy

}
. Specifically X[2] is defined from the following formula

X[2] = X + ηA
i ∂uA + ηA

ij ∂uA
ij

(19)

where ηA
i , ηA

ij are given by the relations

ηA
i = ηA

,i + uB
,i ηA

,B − ξ
j
,iu

A
,j − uA

,i uB
,j ξ

j
,B (20)

and

ηA
ij = ηA

,ij + 2ηA
,B(iu

B
,j) − ξk

,iju
A
,k + ηA

,BCuB
,i uC

,j − 2ξk
,(i|B|u

B
j)u

A
,k

− ξk
,BCuB

,i uC
,j uA

,k + ηA
,BuB

,ij − 2ξk
,(ju

A
,i)k − ξk

,B

(
uA

,k uB
,ij + 2uB

(,ju
A
,i)k

)
(21)
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The importance of the existence of a Lie symmetry for a partial differential equation is that from
the associated Lagrange’s system,

dxi

ξ i =
duA

ηA (22)

Zeroth-order invariants, U[0]
(

xk, uA
)

, can be determined which can be used to reduce the number of
the independent variables of the differential equation.

In the following, we perform a classification of the Lie symmetries of Equation (10). Function f (y)
is defined by the requirement that Equation (10) admit Lie symmetries. The latter requirement can
be seen as a geometric selection rule as the Lie symmetries are generated from the elements of the
Homothetic Algebra [30] of the (pseudo)Riemannian space, which defines the Laplace operator in
the (1 + 2) evolution Equation (10). In our case, the (pseudo)Riemannian manifold is defined by the
Brownian motions, Wt, Ẑt, of the stock price, S, and of the volatility, σ , respectively.

Before we proceed with the symmetry analysis, we remark that Equation (10) is a linear equation
which means that it always admits the linear symmetry, Xu = u∂u and the infinite-dinensional abelian
subalgebra of solutions, Xb = b (t, S, y) ∂u, where function b (t, S, y) , is a solution of the original
Equation (10) [31].

2.1. Classification

From the symmetry condition Equation (17), we get a system of thirty-one equations ( for the
derivation of the system, we used the symbolic package SYM of Mathematica [32,33]) in which the
solution of the system gives the form of the generator Equation (16) of the transformation Equation (11),
that transforms solutions into solutions. From the latter system, we have the following results.

For arbitrary function, f (y), Equation (10) admits the Lie symmetries

X1 = ∂t , X2 = S∂S (23)

plus the vector fields Xu, Xb. The algebra in which the Lie symmetries form is the{3A1} ⊕s ∞A1.
When f (y) = f0, Equation (10) admits the Lie symmetries

X̄1 = ∂t , X̄2 = S∂S , X̄3 = e−αt∂y (24)

X̄4 = 2 f0tS∂S + 2
β

α
f0ρ∂y +

((
f 2
0 − 2r

)
t + 2 ln S

)
u∂u (25)

X̄5 = eαt
(

2 f 2
0 βρS∂S + β2 f0∂y

)
+ (2α f0 (y−m) + 2β (µ− r)) u∂u (26)

plus the vector fields Xu, Xb. The Lie Brackets of the Lie algebra are given in Table 1.

Table 1. Lie brackets of the Lie symmetries of Equation (10) for f (y) = f0.[
X̄I , X̄J

]
X̄1 X̄2 X̄3 X̄4 X̄5 Xu

X̄1 0 0 −aX̄3 2 f 2
0 X̄2 +

(
f 2
0 − 2r

)
Xu αX̄5 0

X̄2 0 0 0 2Xu 0 0
X̄3 αX̄3 0 0 0 2α f0Xu 0
X̄4 −2 f 2

0 X̄2 −
(

f 2
0 − 2r

)
Xu 2Xu 0 0 0 0

X̄5 −aX̄5 0 −2α f0Xu 0 0 0
Xu 0 0 0 0 0 0

We remark that the two-factor model of commodities is invariant under the same algebra of
point transformations [15,23]. That is an expected result because the two-factor model of commodities
follows from the one-factor model in which the second factor, product, follows an Orstein-Uhlenbeck
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process. Moreover, as we discussed in the Introduction, the one-factor model is maximally symmetric
just like the Black-Scholes-Merton Equation.

On the other hand f (y) = f0 means that the volatility σ is constant. However, the second
Brownian motion, Ẑt, in the space wherein σ is defined, interacts with the Brownian motion Wt

and modifies the Black-Scholes-Merton Model. However, in the case for which the correlation ρ

vanishes, i.e., ρ = 0, Equation (10) is not reduced to Equation (2) but only when the Orstein-Uhlenbeck
process is identically zero, that is, β = 0, α = 0. Otherwise, the price u depends upon the
Orstein-Uhlenbeck process.

We continue with the reduction of Equation (10) by applying the zeroth-order Lie invariants.
Furthermore for every reduced equation we study the Lie symmetries.

3. Group Invariant Solutions

In this section, we apply the Lie symmetries in order to reduce Equation (10). We study the
two cases, f (y) = f0, and f (y) to be an arbitrary function. In order to perform the reduction and the
later equation to give a solution of the original problem, there should be a constraint between the Lie
symmetry vector and the terminal condition. However, we perform the reduction without considering
the terminal condition at the moment because the initial conditions can be modified from different
options. As far as the invariant solutions of the Black-Scholes-Merton Equation (2) are concerned,
see [34].

3.1. Arbitrary Function f (y)

For an arbitrary functional form of f (y), as we saw above, Equation (10) admits three Lie point
symmetries in addition to the infinite number of solution symmetries. The last cannot be used for the
reduction. Hence, we do not consider them. Moreover, a solution in which u does not depend upon
one of the independent variables is not an acceptable solution, that is, the static solution is of no interest.
Therefore, we perform reductions with the symmetry vectors Y1 = X1 + κ1Xu, Y2 = X1 + κ2Xu and
Y12 = X1 + cX2 + κ3Xu.

Reduction with respect to the Lie invariants of the symmetry vector Y1 gives

u (t, S, y) = exp[κ1t]v (S, y) (27)

where v (S, y) satisfies the equation

0 =
1
2

f 2 (y) S2v,SS + ρβS f (y) v,Sy +
1
2

β2v,yy

+rSv,S +

[
α (m− y)− βρ

µ− r
f (y)

]
v,y − (r− κ1) v (28)

For this equation, we have that except the linear symmetry and the infinite number of solution
symmetries (we call them trivial symmetries) the equation admits the vector field Y2 = S∂S, which is a
reduced symmetry. Therefore, the application of Y2 to Equation (28) gives the second-order ordinary
differential equation

β2w,yy +
[
2α (m− y) + 2β

f (y)

(
ρκ2 f 2 (y)− µ + r

)]
w,y +

[(
κ2

2 − 1
)

f 2 (y) + 2 (rκ2 − r + κ1)
]

w = 0 (29)

where w = w (y) and
u (t, S, y) = Sκ2 exp [κ1t]w (y) (30)

Equation (29) is a linear second-order differential equation, and it is well known that it is
maximally symmetric and is invariant under the special linear (sl) algebra sl (3, R) Lie algebra.

Similarly, if we perform a reduction with Y2, the reduced equation admits the Lie Symmetries X1,
Xv, Xb, and finally the solution is again given by Equation (30) with the constraint Equation (29)
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Consider the application of the Lie symmetry vector Y12 to Equation (29). We have that

u (t, S, y) = exp [k3t] v (z, y) , z = S exp[−ct] (31)

where

0 = z2 f (y) v,zz + 2ρβ f (y) v,zy + β2v,yy + 2 (r− c) zv,z

+2
[

α (m− y)− βρ
µ− r
f (y)

]
v,y − (r− κ3) v (32)

One can easily find that this equation only admits the Lie symmetry, z∂z, except the trivial
symmetries, which is a reduced symmetry. Therefore, the application of the zeroth-order invariants of
the symmetry vector (z∂z + κ4v∂v) in Equation (32) gives solution of the form Equation (30) with the
constraint Equation (29)

We continue with the determination of the group invariant solutions for constant f (y).

3.2. Constant Volatility

For f (y) = f0, Equation (10) admits six Lie point symmetries, plus the infinite number
of solution symmetries. Moreover, Equation (10) is an (1 + 2) evolution equation, and, in
order to reduce it to an ordinary differential equation, we have to apply the zeroth-order
invariants of two Lie symmetries. From Table 1, we select reducing Equation (10) by using the
following two-dimensional subalgebras AI = {Y1, Y2}, BI = {Y2, X̄3 + κXu}, BI I = {Y2, X̄5 + κXu},
CI = {X̄3 + κXu, X̄4} and CI I = {X̄4, X̄5} .

The reduction with the subalgebra AI we studied in the previous subsection and the solution is
Equation (30), where now from Equation (29) we have

w (y) = w1K

(
− c2

4α
,

1
2

,

(
α (m− y) + c1

2
)2

α

)
+ w2Λ

(
− c2

4α
,

1
2

,

(
α (m− y) + c1

2
)2

α

)

We have that w1 and w2 are constants,

c1 =
2β

f0

(
ρκ2 f 2

0 − µ + r
)

, c2 =
[(

κ2 − 1
)

f 2
0 + 2 (rκ2 − r + κ1)

]
and K, Λ are Kummer Functions.

We continue with the application of the remaining subalgebras.
The application of BI gives

u (t, S, y) = Sκ2 exp
(
κeαty

)
φI (t) (33)

where φI (t) is given by the first-order ordinary differential equation

2 f0φI,t +

[(
f 3
0 κ2 + 2 f0r

)
(κ2 − 1) + 2κβ

(
f 2
0 ρκ2 − µ + r +

αµ f0

β

)
eαt + f0β2κ2e2αt

]
φI = 0 (34)

with solution

ln
(

φI (t)
φI0

)
= −

(
f 2
0 κ2 + 2r

)
2

(κ2 − 1) t− 2κβ

2α f0

(
f 2
0 ρκ2 − µ + r +

αµ f0

β

)
eαt − β2κ2

4α
e2αt (35)

From the subalgebra BI I , we find the solution

u (t, S, y) = φI I (t) Sκ2 exp

(
α

β2 y2 +

((
κe−αt − 2αm

)
β2 f0

−
2
(
r− µ + ρκ2 f 2

0
)

β f0

)
y

)
(36)
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where φI I (t) is given by the expression

ln
(

φI I (t)
φI I0

)
= −1

2

[(
f 2
0 κ2 + 2r

)
(κ2 − 1) + 2α

]
t

+

[
− κ

αβ2 f 2
0

(
β
(

r− µ + ρκ2 f 2
0

)
+ αm f0

)
e−αt +

κ2

4α f 2
0 β2

e−2αt

]
(37)

For the subalgebra CI , we have the invariant solution

u (t, S, y) = Sψ(t) exp
(
κeαty

)
φI I I (t)

where
ψ (t) = − κβρ

α f0t
− r

f 2
0
+

1
2
+

2
4 f 2

0 t
(38)

and φI I I (t) is given by the expression

ln
(

φI I I (t)
φI I I0

)
= −1

2
ln t +

(
2ρ2 − αt

)
α2t

β2κ2e2αt

− κ

2α f0
eαt

(
2αm f + 2β

(
r− µ− 2ρr +

ρ

2
f 2
0

)
+

(
2r + f 2

0
)2

8 f 2
0

t

)
(39)

Finally, from the subalgebra CI I , we find the invariant solution

u (t, S, y) =
φIV (t)√
at− 2ρ2

Sψ̄(t,y) exp (V (t, y)) (40)

where

ψ̄ (t, y) =
4ρ f0a (m− y) + β

(
α
(

f 2
0 − 2r

)
t− 4ρ (µ− r)

)
+ αβ2

2β f 2
0 (αt− 2ρ2)

(41)

V (t, y) =

 α2

β2 (αt− 2ρ2)
y− a

2β

(
r− µ +

f 2
0
2 ρ− 2rρ

)
+ 2 f0αm

β2 f 2
0 (αt− 2ρ2)

 ty (42)

and function φIV (t) is given by the expression

ln
(

φIV (t)
φIV0

)
= −

f 2
0
(
8α− 4r− f 2

0
)
− 4r2

8 f 2
0 (αt− 2ρ2)

(
αt2 − 2ρ2t

)
+

(
f 2
0 − 2r

)2

2 f 2
0 α (αt− 2ρ2)

ρ4

+
2
(

f 2
0 − 2r2) ( f0αm− β (µ− r))

f 2
0 αβ (αt− 2ρ2)

ρ3 +
(4β (r− µ) + 2 f0αm)

β2 f0 (αt− 2ρ2)
mρ2

+
2 (µ− r)2

f 2
0 α (αt− 2ρ2)

ρ2 (43)

In the following section, we study a special model for stochastic volatility which has been
proposed by Heston [27].
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4. Heston Model

In the Heston model for stochastic volatility the stock price, S, and the volatility, σ = f (y), satisfy
the stochastic differential equation given below

dSt = rStdt + St
√

YtdWt and, (44)

dYt = θ (m̄−Yt) dt + δ
√

YtdẐt (45)

where, in comparison with Equations (1) and (3), we observe that f (y) =
√

y and β = δ
√

y. The
differential equation which corresponds to that model is

0 =
1
2

YS2u,SS + ρδYSu,SY +
1
2

δ2Yu,YY + rSu,S

+ (θ (m̄−Y)− λY) u,Y − ru + u,t (46)

Before we proceed with the symmetry analysis of Equation (46), we perform the coordinate
transformation Y = y2. Then, Equation (46) becomes

0 =
1
2

y2S2u,SS + βρySu,Sy +
1
2

β2u,yy + rSu,S

+
1
2

[
c1y +

(
c2

y

)]
u,y − ru + u,t (47)

in which we have made the replacements δ
2 → β, c1 = (θ − λ) and c2 = θm− β2. Equation (47) can

be compared with Equation (5) for f (y) = y. However, the risk premium factor of Equation (9) is not
zero and has absorbed the term of the Orstein–Uhlenbeck process.

From the Lie symmetry condition, Equations (17) for (47) we find that this equation admits the
Lie symmetries

X1 = ∂t , X2 = S∂S (48)

plus the Xu, Xb, that is, Equation (47) is invariant under the Lie algebra {3A1} ⊕s ∞A1.
We continue with the application of the Lie symmetries in order to reduce Equation (48). We follow

the results of Section 3.1, that is, we apply the group invariants of the subalgebra {Y1, Y2}.
We find that the corresponding invariant solution of Equation (47) is

u (t, S, y) = Sκ2 eκ1tW (y) (49)

where W (y) satisfies the linear second-order differential equation:

β2W,yy +

(
2κ2βρ + c1y +

c2

y

)
W,y +

(
2κ1 − 2r (1− κ2) + y2

(
κ2

2 − κ2
1

))
W = 0 (50)

the solution in closed form of which is expressed in terms of Kummer Functions.
In Figures 1 and 2, we give numerical solutions of Equation (50). Figure 1 is for negative value of

∆κ, whereas Figure 2 is for positive value of ∆κ, where ∆κ = κ2 − κ1.



Mathematics 2016, 4, 28 10 of 14

0

0

y

W
(y

)

Evolution of W(y) for β>0, c
1
<0 and c

2
<0

0

0

y

W
(y

)

Evolution of W(y) for β>0, c
1
<0 and c

2
>0

0

0

y

W
(y

)

Evolution of W(y) for β<0, c
1
<0 and c

2
<0

0

0

y

W
(y

)

Evolution of W(y) for β<0, c
1
<0 and c

2
>0

Figure 1. Evolution of the solution Equation (50) of the Heston model. For the numerical solutions, we
select ρ = 0.5, β = |0.7| , r = 0.5, κ1 = 1 and κ2 = 0.5. The left figures are for negative c1, c2, while the
right figures are for negative c1 and positive c2. The solid lines are for |c2| = 5 |c1| , the dotted lines are
for |c2| = 0.2 |c1| , and the dash-dash lines are for |c2| = |c1|. The top figures are for β > 0, while the
lower figures for β < 0.

0
0

y
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Evolution of W(y) for β>0, c
1
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0
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y
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)

Evolution of W(y) for β>0, c
1
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>0

0
0

y

W
(y

)

Evolution of W(y) for β<0, c
1
<0 and c

2
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0
0

y
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(y
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Evolution of W(y) for β<0, c
1
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>0

Figure 2. Evolution of the solution Equation (50) of the Heston model. For the numerical solutions, we
select ρ = 0.5, β = |0.7| , r = 0.5, κ1 = 1 and κ2 = 1.01. The left figures are for negative c1, c2, while
the right figures are for negative c1 and positive c2. The solid lines are for |c2| = 3

2 |c1| , the dotted lines
are for |c2| = 2

3 |c1| , and the dash-dash lines are for |c2| = |c1|. The top figures are for β > 0, while the
lower figures for β < 0.

5. Stein-Stein Model

The model which has been proposed by Elias M. Stein and Jeremy C. Stein [28] describes an
European option with stochastic volatility for which the correlation among the two Brownian motions
vanishes, i.e., ρ = 0, in Equation (4). Moreover, they considered that the risk premium factor is constant,
i.e., γ (t, S, y) = γ0 and the volatility is f (y) = y, while the stochastic differential equation is

dSt = rStdt + StYtdWt and (51)

dYt = θ (m̄−Yt) dt + δdẐt (52)
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Therefore, from Equation (5), we have that the (1 + 2) evolution differential equation of the
Stein-Stein model is

1
2

y2S2u,SS +
1
2

β2u,yy + rSu,S + [α (m− y)− βγ0] v,y − ru + u,t = 0 (53)

From the Lie symmetry condition Equation (17), we find that Equation (53) admits the
Lie symmetries

X1 = ∂t, X2 = S∂S , Xu = u∂u, Xb = b (t, S, y) ∂u (54)

which form the Lie algebra {3A1} ⊕s ∞A1, and it is the admitted algebra of the Heston model and of
Equation (10) for the arbitrary function f (y).

Following the steps of the previous sections, we find that the invariant solution of the Stein–Stein
model with respect to the Lie algebra {Y1, Y2} is

u (t, S, y) = Sκ2 eκ1tY (y) (55)

where Y (y) is given by the linear second-order differential equation

β2Y,yy + (2ω− 2ay)Y,y +
(

2r (κ2 − 1) + 2κ1 + y2
(

κ2
2 − κ2

1

))
Y = 0 (56)

The closed-form solution of this equation can be expressed in terms of the Hypergeometric
Functions, where ω = αm− βγ0. In Figures 3 and 4, we give the numerical evolution of Y (y) for
various values of the parameters, ω and α, for negative ∆κ and positive ∆κ, respectively, where
∆κ = κ2 − κ1.

0
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(y
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Evolution of Y(y) for ω=0

0

0

y
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(y

)

Evolution of Y(y) for ω>0

0

0

y

W
(y

)

Evolution of Y(y) for ω<0

0

0

y

W
(y

)

Evolution of Y(y) for ω=α

Figure 3. Evolution of the solution Equation (56) of the Stein–Stein model. For the numerical solutions,
we select β = 0.5, r = 0.5, κ1 = 1 and κ2 = 0.5. The figures are for ω = 0, ω = 0.5, ω = −0.5 and
ω = α, respectively. The solid lines are for α = 0.1, the dotted lines are for α = 0.3 and the dash-dash
lines are for α = 0.4.
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Evolution of Y(y) for ω<0

0
0

y
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(y

)
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Figure 4. Evolution of the solution Equation (56) of the Stein–Stein model. For the numerical solutions,
we select β = 0.5, r = 0.5, κ1 = 1 and κ2 = 1.01. The figures are for ω = 0, ω = 0.5, ω = −0.5 and
ω = α, respectively. The solid lines are for α = 1.1, the dotted lines are for α = 1.3 and the dash-dash
lines are for α = 1.4.

6. Conclusions

Volatility with a stochastic process has been shown to be essential for Financial Mathematics.
In this work, we studied the algebraic properties, i.e., the Lie symmetries, of the modified
Black-Scholes-Merton Equation for European options with a stochastic volatility. We have shown
that the autonomous model without the risk premium factor is invariant under a group of point
transformations which form the {3A1} ⊕s ∞A1 Lie Algebra for an arbitrary functional form of the
volatility, σ. Moreover, when the volatility is constant but the price of the option depends on the
second Brownian motion, in which the volatility is defined, the modified Black-Scholes-Merton Model
is invariant under six, plus the infinity, Lie point symmetries and it is not maximally symmetric as
the Black-Scholes-Merton Equation with nonstochastic volatility is.

Furthermore, we showed that the Black-Scholes-Merton Model, in which the volatility is
constant, but is defined by an Orstein-Uhlenbeck process, is invariant under the same group of
point transformations as that of the two-factor model of commodities. The reason for that is that the
two models have in common the terms which follow from the Orstein-Uhlenbeck process.

Moreover, we applied the zeroth-order invariants of the Lie symmetries, and we reduced the
model to a linear second-order differential equation. As far as the case of constant volatility is
concerned, we found the closed forms of the group invariant solutions.

Finally, we studied the algebraic properties and the invariant solutions of two models, the Heston
model and the Stein-Stein model, with stochastic volatility of special interest. For each model, we
found the invariant solution and we gave some figures for the evolution of the models. Of course
because Equation (5) is a linear equation, the general solution is given by the linear combination of the
invariant solutions that we have found, while the latter are constrained by the initial conditions and
the boundary conditions of the model.

A general consideration of Equation (5), in which the risk premium factor plays a role is still in
progress, and the results will be published elsewhere.
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