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Abstract: In a series of papers, we discussed the solution of Laplace’s differential equation (DE) by
using fractional calculus, operational calculus in the framework of distribution theory, and Laplace
transform. The solutions of Kummer’s DE, which are expressed by the confluent hypergeometric
functions, are obtained with the aid of the analytic continuation (AC) of Riemann–Liouville
fractional derivative (fD) and the distribution theory in the spaceD′R or the AC of Laplace transform.
We now obtain the solutions of the hypergeometric DE, which are expressed by the hypergeometric
functions, with the aid of the AC of Riemann–Liouville fD, and the distribution theory in the space
D′r,R, which is introduced in this paper, or by the term-by-term inverse Laplace transform of AC of
Laplace transform of the solution expressed by a series.

Keywords: Kummer’s differential equation; hypergeometric differential equation; distribution
theory; operational calculus; fractional calculus; Laplace transform

1. Introduction

Stimulated by Yosida’s work [1,2], in which the solution of Laplace’s differential equation (DE)
is obtained with the aid of the operational calculus of Mikusiński [3], we are concerned in [4–6],
with the DE or fractional DE of the form:

m

∑
l=0

(alt + bl) · 0Dlσ
R u(t) = f (t), t > 0, (1)

where σ = 1
2 or σ = 1, m = 2, and al ∈ C and bl ∈ C are constants.

In solving the DE, we assume that the solution u(t) and the inhomogeneous part f (t) for t > 0
are expressed as a linear combination of

gν(t) :=
1

Γ(ν)
tν−1, (2)

for ν ∈ C\Z<1, where Γ(ν) is the gamma function.
In [5,6], 0Dβ

Ru(t) is the analytic continuation (AC) of Riemann–Liouville fractional
derivative (fD), which was introduced in [7,8] and is reviewed in [9]. It is defined for u(t) and f (t)
satisfying the following conditions.

Condition A. u(t)H(t) and f (t)H(t) are expressed as a linear combination of gν(t)H(t) for ν ∈ S,
where S is an enumerable set of ν ∈ C\Z<1 satisfying Re ν > −M for some M ∈ Z>−1.
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We now adopt Condition A. We then express u(t) as follows:

u(t) = ∑
ν∈S

uν−1gν(t) = ∑
ν∈S

uν−1
1

Γ(ν)
tν−1, (3)

where uν−1 ∈ C are constants.
For ν ∈ C\Z<1, 0Dβ

Rgν(t) is defined such that

0Dβ
Rgν(t) =

{
gν−β(t), ν− β ∈ C\Z<1,
0, ν− β ∈ Z<1.

(4)

When β = n ∈ Z>−1, 0Dn
Rgν(t) = dn

dtn gν(t). Throughout the present paper, the equations involving β

are valid for β ∈ C, but in the applications given in Sections 4–7, we use them only for β = n ∈ Z>−1,
when 0Dn

Rgν(t) = dn

dtn gν(t).
We use R, C and Z to denote the sets of all real numbers, of all complex numbers and of all

integers, respectively. We also use R>r := {x ∈ R|x > r} for r ∈ R, +C := {z ∈ C|Re z > 0},
Z>a := {n ∈ Z|n > a}, Z<b := {n ∈ Z|n < b} and Z[a,b] := {n ∈ Z|a ≤ n ≤ b} for a, b ∈ Z

satisfying a < b. We use Heaviside’s step function H(t), which is defined such that (i) H(t) = 1 for
t > 0 and = 0 for t ≤ 0, and (ii) when f (t) is defined on R>r, f (t)H(t− r) is equal to f (t) when t > r
and to 0 when t ≤ r.

In [4–6], we take up a modified Kummer’s DE as an example, which is

t · d2

dt2 u(t) + (c− bt) · d
dt

u(t)− ab · u(t) = 0, t > 0, (5)

where a ∈ C, b ∈ C and c ∈ C are constants. Kummer’s DE is this DE with b = 1 [10,11]. If c /∈ Z,
the basic solutions of Equation (5) are given by

u1(t) := 1F1(a; c; bt), (6)

u2(t) := t1−c · 1F1(a− c + 1; 2− c; bt). (7)

Here 1F1(a; c; z) = ∑∞
k=0

(a)k
k!(c)k

zk is the confluent hypergeometric series, where z ∈ C,

(a)n = ∏n−1
k=0 (a + k) for a ∈ C and n ∈ Z>0, and (a)0 = 1. These solutions are expressed as linear

combinations of gν(t).

Remark 1. In [4–6], a, b and c in Equation (5) are expressed as γ1 + 1, −α and
γ1 + γ2 + 2, respectively.

In [4,5], we consider the theory of distributions in the space D′R, which is presented in [12,13]
and is explained briefly in Section 3.3. The solution of Equation (1) with the aid of distributions in
D′R is presented in [5], assuming that the solution satisfies Condition A. Both of the solutions given
by Equations (6) and (7), of Equation (5), satisfy Condition A, and we can obtain both of them, by
solving Equation (5) by this method.

In [4], we adopt the following condition.

Condition B. u(t)H(t) and f (t)H(t) are expressed as a linear combination of gν(t)H(t) for ν ∈ S1,
where S1 is a set of ν ∈ +C.

When Condition B is satisfied, 0Dβ
Ru(t) of a function u(t) denotes the Riemann–Liouville fD

which is defined when u(t)H(t) is locally integrable on R, and hence 0Dβ
Rgν(t) is defined only for

ν ∈ +C, satisfying Equation (4). In this case, the DE given by Equation (1) in terms of the distribution
theory in space D′R is presented in [4]. The solutions of fractional DE with constant coefficients are
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presented in [12,13]. In [4], the solution given by Equation (6) of Equation (5), satisfies Condition B,
and hence we can obtain it by solving Equation (5) by this method. However, the solution given
by Equation (7) satisfies Condition B only when 1− c > −1, and hence we can obtain it only when
1− c > −1, by this method.

Condition C. There exists λ ∈ R>0 such that u(t)e−λt → 0 as t→ ∞.

In [6], it was mentioned that, when Conditions B and C are satisfied, the Laplace transform
of u(t) exists and the DE is solved with the aid of Laplace transform, and that the solutions of
Equation (5), satisfying Condition B, satisfy Condition C and hence are obtained by using the Laplace
transform.

In [6], the AC of Laplace (AC-Laplace) transform is introduced as in Section 1.1 given below, and
it is shown that, when Conditions A and C are satisfied, the AC-Laplace transform of u(t), which is
denoted by û(s) = LH [u(t)] = LH [u(t)](s), exists and the DE given by Equation (1) is solved with
the aid of the AC-Laplace transform. In fact, the AC-Laplace transform of gν(t) and of u(t) given by
Equation (3) are expressed as

ĝν(s) = LH [gν(t)] = s−ν, ν ∈ C\Z<1, (8)

û(s) = LH [u(t)] = ∑
ν∈S

uν−1 ĝν(s). (9)

We review the solution in terms of the AC-Laplace transform in Section 2, and the solution with
the aid of the distribution theory in Section 3. In Section 4 we confirm the following lemma.

Lemma 1. Both of the solutions given by Equations (6) and (7), of Equation (5), satisfy Conditions A
and C, and hence we can obtain both of them, by solving Equation (5) by using distribution theory in
the space D′R and also by using the AC-Laplace transform.

In Section 5, we consider the hypergeometric DE, which is given by

t(1− t) · d2

dt2 u(t) + (c− (a + b + 1)t) · d
dt

u(t)− ab · u(t) = 0, t > 0, (10)

where a ∈ C, b ∈ C and c ∈ C are constants.
If c /∈ Z, the basic solutions of Equation (10) in [10,11] are given by

u1(t) := 2F1(a, b; c; t), (11)

u2(t) := t1−c · 2F1(1 + a− c, 1 + b− c; 2− c; t), (12)

where 2F1(a, b; c; z) = ∑∞
n=0

(a)n(b)n
n!(c)n

zn of z ∈ C is the hypergeometric series.

Remark 2. These solutions of Equation (10) converge only at t satisfying |t| < 1, and do not satisfy
Condition A, and they are not obtained by the methods stated above.

We introduce the theory of distributions in the space D′r,R, in Section 3.4. We now use the step
function Hr(t), which is defined for r ∈ R>0 such that (i) Hr(t) = 1 for 0 < t < r and = 0 for t ≤ 0 or
t ≥ r, and (ii) when f (t) is defined on R>0 ∩R<r, f (t)Hr(t) is equal to f (t) for 0 < t < r and to 0 for
t ≤ 0 or t ≥ r.

Condition D. Condition A with H(t) replaced by Hr(t) is valid.
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In Section 5, we show that when u(t) satisfies Condition D, we can solve Equation (10) with
the aid of distributions in D′r,R.

Definition 1. Let u(t) be given by Equation (3) and satisfy Condition D. Then, we define its AC of
Riemann–Liouville fD of order β ∈ C, by

0Dβ
Ru(t) = ∑

ν∈S, ν−β/∈Z<1

uν−1gν−β(t), (13)

which satisfies Condition D.

Definition 2. Let u(t) be given by Equation (3) and satisfy Condition D. Then, we define û(s) =

LS[u(t)] = LS[u(t)](s) by

û(s) = LS[u(t)] = ∑
ν∈S

uν−1 ĝν(s). (14)

We call this the AC-Laplace transform series of u(t).
For the solutions of Equation (10), the existence of the AC-Laplace transform is not guaranteed,

but we can define û(s) by Equation (14). We can then set up a DE satisfied by the thus-defined û(s).
In Section 5, we write the DE for the û(s), and its solution in the form of Equation (14) is obtained.
We find that the obtained series converges for no value of s, and yet we obtain the solution u(t) by
the term-by-term inverse Laplace transform of the series û(s).

The solutions given by Equations (11) and (12), of Equation (10), satisfy Condition D for r = 1,
and we show that they are obtained by using the distribution theory in the space D′r,R and also by
using the AC of Laplace transform series, in Section 5.

In Section 6, we show that the Bessel functions J±ν(t) are the solusions of Bessel’s DE with the aid
of the AC-Laplace transform. In Section 7, some discussions are given on Hermite’s DE. Concluding
remarks are given in Section 8.

1.1. Definition of the AC-Laplace Transform

The AC-Laplace transform f̂ (s) = LH [ f (t)] of a function f (t) is defined in [6] as follows.

Condition E. fγ(z) is expressed as fγ(z) = zγ−1 f1(z) on a neighborhood of R>0, for 0 ≤ arg z < 2π,
where γ ∈ C\Z<1, and f1(z) is analytic on the neighborhood of R>0.

Definition 3. Let fγ(z) and u(t) = fγ(t) satisfy Conditions E and C, respectively. Then, we define
the AC-Laplace transform f̂γ(s) for γ ∈ C\Z<1, by f̂γ(s) = LH [ fγ(t)], where

LH [ fγ(t)] = e−iπγ 1
2i sin πγ

∫
CH

fγ(ζ)e−sζ dζ, γ ∈ C\Z. (15)

When γ = n ∈ Z>0, we put LH [ fn(t)] = limγi→n LH [tγi−1 · f1(t)], where γi ∈ C\Z. Here, CH is the
contour which appears in Hankel’s formula giving the AC of the gamma function Γ(z), so that CH
is the contour which starts from ∞ + iε, goes to δ + iε, encircles the origin counterclockwise, goes to
δ− iε, and then to ∞− iε, where δ ∈ R>0 and ε ∈ R>0 satisfy ε 5 1 and δ < 1, see [14] (Section 12.22).

Remark 3. f̂γ(s) defined by Definition 3 is an analytic continuation of the Laplace transform defined
by f̂γ(s) =

∫ ∞
0 fγ(t)e−stdt for Re γ > 0, as a function of γ.
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1.2. Remarks on Recent Developments

Here, we call attention to recent developments on the solutions of differential equations related
with fractional calculus and perturbation method, which are based on He’s variational iteration
method (VIM) [15]. By using the VIM, He gave the fD and fI which involve the terms determined by
the initial or boundary condition. Liu et al. [16] discussed the solution of heat conduction in a fractal
medium with the aid of He’s fD. Kumar et al. discussed the solution of partial differential equations
involving time-fD by using Laplace transform and perturbation method based on the VIM; see [17,18]
and references in them. In [19,20], discussions are given on the fractional complex transform, which
reduces an equation involving fD to an equation involving only integer-order derivatives.

2. AC-Laplace Transform

In the present section and Section 2.1, we assume that u(t) satisfies Conditions C and A, and we
put û(s) = LH [u(t)].

Lemma 2. Let ν ∈ C\Z<1 and n ∈ Z>−1. Then

tn · gν(t)= (ν)n · gν+n(t), (16)

(−1)n dn

dsn ĝν(s)= (ν)n · ĝν+n(s), (17)

where (ν)n is Pochhammer’s symbol, so that (ν)n = Γ(ν+n)
Γ(ν) .

Proof We confirm Equation (16) by using Equation (2) on both sides of Equation (16). By Equation (8),
LH [gν(t)] = ĝν(s) = s−ν. By taking derivatives of this equation repeatedly, we obtain Equation (17).
�

Lemma 3. Let ν ∈ C\Z<1, n ∈ Z>−1 and β ∈ C. Then

LH [tn · gν(t)] = (−1)n dn

dsn ĝν(s), (18)

Proof Equation (18) is obtained by comparing Equations (16) and (17) with Equation (8). �

Applying Lemma 3 to Equation (4), with the aid of Equation (8), we obtain

LH [tn · 0Dβ
Rgν(t)] =

{
(−1)n dn

dsn ĝν−β(s) = (−1)n dn

dsn [sβ ĝν(s)], ν− β ∈ C\Z<1,
0, ν− β ∈ Z<1.

(19)

Lemma 4. Let ν ∈ C\Z<1, n ∈ Z>−1 and β ∈ C. Then

LH [tn · 0Dβ
Rgν(t)]= (−1)n dn

dsn [s
β ĝν(s)]− (−1)n dn

dsn 〈s
β ĝν(s)〉z, (20)

where

〈sβ ĝν(s)〉z =
{

0, ν− β ∈ C\Z<1,
sβ ĝν(s) = ĝ−k(s) = sk, −k = ν− β ∈ Z<1.

(21)

Proof Here, 〈sβ ĝν(s)〉z is so defined that Equation (20) with Equation (21) represents Equation (19).
�
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Lemma 5. Let u(t) be expressed by Equation (3), n ∈ Z>−1 and β ∈ C . Then

LH [tn · u(t)]= (−1)n dn

dsn û(s), (22)

LH [tn · 0Dβ
Ru(t)]= (−1)n dn

dsn [s
βû(s)]− 〈(−1)n dn

dsn [s
βû(s)]〉z, (23)

where

〈(−1)n dn

dsn [s
βû(s)]〉z = (−1)n dn

dsn 〈s
βû(s)〉z, 〈sβû(s)〉z = ∑

ν∈S
−k=ν−β∈Z<1

uν−1sk. (24)

Proof We confirm these with the aid of Equation (9) and Lemmas 3 and 4. �

Remark 4. Let β = n ∈ Z>−1. Then, Equation (24) gives 〈û(s)〉z = 0, and

〈snû(s)〉z =
n−1

∑
k=0

n−k∈S

un−k−1sk, n ∈ Z>0, (25)

so that

〈û(s)〉z = 0, 〈s · û(s)〉z = u0, 〈s2 · û(s)〉z = u1 + u0s, 〈s3 · û(s)〉z = u2 + u1s + u0s2, · · · . (26)

Theorem 1. Let u(t) satisfy Conditions C and A, and be expressed by Equation (3). Then, the AC-Laplace
transform û(s) is expressed as Equation (9) and there exists M ∈ R>0 such that the series given by
Equation (9) converges for |s| > M.

2.1. Recipe of Solving Differential Equation with Polynomial Coefficients

We now give a recipe of solving the DE with polynomial coefficients, which is given by

2

∑
l=0

(alt2 + blt + cl) ·
dl

dtl u(t) = f (t), t > 0, (27)

where al ∈ C, bl ∈ C and cl ∈ C for l ∈ Z[0,2] are constants. We then introduce the function p(t, s) by

p(t, s) =
2

∑
l=0

(alt2 + blt + cl) · sl , (28)

and express Equation (27) as

p(t,
d
dt
)u(t) = f (t), t > 0. (29)

In Sections 4 and 5, we discuss modified Kummer’s DE given by Equation (5) and the
hypergeometric DE given by Equation (10).

We obtain the following theorems, with the aid of Lemma 5.

Theorem 2. Let u(t) in the form of Equation (3) be the solution of Equation (29). Then û(s) given by
Equation (9) is a solution of the DE:

p(− d
ds

, s)û(s) = f̂ (s) + 〈p(− d
ds

, s)û(s)〉z. (30)
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Theorem 3. Let û(s) in the form of Equation (9) be a solution of Equation (30). Then, the corresponding
u(t) given by Equation (3) is a solution of Equation (29).

Corollary 4. Let û(s) be a solution of

p(− d
ds

, s)û(s)= f̂ (s). (31)

If the obtained û(s) satisfies

〈p(− d
ds

, s)û(s)〉z = 0, (32)

then u(t) given by Equation (3) is a solution of Equation (29), that is of Equation (27).

2.2. Term-by-Term Operators for u(t) and û(s)

The AC of Riemann–Liouville fD: 0Dβ
Ru(t) and the AC-Laplace transform series: LS[u(t)], of

u(t) in the form of Equation (3), are defined by Equation (13) and Equation (14). We now define the
operators which appear in Lemma 5.

Definition 4. Let n ∈ Z>0, β ∈ C and γ ∈ C, and let u(t) and û(s) be expressed as Equation (3) and
Equation (14), respectively. Then, we adopt

tn · u(t)= ∑
ν∈S

(tn · uν−1gν(t)), (33)

sβû(s)= ∑
ν∈S

(sβ · uν−1 ĝν(s)), sγ(sβû(s)) = sγ+βû(s), (34)

(−1)n dn

dsn [s
βû(s)]= ∑

ν∈S
[(−1)n dn

dsn (s
βuν−1 ĝν(s))]. (35)

Proposition 5. Let the operators on the lhs of the equations in Definition 2, 3 and 4 be defined by the respective
rhs. Then, Theorems 2 and 3 and Corollary 4 are valid.

3. Operational Calculus in the Spaces D′R and D′r,R

We now consider the theory of distributions in the spaces D′R and D′r,R, which are explained
briefly in Sections 3.3 and 3.4, respectively.

3.1. Operational Calculus in the Spaces D′R
In the theory of distributions in D′R, a regular distribution is such a distribution that can

be regarded as a function which is locally integrable on R. In the present paper, when the
product u(t)H(t) ∈ Lloc(R), we consider the regular distribution ũ(t) which is regarded to be
equal to u(t)H(t). We then denote this correspondence between a distribution and a function by
ũ(t) •−◦ u(t)H(t). Here, u(t)H(t) ∈ Lloc(R) denotes that u(t)H(t) is locally integrable on R.
From Equation (2), we have g1(t) = 1. We put H̃(t) = g̃1(t), and then we obtain H̃(t) •−◦
g1(t)H(t) = H(t).

Definition 5. In the space D′R, the differential operator Dλ of order λ ∈ C is defined as follows:

(i) If Re ν > 0 and u(t)H(t) ∈ Lloc(R), then D−νũ(t) •−◦ [0D−ν
R u(t)]H(t).

(ii) If h(t) ∈ D′R, then Dλh(t) ∈ D′R .
(iii) The index law stated in the following lemma is valid.
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Lemma 6. Let h(t) ∈ D′R . Then, the index law:

DλDµh(t) = Dλ+µh(t), (36)

is valid for every pair of λ ∈ C and µ ∈ C.

Dirac’s delta function δ(t) ∈ D′R is the distribution defined by δ(t) = DH̃(t).
We now introduce the correspondence even between a distribution, which is not a regular one,

and a function, as follows.

Definition 6. Let ν ∈ C, u(t) and v(t) = 0Dν
Ru(t) satisfy u(t)H(t) ∈ Lloc(R) and 0D−ν

R v(t) = u(t).
Then, ṽ(t) = Dνũ(t) •−◦ 0Dν

Ru(t)H(t) = v(t)H(t).

We now define g̃ν(t) for ν ∈ C by

g̃ν(t) = D−ν+1H̃(t) = D−νδ(t) = ĝν(D)δ(t). (37)

From Equations (2) and (4), we have g1(t) = 1, gν(t) = 0D−ν+1
R g1(t) and g1(t) = 0Dν−1

R gν(t) for
ν ∈ C\Z<1. Since g1(t)H(t) = H(t) ∈ Lloc(R), by Definition 6, we have

g̃ν(t) = ĝν(D)δ(t) •−◦ gν(t)H(t), ν ∈ C\Z<1. (38)

Remark 5. Note here that when Re ν ≤ −1, g̃ν(t) is not a regular distribution.

Lemma 7. Let ν ∈ C\Z<1 and n ∈ Z>−1. Then

(−1)n ∂n

∂Dn g̃ν(t)= (−1)n ∂n

∂Dn ĝν(D)δ(t) •−◦ [tn · gν(t)]H(t), (39)

where the derivative with respect to D is taken regarding D as a variable.

Proof By comparing Equation (18) with Equation (38), we confirm this. �

By Equations (37) and (36), we have

Dβ g̃ν(t) = Dβ−νδ(t) = g̃ν−β(t). (40)

Comparing this with Equations (4) and (38), we have

Lemma 8. Let ν ∈ C\Z<1 and β ∈ C. Then

Dβ g̃ν(t)− 〈Dβ g̃ν(t)〉z =Dβ ĝν(D)δ(t)− 〈Dβ ĝν(D)〉zδ(t) •−◦ [0Dβ
Rgν(t)]H(t), (41)

where

〈Dβ g̃ν(t)〉z = 〈Dβ ĝν(D)〉zδ(t) =

{
0, ν− β ∈ C\Z<1,
Dβ g̃ν(t) = g̃−k(t) = Dkδ(t), −k = ν− β ∈ Z<1.

(42)

Definition 7. Let u(t) be expressed by Equation (3). Then, we define the distribution ũ(t) by

ũ(t) := û(D)δ(t) = ∑
ν∈S

uν−1 g̃ν(t) = ∑
ν∈S

uν−1 ĝν(D)δ(t), (43)

in accordance with Equation (37).
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Definition 8. We adopt Definition 4 with û(s), ĝν(s), s and d
ds replaced by ũ(t) = û(D)δ(t),

g̃ν(t) = ĝν(D)δ(t), D and ∂
∂D , respectively.

Lemma 9. Let u(t) be expressed by Equation (3), n ∈ Z>−1 and β ∈ C . Then

(−1)n ∂n

∂Dn ũ(t)= (−1)n ∂n

∂Dn û(D)δ(t) •−◦ [tn · u(t)]H(t), (44)

(−1)n ∂n

∂Dn Dβũ(t)− 〈(−1)n ∂n

∂Dn Dβũ(t)〉z =(−1)n ∂n

∂Dn [D
βû(D)]δ(t)− 〈(−1)n ∂n

∂Dn [D
βû(D)]〉zδ(t)

•−◦ [tn · 0Dβ
Ru(t)]H(t), (45)

where 〈Dβû(D)〉z and 〈(−1)n ∂n

∂Dn [Dβû(D)]〉z are defined by Equation (24) with − d
ds and s replaced

by − ∂
∂D and D, respectively.

Proof The first equalities in Equations (44) and (45) are due to Definition 7. When u(t) = gν(t) for
ν ∈ C\Z<−1, Equation (44) is Equation (39). Equation (45) for n = 0 in this case is Equation (41).
Equation (45) for n > 0 in this case is derived by applying Equation (44) to Equation (41). When u(t)
is expressed by Equation (3), we confirm Equations (44) and (45) by using the rhs of Equations (43),

(14) and (3) in place of ũ(t), û(D) and u(t), respectively, in Equations (44) and (45), and comparing
the respective equations for the case of u(t) = gν(t) for ν ∈ C\Z<1. �

3.1.1. Recipe of Solving Linear Differential Equation with Polynomial Coefficients

By applying Lemma 9 to the DE given by Equation (29), we obtain the following lemma.

Lemma 10. The DE for ũ(t) = û(D)δ(t) corresponding to Equation (29) is

p(− ∂

∂D
, D)û(D)δ(t) = f̃ (t) + 〈p(− ∂

∂D
, D)û(D)〉zδ(t). (46)

Theorem 6. When ũ(t) = û(D)δ(t) is a solution of Equation (46), the corresponding u(t) is a solution of
Equation (29).

Proposition 7. Let û(s) be a solution of Equation (30), and ũ(t) = û(D)δ(t) obtained from it be expressed
in the form of Equation (43). Then u(t) given by Equation (3) is a solution of Equation (29).

Corollary 8. Let û(s) be a solution of Equation (31) and ũ(t) = û(D)δ(t), which is obtained from it, be
expressed in the form of Equation (43). If the obtained ũ(t) satisfies

〈p(− ∂

∂D
, D)û(D)〉zδ(t)= 0, (47)

then u(t) given by Equation (3) is a solution of Equation (29).

3.2. Operational Calculus in the Space D′r,R

For the function Hr(t) defined below Equation (12) in the Introduction section, we define the
regular distribution H̃r(t) in the space D′r,R, so that H̃r(t) •−◦ g1(t)Hr(t) = Hr(t), and then define
δr(t) ∈ D′r,R by δr(t) = DH̃r(t) = δ(t)− δ(t− r). We can use the formulas presented in Section 3.1
for the space D′R, also in the space D′r,R, if we replace H(t), H̃(t) and δ(t), by Hr(t), H̃r(t) and
δr(t), respectively.

In Section 4, Theorem 1 applies. In Section 5, the rhs of Equation (44) for n = 0 is u(t)Hr(t) =

∑ν∈S uν−1gν(t)Hr(t), which converges at |t| < 1. Although û(s) converges for no value of s, we
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regard that the rhs of Equation (44) converges at |t| < 1, and the lhs of Equation (44) represents
the corresponding regular distribution. The result obtained for u(t) is then the one obtained by the
term-by-term inverse Laplace transform of û(s), which is expressed as Equation (14).

3.3. Distributions in the Space D′R
Distributions in the space D′ are first introduced [21–24]. The distributions are either regular

ones or their derivatives. A regular distribution in D′ corresponds to a function which is locally
integrable on R. The space D, that is dual to D′, is the space of testing functions, which are infinitely
differentiable on R and have a compact support. A distribution h ∈ D′ is a functional, to which
〈h, φ〉 ∈ C is associated with every φ ∈ D. When f̃ ∈ D′ corresponds to a function f , then we put
〈 f̃ , φ〉 =

∫ ∞
−∞ f (t)φ(t)dt.

Definition 9. Let f̃ (t) be a regular distribution in D′ and f (t) be the function corresponding to it.
If h(t) ∈ D′ is expressed by h(t) = Dn f̃ (t) for n ∈ Z>−1, then

〈h, φ〉 = 〈Dn f̃ , φ〉 =
∫ ∞

−∞
f (t)[Dn

Wφ(t)]dt, (48)

for every φ(t) ∈ D , where Dn
Wφ(t) = (−1)n dn

dtn φ(t).

Lemma 11. Dn for n ∈ Z>−1 are operators in the space D′.

In the present study, we consider functions gν(t) and 0D−λ
R gν(t) for ν ∈ R>0 and λ ∈ R>0,

and the distributions g̃ν(t) and D−λ g̃ν(t) corresponding to them. We then desire to introduce the
operator D−λ

W such that 〈D−λh, φ〉 = 〈h, D−λ
W φ〉 for h ∈ D′ and φ ∈ D. However, we find that D−λ

W φ

does not belong to D.
In this situation, we consider the problem in the space D′R [12,13]. A regular distribution in D′R

is such a distribution that it corresponds to a function which is locally integrable on R and has a
support bounded on the left. The spaceDR, that is dual toD′R, is the space of testing functions, which
are infinitely differentiable on R and have a support bounded on the right.

Definition 10. Definition 9 with D′ and D replaced by D′R and DR , respectively, is valid.

Lemma 12. Dν for ν ∈ C are operators in the space D′R.

3.4. Distributions in the Space D′r,R

The space Dr,R for r ∈ R is such a subspace of DR, that if φ(t) ∈ Dr,R, φ(t) = 0 for t ≥ r.
A regular distribution f̃ (t) ∈ D′r,R is such a distribution in D′r,R that it corresponds to a function
which is locally integrable on (−∞, r), and has a support bounded on the left.

Definition 11. Definition 9 with D′ and D replaced by D′r,R and Dr,R , respectively, is valid.

Lemma 13. Dν for ν ∈ C are operators in the space D′r,R.

Now the rhs of Equation (48) may be expressed as
∫ r
−∞ f (t)[Dn

Wφ(t)]dt.

4. Solution of Modified Kummer’s DE

We now study the modified Kummer’s DE given by Equation (5). We define pK(t, s) by

pK(t, s) = t · s2 + (c− bt)s− ab = t(s2 − bs) + cs− ab. (49)
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Then Equation (5) is expressed as pK(t, d
dt )u(t) = 0, t > 0, and the DE which corresponds to

Equation (30) is

pK(−
d
ds

, s)û(s) = − d
ds

[(s2 − bs)û(s)] + (cs− ab)û(s) = −(1− c)u0, (50)

where the rhs is evaluated by using the first equality and Equations (24) and (26) as

〈pK(−
d
ds

, s)û(s)〉z = −
d
ds

(u1 + u0 · s− b · u0) + c · u0 = −u0 + c · u0. (51)

4.1. Solution Satisfying (1− c)u0 = 0

When (1− c)u0 = 0, the rhs of Equation (50) is 0, and the solution of Equation (50) is given by

û(s)=Csa−1(s− b)−1−a+c = Cs−2+c
∞

∑
k=0

(1 + a− c)k
k!

(
b
s
)k

=Cs−2+c · 1F0(1 + a− c; ;
b
s
), |s| > |b|, (52)

where 1F0(a; ; z) = ∑∞
k=0

(a)k
k! zk and C is an arbitrary constant. If 1− c /∈ Z<1, û(s) is of the form of

Equation (9), and we can take its inverse Laplace transform. Then, choosing C = Γ(2− c), we obtain

u(t) = Γ(2− c)t1−c
∞

∑
k=0

(1 + a− c)k
k!Γ(2− c + k)

bktk = t1−c · 1F1(1 + a− c; 2− c; bt), t > 0, (53)

by using the formula Γ(2− c + k) = Γ(2− c)(2− c)k. This is the solution given by Equation (7).
By Corollary 4, we confirm the following lemma.

Lemma 14. If 1− c /∈ Z<0, then u(t) given by Equation (53) is a solution of Equation (5).

The derivation of this lemma based on the distribution theory is as follows. When 1− c /∈ Z<0,
ũ(t) = û(D)δ(t) takes the form of Equation (43), and satisfies pK(− ∂

∂D , D)û(D)δ(t) = (1 − c)u0 ·
δ(t) = 0. We put C = Γ(2− c), and then the corresponding solution u(t) is given by Equation (53),
by Corollary 8.

4.2. Solution Satisfying u0 = 1

In [4–6], the other solution given by Equation (6) of Equation (5) is obtained by solving the
inhomogeneous Equation (50) for b 6= 0, 1− c 6= 0 and u0 = 1. We note here that the method using
the following lemma with the aid of the solution given by Equation (53), which is already obtained,
is easier.

Lemma 15. If u(a, c; bt) is a solution of Equation (5), t1−cu(1 + a− c, 2− c; bt) is also a solution of
the same equation.

Proof We put u(t) = tλw(t) in Equation (5), and then we obtain Equation (5) with a, c and u
replaced by 1 + a− c, 2− c and w, respectively, when λ = 1− c. �
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4.3. Solution by the Basic Method

We note that the solutions of Equations (5) and (50) are obtained by using the basic method
of solution, which is explained in [14] (Section 10.3). In that method, the solution of Equation (5) is
assumed to be given by

u(t) = tα
∞

∑
k=0

pktk, (54)

where α ∈ C\Z<1, pk ∈ C and p0 6= 0. Then, by Theorem 2, we have

û(s) = s−α−1
∞

∑
k=0

p̂ks−k, (55)

where p̂k = pkΓ(α + k + 1).
In solving Equation (5), Equation (54) is put in it. In solving Equation (50), Equation (55) is

put in it. We then note that the condition of p̂0 = p0Γ(α + 1) = C 6= 0 requires (i) α = 1− c and
p̂0 = p0Γ(2− c) 6= 0, or (ii) α = 0 and p̂0 = p0 = u0 6= 0. Then p̂k or pk for k ∈ Z>0 are determined by

p̂k = p̂k−1
α + a + k− 1
α + c + k− 1

b = p0Γ(α + 1)
(α + a)k
(α + c)k

bk,

pk = pk−1
α + a + k− 1

(α + c + k− 1)(α + k)
b = p0

(α + a)k
(α + c)k(α + 1)k

bk. (56)

When α = 0, we have

p̂k = p0
(a)k
(c)k

bk, pk = p0
(a)k

k!(c)k
bk. (57)

When α = 1− c, we have

p̂k = p0Γ(2− c)
(1 + a− c)k

k!
bk, pk = p0

(1 + a− c)k
k!(2− c)k

bk. (58)

Using Equation (58) with α = 1 − c and p0 = 1 in Equations (55) and (54), we obtain
Equations (52) and (53), respectively. Using Equation (57) with α = 0 and p0 = 1 in Equation (54),
we obtain Equation (6).

4.4. Solution by the Modified Nishimoto’s Method

In [25], the solution of Kummer’s DE is given by modified Nishimoto’s method, where the
solution is expressed by fD of a function. In that paper, the solution given by Equation (53) of
Equation (5) is obtained by using Lemma 11 and Proof of Lemma 10 in [25] (Section 3.2).

Remark 6. In Lemmas 9 and 10 in [25], four of Kummer’s eight solutions of Kummer’s DE are given.
We note here that these lemmas are applicable to the modified Kummer’s DE, if we introduce the
following replacements in Sections 3.1 and 3.2 in [25]. We replace (i): (11) in Lemma 9 and in Proof
of Lemma 9 by (18), (ii): ez in Equations (14), (16) and (17) by eδ·z; (iii): 1 and −1 in the column
for δl in Table 2 by δ and −δ, respectively; (iv): 1F1(∗; ∗; z) and 1F1(∗; ∗;−z) in (16) and (17) by

1F1(∗; ∗; δ · z) and 1F1(∗; ∗;−δ · z) , respectively, and (v): δ4 = −δ3 = −1 in Proof of Lemma 9 by
δ4 = −δ3 = −δ.
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5. Solution of the Hypergeometric DE

In solving the hypergeometric DE given by Equation (10), we introduce pH(t, s), by

pH(t, s) = t(1− t) · s2 + [c− (a + b + 1)t] · s− ab = −t2 · s2 + t[s2 − (a + b + 1)s] + cs− ab. (59)

Now , we put û(s) = LS[u(t)] and then the DE which corresponds to Equation (30) is

pH(−
d
ds

, s)û(s) = − d2

ds2 [s
2û(s)]− d

ds
[(s2 − (a + b + 1)s)û(s)] + (cs− ab) · û(s) = −(1− c)u0, (60)

where the rhs is evaluated by using the first equality and Equations (24) and (26) as

〈pH(−
d
ds

, s)û(s)〉z = −u0 + c · u0. (61)

Lemma 16. Let û(s) be a solution of Equation (60), û(s) = sa−1ŵ(s) and

pW(t, s) = −t2 · s + t(s− (1− a + b))− (a− c). (62)

Then , ŵ(s) is a solution of the following DE:

pW(− d
ds

, s)ŵ(s) = − d2

ds2 [s · ŵ(s)]− d
ds

[(s− (1− a + b))ŵ(s)]− (a− c)ŵ(s) = −(1− c)u0s−a. (63)

Proof We put û(s) = sλv̂(s) in Equation (60). By using d
ds [s

λv̂(s)] = sλ[λs−1v̂(s) + d
ds v̂(s)] and

d2

ds2 [s
λv̂(s)] = sλ{λ(λ− 1)s−2v̂(s) + 2λ

d
ds

[s−1v̂(s)] +
d2

ds2 v̂(s)}, (64)

we obtain

− d2

ds2 [s
2v̂(s)]− d

ds
[(s− (1− 2λ + a + b))s · v̂(s)]− [(λ− c)s + (λ− a)(λ− b)]v̂(s)

= −(1− c)u0s−λ.

When λ = a and ŵ(s) = s · v̂(s), this gives Equation (63). �

5.1. Solution Satisfying (1− c)u0 = 0

In this section, we use the distribution theory in the space D′r,R for r = 1, so that δ1(t) appears.

Lemma 17. Let a− c /∈ Z<0. Then, we have the following complementary solution (C-solution) of
Equation (63):

ŵ(s) = Ks−1−a+c
∞

∑
k=0

(1 + b− c)k(1 + a− c)k
k!

s−k = Ks−1−a+c · 2F0(1 + b− c, 1 + a− c; ; s−1), (65)

where K is any constant, and 2F0(a, b; ; z) = ∑∞
k=0

(a)k(b)k
k! zk.

Proof For pW(t, s) given by Equation (62), we choose the DE for w(t) as follows:

pW(t,
d
dt
)w(t) = (t− t2)

d
dt

w(t)− [(1− a + b)t + (a− c)]w(t) = 0, t > 0. (66)
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The solution of this DE is

w(t)=C1 · ta−c(1− t)−1−b+c = C1 · ta−c
∞

∑
k=0

(1 + b− c)k
k!

tk

=C1 · ta−c
1F0(1 + b− c; ; t), 0 < t < 1, (67)

where C1 is an arbitrary constant. ŵ(s) given by Equation (65) is the term-by-term Laplace transform
of this w(t). Theorem 2 and Proposition 5 show that Equation (63) for (1− c)u0 = 0 is satisfied by
this ŵ(s), since the first equality of Equation (63) shows 〈pW(− d

ds , s)ŵ(s)〉z = 0,
If a− c /∈ Z<0, this w(t) takes the form of Equation (3), and the corresponding w̃(t), expressed

as Equation (43), is given by w̃(t) = ŵ(D)δ1(t), when ŵ(s) is given by Equation (65) and K = C1 ·
Γ(1 + a− c). �

Remark 7. We note that ŵ(s) given by Equation (65) converges for no value of s, but w̃(t) =

ŵ(D)δ1(t) obtained by using this ŵ(s) corresponds to Equation (67). Moreover, we note that
Equation (67) is obtained from Equation (65) by term-by-term inverse Laplace transform.

We choose K = Γ(2− c). Then, by Lemmas 16 and 17,

û(s) = sa−1ŵ(s) = Γ(2− c)s−2+c · 2F0(1 + a− c, 1 + b− c; ; s−1) (68)

is a solution of Equation (63). Now, by its term-by-term inverse Laplace transform, or from ũ(t) =

û(D)δ1(t) = Da−1ŵ(D)δ1(t), we obtain u(t) given by Equation (12), if 2− c /∈ Z<1. We note that
(1− c)u0 = 0 for this solution u(t) if 1− c /∈ Z<1.

Remark 8. Since û(s) = sa−1ŵ(s), ũ(t) = û(D)δ1(t) = Da−1ŵ(D)δ1(t), and hence the solution
given by Equation (12) is obtained by using Equation (67) in u(t) = 0Da−1

R w(t).

Remark 9. Remark 7 is valid even when w, Equations (65) and (67) are replaced by u, Equations (68)
and (12), respectively.

5.2. Solution Satisfying u0 = 1

The other solution given by Equation (11) is obtained by solving the inhomogeneous
Equation (63) for 1− c 6= 0 and u0 = 1. We note here that the method using the following lemma
with the solution given by Equation (12), which is already obtained, is easier.

Lemma 18. If u(a, b, c; t) is a solution of Equation (10), t1−c · u(1 + a− c, 1 + b− c, 2− c; t) is also a
solution of the same equation.

Proof We put u(t) = tλw(t) in Equation (10), and then we obtain Equation (10) with a, b, c and u
replaced by 1 + a− c, 1 + b− c, 2− c and w, respectively, when λ = 1− c. �
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5.3. Solution by the Basic Method

The statements in Section 4.3 are valid even if we replace Equations (50), (5), (52) and (53) by

Equations (60), (10), (68) and (12), respectively. Here, Equations (56)∼(58) also must be replaced by

p̂k = p̂k−1
(α + a + k− 1)(α + b + k− 1)

α + c + k− 1
= p0Γ(α + 1)

(α + a)k(α + b)k
(α + c)k

,

pk = pk−1
(α + a + k− 1)(α + b + k− 1)

(α + c + k− 1)(α + k)
= p0

(α + a)k(α + b)k
(α + c)k(α + 1)k

. (69)

When α = 0, we have

p̂k = p0
(a)k(b)k
(c)k

, pk = p0
(a)k(b)k

k!(c)k
, (70)

When α = 1− c, we have

p̂k = p0Γ(2− c)
(1 + a− c)k(1 + b− c)k

k!
, pk = p0

(1 + a− c)k(1 + b− c)k
k!(2− c)k

. (71)

Using Equation (71) with α = 1− c and p0 = 1 in Equations (54) and (55), we obtain Equations (12)
and (68), respectively. Using Equation (70) with α = 0 and p0 = 1 in Equation (54), we obtain
Equation (11).

5.4. Solution by the Modified Nishimoto’s Method

In [26], the solution of the hypergeometric DE is given by modified Nishimoto’s method, where
the solution is expressed by fD of a function. In that paper, Kummer’s 24 solutions of the DE are
obtained by that method.

6. Solution of Bessel’s DE

We now take up Bessel’s DE:

t2 · d2

dt2 u(t) + t · d
dt

u(t) + (t2 − ν2) · u(t) = 0, t > 0, (72)

where ν ∈ C is a constant. The Bessel functions J±ν(t) are solutions of this DE, where

Jν(t) = (
t
2
)ν

∞

∑
k=0

(−1)k

k!Γ(ν + k + 1)
(

t2

4
)k = (

t
2
)ν 1

Γ(ν + 1) 0F1(; ν + 1;− t2

4
), (73)

for ν /∈ Z<0, where 0F1(; c; z) = ∑∞
k=0

1
k!(c)k

zk.

In order to obtain the solutions given by Equation (73) by the present method, we put x = t2

and u(t) = tλv(x) in Equation (72). Then, if λ = ν, we obtain the DE for v(x):

pB(x,
d

dx
)v(x) = 4x · d2

dx2 v(x) + 4(ν + 1) · d
dx

v(x) + v(x) = 0, x > 0, (74)

and if λ = −ν, we obtain the same equation with ν replaced by −ν.
When λ = ν, by Theorem 2, the DE satisfied by the AC-Laplace transform v̂(s) of v(x) is given by

pB(−
d
ds

, s)v̂(s) = −4
d
ds

[s2v̂(s)] + [4(ν + 1)s + 1]v̂(s) = 4νv0. (75)
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The solution satisfying νv0 = 0 is given by

v̂(s) = Csν−1e−1/(4s) = Csν−1
∞

∑
k=0

(−1)k

k!
1

(4s)k , (76)

where C is an arbitrary constant. By the inverse Laplace transform, we obtain

v(x) = Cx−ν
∞

∑
k=0

(−1)k

k!Γ(k− ν + 1)
(

x
4
)k = Cx−ν 1

Γ(1− ν)
· 0F1(; 1− ν;− x

4
). (77)

This satisfies νv0 = 0 if ν /∈ Z>0. By Corollary 4, this v(x) is a solution of Equation (74) if ν /∈ Z>0.
Using this in u(t) = tνv(t2) and putting C = 2ν, we have u(t) = J−ν(t). When λ = −ν,

we obtain u(t) = Jν(t).

7. Solution of Hermite’s DE

We now take up Hermite’s DE:

d2

dt2 u(t)− t · d
dt

u(t) + n · u(t) = 0, t > 0, (78)

where n ∈ Z>−1 is a constant. The Hermite polynomial Hen(t) and the Hermite function of the
second kind hen(t) are solutions of this DE. In [11] (p. 82), they are expressed as

He2l(t)=
(−1)l

2l
(2l)!

l!
· 1F1(−l;

1
2

;
t2

2
), He2l+1(t) =

(−1)l

2l
(2l + 1)!

l!
· t · 1F1(−l;

3
2

;
t2

2
), (79)

he2l(t)= (−1)l2l l! · t · 1F1(
1
2
− l;

3
2

;
t2

2
), he2l+1(t) = (−1)l+12l l! · 1F1(−

1
2
− l;

1
2

;
t2

2
), (80)

for l ∈ Z>−1.
In order to obtain these solutions by the present method, we put x = t2 and u(t) = v(x) in

Equation (78). Then, we obtain the DE for v(x):

x · d2

dx2 v(x) + (
1
2
− 1

2
x) · d

dx
v(x) +

1
4

n · v(x) = 0, x > 0. (81)

This DE is Equation (5) with t, u(t), c, b and a replaced by x, v(x), 1
2 , 1

2 and − 1
2 n, respectively.

Corresponding to the solutions given by Equations (6) and (7) of Equation (5), we have the following
solutions of Equation (81):

vn,1(x) = 1F1(−
1
2

n;
1
2

;
x
2
), vn,2(x) = x1/2 · 1F1(

1
2
− 1

2
n;

3
2

;
x
2
). (82)

The solutions given by Equations (79) and (80) of Equation (78) are given by

He2l(t)=C1v2l,1(t2), He2l+1(t) = C2v2l+1,2(t2), (83)

he2l(t)=C3v2l,2(t2), he2l+1(t) = C4v2l+1,1(t2), (84)

for l ∈ Z>−1, where Ck for k ∈ Z[1,4] are constants.

8. Conclusions

In the present paper, we are concerned with the problem of obtaining a solution u(t) of a DE
with polynomial coefficients.
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We know that by the basic method of solution [14] (Section 10.4), we usually obtain solutions in
the form of Equation (54) which are a power of t multiplied by a power series in t. In the present
paper, we are interested in obtaining the solutions with the aid of AC of Riemann–Liouville fD along
with distribution theory or the Laplace transform or its AC.

We then set up the DE satisfied by the AC-Laplace transform, û(s), of u(t). The obtained DE for
û(s) is found to be a DE with polynomial coefficients.

We now obtain the solution in the form of Equation (55) which is a power of s multiplied by
a power series in s−1, by solving the DE for û(s). When it converges at large |s|, it is the Laplace
transform of a solution of the DE for u(t) or its AC.

In Section 4, we obtain such a solution û(s) that the series in it converges at |s| > |b| for
b 6= 0. Then, we obtain the solution u(t) by term-by-term inverse Laplace transform by writing
the distribution associated with the solution u(t), by using the obtained û(s). In Section 6, another
example is given.

In Section 5, we obtain such a solution û(s) that the series in it converges for no value of s. Then,
we obtain the solution u(t) by writing the distribution ũ(t) = û(D)δ1(t) associated with the solution
u(t), by using the obtained non-convergent series of s−1 for û(s). The result is seen to be obtained by
term-by-term inverse Laplace transform of û(s), as mentioned in Section 3.2.

We may conclude the study in this paper as follows. When we desire to obtain the solution u(t)
of a linear DE with polynomial coefficients, in the form of Equation (3), we can obtain it, by setting
up the DE for the AC-Laplace transform û(s), obtaining its solution in the form of Equation (9), and
then taking its term-by-term inverse Laplace transform.

We can obtain the solution of the DE for û(s) by the basic method, obtaining it in the form of
Equation (55). Comparing the solutions of the DE for u(t) and û(s), obtained by the basic method
of solution, we find that the solution û(s) is the term-by-term Laplace transform of u(t). Thus, we
obtain u(t) by the term-by-term inverse Laplace transform of û(s), when the latter is obtained.
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