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Abstract: Malaria remains a leading cause of mortality and morbidity among the children under five
and pregnant women in sub-Saharan Africa, but it is preventable and controllable provided current
recommended interventions are properly implemented. Better utilization of malaria intervention
strategies will ensure the gain for the value for money and producing health improvements in the
most cost effective way. The purpose of the value for money drive is to develop a better understanding
(and better articulation) of costs and results so that more informed, evidence-based choices could
be made. Cost effectiveness analysis is carried out to inform decision makers on how to determine
where to allocate resources for malaria interventions. This study carries out cost effective analysis
of one or all possible combinations of the optimal malaria control strategies (Insecticide Treated
Bednets—ITNs, Treatment, Indoor Residual Spray—IRS and Intermittent Preventive Treatment for
Pregnant Women—IPTp) for the four different transmission settings in order to assess the extent to
which the intervention strategies are beneficial and cost effective. For the four different transmission
settings in Kenya the optimal solution for the 15 strategies and their associated effectiveness are
computed. Cost-effective analysis using Incremental Cost Effectiveness Ratio (ICER) was done after
ranking the strategies in order of the increasing effectiveness (total infections averted). The findings
shows that for the endemic regions the combination of ITNs, IRS, and IPTp was the most cost-effective
of all the combined strategies developed in this study for malaria disease control and prevention; for
the epidemic prone areas is the combination of the treatment and IRS; for seasonal areas is the use of
ITNs plus treatment; and for the low risk areas is the use of treatment only. Malaria transmission
in Kenya can be minimized through tailor-made intervention strategies for malaria control which
produces health improvements in the most cost effective way for different epidemiological zones.
This offers the good value for money for the public health programs and can guide in the allocation
of malaria control resources for the post-2015 malaria eradication strategies and the achievement of
the Sustainable Development Goals.
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1. Introduction

Malaria is a leading cause of mortality and morbidity among the under-five and the pregnant
women in Sub Saharan Africa [1]. These groups are at high risk due to weakened and immature
immunity respectively. The need for value of money calls for the cost effective analysis of malaria
interventions. This will also contribute to effective ways of controlling the spread of malaria in Kenya.
Malaria transmission is highly variable across Kenya because of the different transmission intensities
driven by climate and temperature. Kenya has four malaria epidemiological zones; the endemic
areas, the seasonal malaria transmission, the malaria epidemic prone areas and the low risk malaria
areas [2,3].

Mathematics 2016, 4, 14; doi:10.3390/math4010014 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/journal/mathematics


Mathematics 2016, 4, 14 2 of 21

The current reduction in the number of malaria related cases are due to the scale up efforts of the
current malaria interventions in Kenya namely use of long-lasting insecticide-treated bed nets (LLINs),
indoor residual spraying (IRS), chemoprevention for most vulnerable such as intermittent preventive
treatment for pregnant women (IPTp), confirmation of malaria diagnostics through rapid diagnostics
tests (RDTs) and microscopy for every suspected case (case management) and timely treatment with
artemisinin-based combination therapies (ACTs) [1,3]. As scale up effort increases, it is important to
understand how these interventions can be optimally allocated alongside one another and on a large
scale for different transmission settings. In addition, there are few guidelines about how best to deploy
scarce resources for malaria control.

Cost effectiveness analysis has become an important tool in understanding the dynamics of
disease transmission and in decision making processes regarding intervention programs for disease
control [4,5]. Cost effectiveness analysis is carried out to inform decision makers on how to determine
where to allocate resources for malaria interventions especially when they are limited. The analysis
compares the costs and health effects of an intervention to assess the extent to which it can be regarded
as providing value for money and the choice of the technique depends on the nature of the benefits
specified. Cost-effectiveness analysis is often used in the field of health services, where it may be
inappropriate to monetize health effect. The most commonly used outcome measure is quality-adjusted
life years (QALY) [6].

The incremental cost-effectiveness ratio (ICER) has become the common measure for cost
effectiveness analysis and is calculated in order to achieve the goal of comparing the costs and
the effectiveness of the intervention strategies. Ridrogues et al. [7] conducted cost effective analysis
using ICER but for TB. Okosun et al. [8] conducted cost effective analysis using ICER for three malaria
intervention strategies and not for different transmission settings. He further did not consider the
cost effective intervention strategies for the at risk group i.e., the pregnant and the under five children.
Stukey et al. [5] modeled the cost effectiveness of malaria control interventions in the highlands of
western Kenya using simulation modeling in OpenMalaria modeling platform but did not consider
the effect of IPTp and those at risk population. White et al. [4] conducted a systematic review costs and
cost-effectiveness of malaria control interventions but not for different transmission setting and for the
at risk groups. Hansena et al. [9] conducted cost effectiveness analysis of three health interventions for
the pregnant women but for low transmission settings. There is no cost effectiveness analysis done for
the optimal control strategies for different malaria transmission settings in Kenya considering the at
risks age groups.

IPTp is one of the WHO recommended prevention therapy for the pregnant women. IPTp has
been shown to be effective in reducing maternal and infant mortality that are related to malaria for
the most at risk group for malaria [10–13]. No cost effectiveness analysis has been done for the IPTp.
In this study, we carry out cost effective analysis of one or all possible combinations of malaria control
strategies for different transmission settings.

2. Model Formulation

The ordinary differential equations that describe the interactions between the human and
mosquito population is formulated and described by Otieno et al. [14]. A deterministic malaria
transmission dynamics model with intervention strategies for the most at risk groups for malaria
(under five children and the pregnant women) is formulated and analyzed to investigate the optimal
malaria control strategies on the transmission dynamics among the pregnant women and children
under five years of age.

The population under study is subdivided into compartments according to the individual’s
disease status. We consider a seven-dimensional model, which consists of population of Susceptible
Sh, Exposed humans Eh, Infected humans Ih, Recovered humans Rh, Susceptible mosquitoes Sm,
Exposed mosquitoes Em and Infected mosquitoes Im. The total population sizes at time t for humans
and mosquitoes are denoted by Nh ptq and Nm ptq respectively. We employ the SEIRS type model for
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humans to describe a disease with temporary immunity on recovery from infection. Mosquitoes are
assumed not to recover from the parasites so the mosquito population can be described by the SEI
model. In the model we incorporate four time dependent control measures simultaneously: (i) the
use of treated bednets u1 ptq; (ii) treatment of infective humans u2 ptq; (iii) spray of insecticides u3 ptq
and (iv) treatment to protect pregnant women and their new born children: intermittent preventive
treatment (IPTp) for pregnant women u4 ptq. Sh ptq represents the number of individuals not yet
infected with the malaria parasite at time t, Eh ptq represents individuals who are infected but not yet
infectious, Ih ptq is the class representing infected with malaria and are capable of transmitting the
disease to susceptible mosquitoes and Rh ptq represents the class of individuals who have temporarily
recovered from the disease.

Figure 1 describes the dynamics of malaria in human and mosquito populations together
with interventions.
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Figure 1. Malaria model with interventions.

The susceptible pregnant and under five humans (Sh) are recruited at the rate, Λh. They either
die from natural causes (at a rate µh) or move to the exposed class (Eh) by acquiring malaria through

contact with infectious mosquitoes at a rate p1´ u1q
βεφIm

Nh
Sh or p1´ u4q

βεφIm

Nhw
Sh, where β is the

transmission probability per bite, ε is the per capita biting rate of mosquitoes, φ is the contact rate of
vector per human per unit time, u1 ptq P r0, 1s is the preventive measure using ITNs, u4 ptq P r0, 1s is the
preventive measure using IPTp, Im ptq is the infectious mosquitoes at time t, Nh ptq is the total number
of individuals (pregnant and under 5) and Nhw ptq is the total number of pregnant women. Susceptible
class Sh is divided into whole population (under five years and pregnant women) being exposed and
the population for the pregnant women being exposed. Exposed individuals move to the infectious
class after the development of clinical symptoms at the rate αh. Infectious individuals are assumed
to recover at a rate b` τu2, where b is the rate of spontaneous recovery, u2 ptq P r0, 1s is the control
on treatment of infected individuals and τ P r0, 1s is the efficacy of treatment. Infectious individuals
who do not recover die at a rate δh ` µh. Individuals infected with malaria suffer a disease induced
death at rate of δh, and natural death µh. Infected individuals then progress to partially immune group
where upon recovery the partially immune individual losses immunity at the rate ψ and becomes
susceptible again.

Susceptible mosquitoes (Sm) are recruited at the rate Λm and acquire malaria infection (following
contact with humans infected with malaria) at the rate λm. They either die from natural causes (at
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a rate µm) or move to the exposed class by acquiring malaria through contacts with infected humans at

a rate p1´ u1q
λεφIh

Nh
Sm, where λ is the probability for a vector to get infected after biting an infectious

human and Ih ptq are individuals infected by malaria at time t. The mosquito population is reduced,
due to the use of insecticides spray, at a rate pu3, where u3 ptq P r0, 1s represents the control due to IRS
and p represents the efficacy of IRS. Mosquito population is also reduced as a result of natural death
(µm) and at the rate au1, where u1 ptq represents the control due to ITNs and a is the efficacy due to
ITNs. Newly infected mosquitoes are moved into the exposed class (Em) at a rate αm and progresses to
the class of symptomatic mosquitoes (Im).

The model is extended to formulate the optimal control problem from where cost effectiveness
analysis of the optimal control strategies will be done. Following Otieno et al. [14] the state variables of
the model are represented and described in Table 1. Table 2 describes and shows parameters of the
model. Table 3 describes and represents malaria prevention and control strategies practiced in Kenya.

Table 1. State variables of the basic malaria model.

Symbol Description

Sh ptq Number of susceptible individuals (pregnant and under 5) at time t
Eh ptq Number of exposed individuals (pregnant and under 5) at time t
Ih ptq Number of infectious humans (pregnant and under 5) at time t
Rh ptq Number of recovered humans (pregnant and under 5) at time t
Sm ptq Number of susceptible mosquitoes at time t
Em ptq Number of exposed mosquitoes at time t
Im ptq Number of infectious mosquitoes at time t
Nh ptq Total number of individuals (pregnant and under 5) at time t

Nhw ptq Total number of pregnant individuals at time t
Nm ptq Total mosquito population at time t

Table 2. Description of parameter variables of the malaria model.

Parameter Description

φ Mosquito contact rate with human

ε Mosquito biting rate

β
Probability of human getting infected (the probability of transmission of infection from
an infectious mosquito to a susceptible human provided there is a bite)

λ
Probability of a mosquito getting infected (the probability of transmission of infection from
an infectious human to a susceptible mosquito provided there is a bite)

µh Per capita natural death rate of humans

µm Per capita natural death rate of mosquitoes

ψ Per capita rate of loss of immunity by recovered individuals

αh Humans progression rate from exposed to infected

αm Mosquitoes progression rate from exposed to infected

Λh Recruitment rate of human by birth and by getting pregnant

Λm Recruitment of mosquitoes by birth

δh Per capita disease induced death rate for humans (pregnant and under 5)

b Proportion of spontaneous individual recovery

λh Force of infection for susceptible humans (pregnant and under 5) to exposed individuals

λhw Force of infection for susceptible pregnant humans to exposed individuals

λm Force of infection for susceptible mosquitoes to exposed mosquitoes
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Table 3. Prevention and control variables in the model.

Symbol Description

u1 ptq Preventive measure using insecticide treated bed nets (ITNs)
u2 ptq The control effort on treatment of infectious individuals
u3 ptq Preventing measure using indoor residual spraying (IRS)
u4 ptq Preventive measure using intermittent preventive treatment for pregnant women (IPTp)

p Rate constant due to use of indoor residual spraying
τ Rate constant due to use of treatment effort
a Rate constant due to use of insecticide treated bed nets

Other assumptions of the model:

‚ Population for human and mosquito is constant (no immigrants)
‚ No recovery for infected mosquitoes
‚ Mosquitoes do not die to disease infection
‚ All parameters in the model are non-negative

Putting the above formulations and assumptions together as described by Otieno et al. [14] gives
the following system of non-linear differential equations describing the dynamics of malaria in human
and mosquito populations together with interventions.

The malaria dynamics model with intervention strategies being practiced in four different
transmission settings in Kenya as described by Otieno et al. [14] gives the following system of
differential equations

dSh
dt

“ Λh ` ψRh ´ p1´ u1qλhSh ´ p1´ u4qλhwSh ´ µhSh

dEh
dt

“ p1´ u1qλhSh ` p1´ u4qλhwSh ´ pαh ` µhq Eh

dIh
dt
“ αhEh ´ pδh ` µhq Ih ´ pb` τu2q Ih

dRh
dt

“ pb` τu2q Ih ´ pψ` µhqRh

dSm

dt
“ Λm ´ p1´ u1qλmSm ´ pµm ` au1 ` pu3q Sm

dEm

dt
“ p1´ u1qλmSm ´ αmEm ´ pµm ` au1 ` pu3q Em

dIm

dt
“ αmEm ´ pµm ` au1 ` pu3q Im

(1)

with initial conditions:

Sh p0q ě 0, Eh p0q ě 0, Ih p0q ě 0, Rh p0q ě 0, Sm p0q ě 0, Em p0q ě 0, Im p0q ě 0

λm “
λεφIh

Nh
is the percapita incidence rate among mosquitoes (force of infection for susceptible

mosquitoes), and λh “
βεφIm

Nh
is the force of infection for susceptible humans (pregnant and under 5),

λhw “
βεφIm

Nhw
is the force of infection for susceptible pregnant humans.

The total population sizes are for the human is Nh “ Sh ` Eh ` Ih ` Rh and for mosquito is

Nm “ Sm ` Em ` Im and their differential equations are given by
dNh
dt

“ Λh ´ µhNh ´ δh Ih and
dNm

dt
“ Λm ´ pµm ` au1 ` pu3qNm respectively.

Mathematical Analysis of the Malaria Model with Intervention Strategies

The basic properties and analysis of the formulated malaria model with control strategies through
mathematical analysis of the model is described and done by Otieno et al. [14].
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The feasible solutions set for the Model (1) given by

D “

"

pSh, Eh, Ih, Rh, Sm, Em, Imq P R7
` : pSh, Smq ą 0, pEh, Ih, Rh, Em, Imq ě 0; Nh ď

Λh
µh

; Nm ď
Λm

µm ` au1 ` pu3

*

is positively-invariant and the hence Model (1) is biologically, epidemiologically meaningful and
mathematically well-posed in the domain D.

Following Otieno et al. [14], System (1) has always a disease free equilibrium given by

E0 “
`

S˚h , E˚h , I˚h , R˚h , S˚m, E˚m, I˚m
˘

“

ˆ

Λh
µh

, 0, 0, 0,
Λm

pµm ` au1 ` pu3q
, 0, 0

˙

(2)

Basic Reproduction Number

The matrices F and V for the new infection terms and the remaining transfer terms at disease free
equilibrium [15], respectively, are given by

F “

»

—

—

—

—

–

0
0
0
0

0
0

p1´ u1qλεφµhΛm

αh pµm ` au1 ` pu3q

0

0
0
0
0

p1´ u1q βεφ` p1´ u4q βεφ

0
0
0

fi

ffi

ffi

ffi

ffi

fl

and

V “

»

—

—

—

–

pµh ` αhq

´αh
0
0

0
pδh ` µh ` b` τu2q

0
0

0
0

αm ` µm ` au1 ` pu3

´αm

0
0
0

µm ` au1 ` pu3

fi

ffi

ffi

ffi

fl

Following Otieno et al. [14], it follows that the basic reproduction of Model (1), denoted by R0, is
given by

R0 “ ρ
´

FV´1
¯

R0 “

d

αh p1´ u1qλεφΛmµh p1´ u1q βεφαm ` αh p1´ u1qλεφΛmµh p1´ u4q βεφαm

pµm ` au1 ` pu3q pµh ` αhq pδh ` µh ` b` τu2qΛh pαm ` µm ` au1 ` pu3q pµm ` au1 ` pu3q
(3)

Stability Analysis of Disease Free Equilibrium Point

Local Stability of Disease Free Equilibrium Point

Theorem 1. The disease free equilibrium point for System (1) is locally asymptotically stable if R0 ă 1 and
unstable if R0 ą 1.

Proof. Following Otieno et al. [14], the Jacobian matrix pJq of the malaria Model (1) at the disease-free
equilibrium point is given by

»

—

—

—

—

—

—

—

–

´pαh ` µhq

αh
0
0
0

0
´pδh ` µh ` b` τu2q

pb` τu2q
p1´ u1qλεφΛmµh
pµm ` au1 ` pu3qΛh

0

0
0

´pψ` µhq

0
0

0
0
0

´pαm ` µm ` au1 ` pu3q

αm

p1´ u1q βεφ` p1´ u4q βεφ

0
0
0

´pµm ` au1 ` pu3q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation

|J ´ λI| “ 0
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»

—

—

—

—

—

—

—

–

´pαh ` µh ` λq

αh
0
0
0

0
´pδh ` µh ` b` τu2 ` λq

pb` τu2q
p1´ u1qλεφΛmµh
pµm ` au1 ` pu3qΛh

0

0
0

´pψ` µh ` λq

0
0

0
0
0

´pαm ` µm ` au1 ` pu3 ` λq

αm

p1´ u1q βεφ` p1´ u4q βεφ

0
0
0

´pµm ` au1 ` pu3 ` λq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0

Expanding the determinant into a characteristic equation we have

´pδh ` µhq pαh ` µh ` λq pδh ` µh ` b` τu2 ` λq pαm ` µm ` au1 ` pu3 ` λq pµm ` au1 ` pu3 ` λq

´
p1´ u1q

2 λε2φ2Λmµhαmβαh ` p1´ u4q p1´ u1qλε2φ2Λmµhαmβαh
pµm ` au1 ` pu3qΛm

“ 0
(4)

Hence we have

A1 “ pµm ` au1 ` pu3q , A2 “ pαm ` µm ` au1 ` pu3q , A3 “ pδh ` µh ` b` τu2q , A4 “ pαh ` µhq

and

Q “
p1´ u1q

2 λε2φ2Λmµhαmβαh ` p1´ u4q p1´ u1qλε2φ2Λmµhαmβαh
pµm ` au1 ` pu3qΛm

pλ` A1q pλ` A2q pλ` A3q pλ` A4q ´Q “ 0
λ4 ` B1λ3 ` B2λ2 ` B3λ` B4 “ 0

(5)

where
B1 “ A4 ` A3 ` A2 ` A1

B2 “ A4 pA3 ` A2 ` A1q ` A3 pA2 ` A1q ` A1 A2

B3 “ A4 A3 A2 ` A4 A3 A1 ` A4 A2 A1 ` A3 A2 A1

B4 “ A4 A3 A2 A1 ´Q

(6)

Thus, applying to the Routh-Hurwitz criteria [16] to the Polynomial Equation (5), we have that
all determinants of the Hurwitz matrices are positive. Hence all the eigenvalues of the Jacobian have
negative real part, implying that the DFE point is stable pR0 ă 1q.

Conversely, if R0 ą 1 it implies that B4 ă 0, and since the remaining coefficients (B1, B2 and B3)
of the polynomial are positive then all the roots of this polynomial cannot have negative real parts.
Hence, the DFE point is unstable (R0 ą 1).

Sensitivity Analysis

Sensitivity analysis to assess the relative impact of each of parameters of the basic reproductive
number was done and described by Otieno et al. [14]. The normalized forward sensitivity index of
the reproduction number with respect to these parameters given in Table 4 is computed. The index
measures the relative change in a variable with respect to relative changes in parameters.

Definition. Following Chitnis et al. [17], the normalized forward sensitivity index of a variable, h, that depends

on a parameter, l, is defined as: ξl “
l
h
ˆ
Bh
B l

.
Following Otieno et al. [14], the sensitivity index of the model parameters are given by

ξR0
αh “

µh
2 pαh ` µhq

ξR0
αm “

pu3 ` µm ` au1

2 pαm ` pu3 ` au1 ` µmq

ξR0
µm “

´µm p2αm ` 3 pµm ` au1 ` pu3qq

2 pαm ` µm ` au1 ` pu3q pµm ` au1 ` pu3q

ξR0
δh
“

´δh
2 pb` τu2 ` δh ` µhq
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ξR0
b “

´b
2 pb` τu2 ` δh ` µhq

ξR0
µh “

´µ2
h ` αhδh ` αhb` αhτu2

2 pµh ` δh ` b` τu2q pµh ` αhq

Sensitivity indices for the control parameters are given by

ξR0
u1 “

´µ1

1´ µ1

ξR0
u2 “

´τµ2

2 pµh ` ε` b` τµ2q

ξR0
u3 “

´p p3pu3 ` 3µm ` au1 ` 2αmq u3

2 ppu3 ` au1 ` µmq ppu3 ` µm ` αmq

ξR0
u4 “

´u4

p1´ u4q

Sensitivity indices are calculated using parameters in Table 5.

Table 4. Sensitivity indices (SIS) of R0 to parameters for the malaria model.

Parameter
Sensitivity Indices

Endemic Seasonal Epidemic Low risk

µh ´0.0402531 ´0.0402531 ´0.0402531 ´0.0402531
µm ´1.07211 ´1.07211 ´1.07211 ´1.07211
αh 0.00038817 0.00038817 0.00038817 0.00038817
αm 0.22445 0.22445 0.22445 0.22445
λ 0.5 0.5 0.5 0.5
β 0.5 0.5 0.5 0.5
ε 1 1 1 1

Λh ´0.4987 ´0.4987 ´0.4987 ´0.4987
Λm 0.5 0.5 0.5 0.5
b ´0.01818 ´0.02048 ´0.01639 ´0.02563
τ ´0.322497 ´0.322497 ´0.322497 ´0.322497
δh ´0.13695 ´0.10336 ´ 011321 ´0.03508
φ 1 1 1 1

Through sensitivity analysis as shown by Otieno et al. [14], it is observed that the most sensitive
parameters to R0 across all the settings was the mosquito’s natural death rate, µm, and mosquito
biting rate, ε,this was followed by the by the mosquito contact rate with humans, φ, probability of
mosquito getting infected, λ, the probability of humans getting infected, β, and the recruitment rate
of mosquitoes and humans (see Table 4). In the next section, we start by performing an economic
evaluation of the intervention strategies then use optimal control to study the optimality of these
interventions. Cost-effectiveness analysis of the optimal malaria control strategies is done to determine
the most cost-effective as one or combination of the four intervention strategies namely, treatment
effort of infected individuals, ITNs, IRS and IPTp. Cost-effectiveness analysis is undertaken using
ICER in order to assess the extent to which the intervention strategies are beneficial and cost effective.
The aim is to maximizing the level of benefits (health effects) relative to the level of resources available
as shown by Okosun et al. [8].

3. Economic Evaluation

The economic evaluation of all four intervention techniques is evaluated in which effectiveness
and cost-effectiveness of the interventions are investigated in order to minimize or eradicate malaria
disease in the area under study. The following cost objective function is used [18]
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Ec pu1, u2, u3, u3q “ min
pu1,u2,u3,u4qPU

r T
0 rb1u1 ptq pSh ptq ` Sm ptq ` Em ptq ` Im ptqq ` b2τu2 ptq Ih ptq

`b3 pu3 ptq pSm ptq ` Em ptq ` Im ptqq ` b4u4 ptq pSh ptq ` Eh ptqqse´ϕtdt
(7)

subject to the system of differential equation (1), where b1 denotes the per unit cost of ITNs (u1); b2

denotes the per unit cost of treating an individual with malaria (u2), b3 represents the per cunit area
cost of IRS effort (u3) and spraying houses and b4 represents the use of IPTp among the pregnant
women (u4). The discount rate of 3%–5% has been exponentially considered with a parameter ϕ.
The Lagrangian of the cost objective function is

Lb “ rb1u1 ptq pSh ptq ` Eh ptq ` Sm ptq ` Em ptq ` Im ptqq ` b2τu2 ptq Ih ptq
`b3 pu3 ptq pSm ptq ` Em ptq ` Im ptqq ` b4u4 ptq pSh ptq ` Eh ptqqse´ϕt

Then the Hamiltonian equation with Lagrangian, state variables and adjoint variables is

Hb “ Lb ` λ˚1
dSh
dt
` λ˚2

dEh
dt
` λ˚3

dIh
dt
` λ˚4

dRh
dt

` λ˚5
dSm

dt
` λ˚6

dEm

dt
` λ˚7

dIm

dt

The developed corresponding Hamiltonian equation is given by:

Hb “ rb1u1 ptq pSh ptq ` Eh ptq ` Sm ptq ` Em ptq ` Im ptqq ` b2τu2 ptq Ih ptq
`b3 pu3 ptq pSm ptq ` Em ptq ` Im ptqq ` b4u4 pSh ptq ` Eh ptqqs e´ϕt

`tΛh ` ψRh ´ p1´ u1qλhSh ´ p1´ u4qλhwSh ´ µhShuλ˚1
`tp1´ u1qλhSh ` p1´ u4qλhwSh ´ pαh ` µhq Ehuλ˚2
`tαhEh ´ pδh ` µhq Ih ´ pb` τu2q Ihuλ˚3 ` tpb` τu2q Ih ´ pψ` µhqRhuλ˚4
`tΛm ´ p1´ u1qλmSm ´ pµm ` au1 ` pu3q Smuλ˚5
`tp1´ u1qλmSm ´ αmEm ´ pµm ` au1 ` pu3q Emuλ˚6
`tαmEm ´ pµm ` au1 ` pu3q Imuλ˚7

(8)

where λ˚1 , λ˚2 , λ˚3 , λ˚4 , λ˚5 , λ˚6 and λ˚7 denote the marginal value/ shadow prices linked to their
corresponding classes. The λ˚i where i “ p1, 2, . . . , 7q represent the changes in the objective value of
an optimal solution of an optimization problem by relaxing the constraint by one unit [18]. These can
be calculated by using Pontryagin’s Maximum Principle:

dλ˚1
dt

“ ´
BHb
BSh

,
dλ˚2
dt

“ ´
BHb
BEh

,
dλ˚3
dt

“ ´
BHb
BIh

,
dλ˚4
dt

“ ´
BHb
BRh

dλ˚5
dt

“ ´
BHb
BSm

,
dλ˚6
dt

“ ´
BHb
BEm

,
dλ˚7
dt

“ ´
BHb
BIm

Hence using the Hamiltonian Equation (8) gives

dλ˚1
dt

“ ´
BHb
BSh

“ ´b1u1e´ϕt ´ b4u4e´ϕt ` p1´ u1q
βεφIm

Nh
λ˚1 ` p1´ u4q

βεφIm

Nhw
λ˚1 ` µhλ˚1 ´ p1´ u1q

βεφIm

Nh
λ˚2 ´ p1´ u4q

βεφIm

Nhw
λ˚2

dλ˚2
dt

“ ´
BHb
BEh

“ ´b1u1e´ϕt ´ b4u4e´ϕt ` αhλ˚2 ` µhλ˚2 ´ αhλ˚3

dλ˚3
dt

“ ´
BHb
BIh

“ ´b2τu2e´ϕt ` pb` τu2 ` µh ` δhqλ˚3 ´ pb` τu2qλ˚4 `

ˆ

p1´ u1qλεφSm

Nh

˙

λ5 ´

ˆ

p1´ u1qλεφSm

Nh

˙

λ6

dλ˚4
dt

“ ´
BHb
BRh

“ ´ψλ˚1 ` pµh ` ψqλ˚4

dλ˚5
dt

“ ´
BHb
BSm

“ ´b1u1e´ϕt ´ b3 pu3e´ϕt ` p1´ u1q
λεφIh

Nh
λ˚5 ` pµm ` au1 ` pu3qλ˚5 ´ p1´ u1q

λεφIh
Nh

λ˚6

dλ˚6
dt

“ ´
BHb
BEm

“ ´b1u1e´ϕt ´ b3 pu3e´ϕt ` pαm ` µm ` au1 ` pu3qλ˚6 ` αmλ˚6 ´ αmλ˚7

dλ˚7
dt

“ ´
BHb
BIm

“ ´b1u1e´ϕt ´ b3 pu3e´ϕt ` pµm ` au1 ` pu3qλ˚7

`

ˆ

p1´ u1q βεφSh
Nh

`
p1´ u4q βεφSh

Nhw

˙

λ1 `

ˆ

´
p1´ u1q βεφSh

Nh
´
p1´ u4q βεφSh

Nhw

˙

λ2

(9)
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Each intervention strategy is assessed by developing the Hamiltonian equation thereafter the
economic tool will be employed.

3.1. Economic Evaluation of ITNs

The prevention parameter for the ITNs is denoted by u1 ptq. The Hamiltonian equation, Hb, is
differentiated with respect to u1 to obtain

BHb
Bu1

“ ´b1e´ϕt pSh ptq ` Eh ptq ` Sm ptq ` Em ptq ` Im ptqq `
βεφImSh

Nh

`

λ˚2 ´ λ˚1
˘

` pλ6 ´ λ5q
λεφIh

Nh
S˚m ` a

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

in which
βεφImSh

Nh

`

λ˚1 ´ λ˚2
˘

` pλ6 ´ λ5q
λεφIh

Nh
S˚m ` a

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

is the total marginal

benefit due to the use of ITNs while b1e´ϕt pSh ptq ` Eh ptq ` Sm ptq ` Em ptq ` Im ptqq is the marginal
cost of acquiring the ITNs. The equivalency of the marginal cost and marginal benefit leads one to
achieve the optimal policy.

Hence

u1 ptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 i f b1e´ϕt pSh ` Eh ` Sm ` Em ` Imq ą
βεφImSh

Nh

`

λ˚2 ´ λ˚1
˘

` pλ6 ´ λ5q
λεφIh

Nh
S˚m ` a

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

p0, 1q i f b1e´ϕt pSh ` Eh ` Sm ` Em ` Imq “
βεφImSh

Nh

`

λ˚2 ´ λ˚1
˘

` pλ6 ´ λ5q
λεφIh

Nh
S˚m ` a

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

1 i f b1e´ϕt pSh ` Eh ` Sm ` Em ` Imq ă
βεφImSh

Nh

`

λ˚2 ´ λ˚1
˘

` pλ6 ´ λ5q
λεφIh

Nh
S˚m ` a

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

(10)

The third part of equation (10), shows that if this is achieved then the total marginal benefit of
using ITNs is more than the total marginal cost; hence the gain of optimal malaria prevention. Then we
can conclude that the susceptible and exposed individuals should best (effectively) use this prevention
strategy in order to fight the epidemic. On the other hand, few susceptible and exposed individuals
will use ITNs if the marginal cost is more than the marginal benefit. The effective use of this strategy
will lead to achieve the optimal policy which says that increasing the use of ITNs increases the number
of susceptible humans and uninfected mosquitoes.

3.2. Economic Evaluation of Treatment Effort of Infected Individuals

Here the control parameter for treatment of infectious individuals is given by u2 ptq.
The Hamiltonian equation, Hb, Equation (8) is differentiated with respect to u2 ptq, giving

BHb
Bu1

“ ´b2τ Ihe´ϕt ` τ Ih pλ
˚
4 ´ λ˚3 q

in which b2τ Ih is the marginal cost and τ Ih
`

λ˚4 ´ λ˚3
˘

is the marginal benefit of treating infectious
individuals. Hence,

u2 ptq “

$

’

&

’

%

0 i f b2τ Ihe´ϕt ą τ Ih
`

λ˚4 ´ λ˚3
˘

p0, 1q i f b2τ Ihe´ϕt “ τ Ih
`

λ˚4 ´ λ˚3
˘

1 i f b2τ Ihe´ϕt ă τ Ih
`

λ˚4 ´ λ˚3
˘

(11)

The optimal policy is to ensure that the marginal costs for being treated is equal to the marginal
benefit for the individuals being treated. Therefore, from Equation (11) all infected individuals must
look for full treatment if the marginal benefit, Ih

`

λ˚4 ´ λ˚3
˘

, must be greater than the marginal cost,
b2τ Ihe´ϕ t, for being treated. Otherwise, only few infected individuals will look for treatment.

3.3. Economic Evaluation of IRS

Insecticide residual spraying (IRS) prevention parameter in the Hamiltonian equation, Hb,
Equation (8) is u3 ptq. Then differentiating Hb with respect to u3 gives

BHb
Bu3

“ b3 p pSm ` Em ` Imq e´ϕt ´ p pSmλ˚5 ` Emλ˚6 ` Imλ˚7 q
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where b3 p pSm ` Em ` Imq is the marginal cost for IRS and p
`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

is the marginal
benefit for using the sprayed houses. Furthermore, it can be deduced that the optimal policy for
a sprayed house is given by

u3 ptq “

$

’

&

’

%

0 i f b3 p pSm ` Em ` Imq e´ϕt ą p
`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

p0, 1q i f b3 p pSm ` Em ` Imq e´ϕt “ p
`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

1 i f b3 p pSm ` Em ` Imq e´ϕt ă p
`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

(12)

The spraying of insecticides against mosquitoes is optimal for malaria disease control if the
marginal cost b3 p pSm ` Em ` Imq, is less than the marginal benefit, p

`

Smλ˚5 ` Emλ˚6 ` Imλ˚7
˘

).

3.4. Economic Evaluation of IPTp

Intermittent Preventive Treatment (IPTp) prevention parameter in the Hamiltonian equation, Hb,
Equation (8) is u4 ptq. Then differentiating Hbwith respect to u4 gives

BHb
Bu4

“ ´b4e´ϕt pSh ` Ehq `
βεφImSh

Nhw
pλ˚2 ´ λ˚1 q

in which
βεφImSh

Nhw

`

λ˚2 ´ λ˚1
˘

is the total marginal benefit due to the use of IPTp while b4e´ϕt pSh ` Ehq

is the marginal cost of acquiring the IPTp. The equivalency of the marginal cost and marginal benefit
leads one to achieve the optimal policy.

Hence

u4 ptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 i f b4e´ϕt pSh ` Ehq ą
βεφImSh

Nhw

`

λ˚2 ´ λ˚1
˘

p0, 1q i f b4e´ϕt pSh ` Ehq “
βεφImSh

Nhw

`

λ˚2 ´ λ˚1
˘

1 i f b4e´ϕt pSh ` Ehq ă
βεφImSh

Nhw

`

λ˚2 ´ λ˚1
˘

(13)

4. Analysis of Optimal Control

We consider the objective function

J pu1, u2, u3, u4q “

ż T

0

´

A1Nm ` A2 Ih ` A3Eh `
´

B1u2
1 ` B2u2

2 ` B3u2
3 ` B4u2

4

¯¯

e´ϕtdt (14)

subject to
dSh
dt

“ Λh ` ψRh ´ p1´ u1qλhSh ´ p1´ u4qλhwSh ´ µhSh

dEh
dt

“ p1´ u1qλhSh ` p1´ u4qλhwSh ´ pαh ` µhq Eh

dIh
dt
“ αhEh ´ pδh ` µhq Ih ´ pb` τu2q Ih

dRh
dt

“ pb` τu2q Ih ´ pψ` µhqRh

dSm

dt
“ Λm ´ p1´ u1qλmSm ´ pµm ` au1 ` pu3q Sm

dEm

dt
“ p1´ u1qλmSm ´ αmEm ´ pµm ` au1 ` pu3q Em

dIm

dt
“ αmEm ´ pµm ` au1 ` pu3q Im

Sh p0q ě 0, Eh p0q ě 0, Ih p0q ě 0, Rh p0q ě 0, Sm p0q ě 0, Em p0q ě 0, Im p0q ě 0
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And the total cost at time t is given by

C “
ż T

0
rb1u1 pSh ` Sm ` Em ` Imq ` b2u2 Ih ` b3u3 pSm ` Em ` Imq ` b4u4 pSh ` Ehqs dt (15)

where A1, A2, A3, B1, B2, B3, B4 are desired positive weights on the benefits of preventing infection and
exposure plus total mosquito population. Here, we assume that there is no linear relationship between
the coverage of these interventions and their corresponding costs, hence we choose a quadratic cost
on the controls in keeping with what is in other literature on cost of control of epidemics [8,19–21].
Our goal with the given objective function is to minimize the number of infected humans, exposed
humans and total mosquito population while minimizing the cost of control u1 ptq , u2 ptq , u3 ptq and
u4 ptq. We seek an optimal control u˚1 , u˚2 , u˚3 and u˚4 such that

J pu˚1 , u˚2 , u˚3 , u˚4 q “ min
u1,u2,u3,u4εU

J pu1, u2, u3, u4q (16)

Where U is the set of measurable functions defined from r0, Ts onto r0, 1s.
The necessary conditions that an optimal control must satisfy come from the Pontryagin’s

Maximum Principle [18]. This consists in minimizing, with respect to pu1, u2, u3, u4q/
Forming the Hamiltonian from the objective function (14) subject to Equations (1) and (15)

H “ pA1Nm` A2 Ih ` A3Eh `
`

B1u2
1 ` B2u2

2 ` B3u2
3 ` B4u2

4
˘˘

e´ϕt

`tΛh ` ψRh ´ p1´ u1qλhSh ´ p1´ u4qλhwSh ´ µhShuλ1

`tp1´ u1qλhSh ` p1´ u4qλhwSh ´ pαh ` µhq Ehuλ2

`tαhEh ´ pδh ` µhq Ih ´ pb` τu2q Ihuλ3 ` tpb` τu2q Ih ´ pψ` µhqRhuλ4

`tΛm ´ p1´ u1qλmSm ´ pµm ` au1 ` pu3q Smuλ5

`tp1´ u1qλmSm ´ αmEm ´ pµm ` au1 ` pu3q Emuλ6

`tαmEm ´ pµm ` au1 ` pu3q Imuλ7

`trb1u1 pSh ` Sm ` Em ` Imq ` b2u2 Ih ` b3u3 pSm ` Em ` Imq

`b4u4 pSh ` EhqsuλC

(17)

where λ1, λ2, λ3, λ4, λ5, λ6 and λ7 are the adjoint variables or co-state variables given by the
following system:

dλ1

dt
“ ´

BH
BSh

“ p1´ u1q
βεφIm

Nh
λ˚1 ` p1´ u4q

βεφIm

Nhw
λ˚1 ` µhλ˚1 ´ p1´ u1q

βεφIm

Nh
λ˚2 ´ p1´ u4q

βεφIm

Nhw
λ˚2 ´ λC pb1u1 ` b4u4q

dλ2

dt
“ ´

BH
BEh

“ ´A3 ` αhλ˚2 ` µhλ˚2 ´ αhλ˚3 ´ λC pb1u1 ` b4u4q

dλ3

dt
“ ´

BH
BIh

“ ´A2 ` pb` τu2 ` µh ` δhqλ˚3 ´ pb` τu2qλ˚4 ´ λCb2u2 `

ˆ

p1´ u1qλεφSm

Nh

˙

λ5 ´

ˆ

p1´ u1qλεφSm

Nh

˙

λ6

dλ4

dt
“ ´

BH
BRh

“ ´ψλ˚1 ` pµh ` ψqλ˚4

dλ5

dt
“ ´

BH
BSm

“ ´A1 ` p1´ u1q
λεφIh

Nh
λ˚5 ` pµm ` au1 ` pu3qλ˚5 ´ p1´ u1q

λεφIh
Nh

λ˚6 ´ λC pb1u1 ` b3u3q

dλ6

dt
“ ´

BH
BEm

“ ´A1 ` αmλ˚6 ` pαm ` µm ` au1 ` pu3qλ˚6 ´ αmλ˚7 ´ λC pb1u1 ` b3u3q

dλ6

dt
“ ´

BH
BEm

“ ´A1 ` αmλ˚6 ` pαm ` µm ` au1 ` pu3qλ˚6 ´ αmλ˚7 ´ λC pb1u1 ` b3u3q

dλ7

dt
“ ´

BH
BIm

“ ´A1 ` pµm ` au1 ` pu3qλ˚7 ´ λc pb1u1 ` b3u3q

`

ˆ

p1´ u1q βεφSh
Nh

`
p1´ u4q βεφSh

Nhw

˙

λ1

`

ˆ

p1´ u1q βεφSh
Nh

´
p1´ u4q βεφSh

Nhw

˙

λ2

dλC
dt

“ 0

(18)

By applying Pontryagin’s Maximum Principle [18] and the existence result for the optimal control
from Fleming and Rishel [22], we obtain
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Proposition 1. The optimal control
`

u˚1 , u˚2 , u˚3 , u˚4
˘

that minimizes J pu1, u2, u3, u4q over U is given by

u˚1 “ max

#

0, min

˜

1,
pλ2 ´ λ1qλhS˚h ` pλ6 ´ λ5qλmS˚m ` aS˚mλ5 ` aE˚mλ6 ` aI˚mλ7 ` λCb1

`

S˚h ` S˚m
˘

2B1e´ϕt

¸+

u˚2 “ max

#

0, min

˜

1,

`

τ pλ3 ´ λ4q I˚h ` λCb2 I˚h
˘

eϕt

B2

¸+

u˚3 “ max
"

0, min
ˆ

1,
pp pλ5S˚m ` λ6E˚m ` λ7 I˚mq ` λCb3 pS˚m ` E˚m ` I˚mqq eϕt

B3

˙*

u˚4 “ max

#

0, min

˜

1,
pλ2 ´ λ1qλhwS˚h ` λCb4

`

S˚h ` E˚h
˘

2B4e´ϕt

¸+

(19)

where λ1, λ2, λ3, λ4, λ5, λ6 and λ7 are the adjoint variables or co-state variables satisfying Equation (18)
and the following transversality conditions:

λ1 pTq “ λ2 pTq “ λ3 pTq “ λ4 pTq “ λ5 pTq “ λ6 pTq “ λ7 pTq “ λC pTq “ 0 (20)

Proof. From Fleming and Rishel [22], the existence of an optimal control is a consequence of the
convexity of the integrand of J with respect to u1, u2, u3, u4, a priori boundedness of the state variables,
and the Lipschitz property of the state system with respect to the state variables. The differential
equations governing the adjoint variables are obtained by differentiation of the Hamiltonian function,
evaluated at the optimal control. Then the adjoint system can be written as,

0 “
BH
Bu1

“ ´uc
12B1e´ϕt`pλ2 ´ λ1qλhS˚h `pλ6 ´ λ5qλmS˚m` aS˚mλ5` aE˚mλ6` aI˚mλ7`λCb1

`

S˚h ` S˚m
˘

0 “
BH
Bu2

“ uc
22B2 ´

`

τ pλ3 ´ λ4q I˚h ` λCb2 I˚h
˘

eϕt

0 “
BH
Bu3

“ uc
32B3 ´ pp pλ5S˚m ` λ6E˚m ` λ7 I˚mq ` λCb3 pS˚m ` E˚m ` I˚mqq eϕt

0 “
BH
Bu4

“ ´uc
42B4e´ϕt ´ pλ2 ´ λ1qλhwS˚h ` λCb4

`

S˚h ` E˚h
˘

Due to the a priori boundedness of the solutions of both the state and adjoint equations and the
resulting Lipschitz structure of these equations, we obtain the uniqueness of the optimality Systems
((18)–(20)) for small T.

The restriction on the length of time interval r0, Ts is common in control problems [8,21,23], and it
guarantees the uniqueness of the optimality system.

By standard control arguments involving the bounds on the controls, we conclude that

u˚1 “

$

&

%

0 i f uc
1 ď 0

uc
1 i f 0 ă uc

1 ă 1
1 i f uc

1 ě 0
, u˚2 “

$

&

%

0 i f uc
2 ď 0

uc
2 i f 0 ă uc

2 ă 1
1 i f uc

2 ě 0
, u˚3 “

$

&

%

0 i f uc
3 ď 0

uc
1 i f 0 ă uc

3 ă 1
1 i f uc

3 ě 0
, u˚4 “

$

&

%

0 i f uc
4 ď 0

uc
1 i f 0 ă uc

4 ă 1
1 i f uc

4 ě 0

Following Otieno et al. [24], the optimal control is obtained by solving the optimality Systems
((18)–(20)). An iterative scheme is used for solving the optimality system. We start by solving the
state equations with a guess for the controls over the simulated time using fourth order Runge-Kutta
scheme. Because of the transversality conditions (20), the adjoint equations are solved by the backward
fourth order Runge-Kutta scheme using the current iterations solutions of the state equation. Then the
controls are updated by using a convex combination of the previous controls and the value from the
characterizations (19). This process is repeated and iterations stopped if the values of the unknowns at
the previous iterations are very close to the ones at the present iterations as also described by Lenhart
and Workman [25].

Parameter values from Table 5 are used for the numerical simulation



Mathematics 2016, 4, 14 14 of 21

5. Cost-Effectiveness Analysis

We use a more classical approach to analyze the cost-effectiveness of the 15 alternative strategies
by using the ICER in Okosun et al. [8]. ICER is applied to achieve the goal of comparing the costs and
the health outcomes of two alternative intervention strategies that compete for the same resources.
It is generally described as the additional cost per additional health outcomes. ICER is given by

ICER f or Q “
Cost o f Intervention Q´ Cost o f Intervention P

E f f ect o f Intervention Q´ E f f ect o f Intervention P

where P and Q are the two intervention strategies being compared in this case, and the effect or
benefits in health status are measured in terms of quality-adjusted life years (QALYs) gained or
lost. Alternatives that are more expensive and less ineffective are then excluded. This is done after
simulating the optimal control model and then ranking strategies in order of increasing effectiveness
measured as the total infections averted.

6. Numerical Results and Discussion

The parameters in the Model (1) were estimated using clinical malaria data and demographics
statistics of Kenya. Those that were not available were obtained from literature published by
researchers in malaria endemic countries which have similar environmental conditions compare
to Kenya. Table 5 provides a summary of the estimated values of all parameters as described by
Otieno et al. [23] in addition to some from the literature. Data was collected from the literature,
Division of Malaria Control (DOMC), Kenya National Bureau of Statistics, Malaria Indicator Survey
for Kenya, Demographic Health Survey (DHS) for Kenya, WHO websites and hospital records (from
Kisumu, Kisii, Chuka (Tharake-Nithi) and Nyeri counties representing the four different transmission
settings/epidemiological zones in Kenya).

Table 5. Parameter values.

Parameter
Estimated Value

Source
Endemic Epidemic Seasonal Low Risk

µh 0.00005447 0.00004644 0.00004281 0.00004566 KNBS (2009 Census estimates) [26]
µm 0.04 Estimated
αh 0.07143 Estimated
αm 0.0909 Chitnis [17]
λ 0.42 Estimated
β 0.0655 Estimated
ε 0.2 Kbenesh et al. [27]
ψ 0.01095 Estimated

Λh 0.00000575 0.00000575 0.00000548 0.00000438 KNBS (estimates based on 2009 Census) [26]
Λm 0.071 Niger and Gumel [28]
b 0.005 Chiyaka et al. [29]
τ 0.5 Assumed
δh 0.05. KNBS and ICF Macro [30]
p. 0.25 Assumed
a 0.25 Assumed
φ 0.502 Kbenesh et al. [27]
λh 0.00000149 0.00000123 0.00000445 0.00000226 Estimated

λhw 0.00000247 0.00000203 0.00000693 0.00000328 Estimated
λm 0.00000048 0.00000394 0.00000143 0.00000073 Estimated
Nh 440169 535093 147832 290703 KNBS (2009 Census estimate) [26]

Nhw 266343 324658 94857 200216 KNBS (2009 Census estimate) [26]
Nm 4401690 5350930 1478320 2907030 Estimated
b1 $2.5–5.0 White et al. [4] and Hansen et al. [9]
b2 $2.0 White et al. [4]
b3 $1.50 White et al. [4]
b4 $2.5 White et al. [4] and Hansen et al. [9]

ϕ
3

365
–

5
365

% Assumed
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In addition the effect of the different intervention strategies are estimated as: u1 “ 0.0904,
u2 “ 0.165, u3 “ 0.076, u4 “ 0.035. The initial state variables are constant across all the epidemiological
zones and are chosen as Sh p0q “ 700, Eh p0q “ 250, Ih p0q “ 30, Rh p0q “ 30, Sm p0q “ 5000, Em p0q “ 500
and Im p0q “ 100. The numerical simulations are done in R statistical Computing platform [31].

6.1. Numerical Simulations of the Economic Evaluations of the Malaria Model

A case of the endemic epidemiological zone is used for the illustrative purpose. Numerical
simulations showing the impact of the shadow prices (marginal value/cost) and marginal benefits by
evaluating the shadow prices at the start of the malaria epidemic and as a function of the numbers of
recovered or protected at the time of outbreak (susceptible human beings).

The marginal cost and effect of the intervention strategies are simulated for the Endemic
transmission setting and the results are shown in Figure 2.Mathematics 2016, 4, 14  16 of 21 
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Figure 2. Numerical simulations of the economic evaluations of the malaria model for the endemic
transmission settings.

Simulations are also done for the epidemic, seasonal and low risks epidemiological zones.
Across all the four malaria transmission settings, it is observed that the marginal value (shadow

price) of Ih is much less damaging than the marginal values of Eh and Sh. The shadow price on the
susceptible humans are increasing overtime while the shadow prices of exposed starts dropping at
t “ 5 days and shadow prices on infected starts dropping at t “ 3 days. In addition, across all the
four malaria transmission settings, shows that the shadow price on Sh starts at higher positive values,
increases and stabilizes at higher prices closer to the total susceptible population. As more individuals
recover from the disease the cost of the disease is still higher. It is also observed that across all the
four malaria transmission settings shows that the marginal benefit of use of treatment is much smaller
than the marginal benefit of IPTp, ITNs and IRS in that order. Smaller amounts of treatment is needed
compared to IPTp, ITNs and IRS in that order to be able to eliminate the disease.
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6.2. Numerical Simulation of the Optimal Malaria Control Strategies and Cost-Effectiveness Analysis

Numerical simulations are further done to show the infections averted and the cost associated
with the infections averted by the intervention strategies for the four different transmission settings.
Rankings of the number infections averted (effectiveness) is then done so that ICER can be applied.

For the different transmission settings we compute the optimal solution for the 15 strategies
and their associated effectiveness E (infections averted) which is the difference between the numbers
of infections when there is no intervention and when there are interventions. The strategies were
classified as follows: ITN only (Strategy A), treatment only (Strategy B), IRS only (Strategy C), IPTp
only (Strategy D), treatment and ITNs (Strategy E), ITNs and IRS (Strategy F), ITNs and IPTp (Strategy
G), treatment and IRS (Strategy H), treatment and IPTp (Strategy I), IPTp and IRS (Strategy J), ITNs,
treatment and IRS (Strategy K), ITNs, treatment and IPTp (Strategy L), ITNs, IRS and IPTp (Strategy
M), IRS, treatment and IPTp (Strategy N), ITNs, treatment, IRS and IPTp (Strategy O). Based on the
model simulation results, the strategies practiced in Kenya for different epidemiological settings were
ranked in the order of increasing effectiveness.

The infections averted and cost of the intervention used is used to determine the cost-effectiveness
of different combinations of the four intervention strategies using the ICER. We determined
the total cost of the combined intervention strategies and the infections averted for different
transmission settings.

The ICER for every two competing strategies for each epidemiological scenario is calculated and
this shows the cost effectiveness for each strategy. The cost-effectiveness calculations are further verified
using the computation of incremental cost-effectiveness ratios in table form for each epidemiological
zone in order to have a complete overview of the outcome.

The Table 6 below summarizes the ranking of simulation results on the effectiveness (infections
averted) and the total costs by the different strategies for endemic scenario in Kenya.

Table 6. Intervention strategies and its corresponding infections averted plus cost for Endemic region.

Strategies Infections Averted Cost

C 0.0000121135 0.00001817024
A 1.687 5.0613
F 1.6871 7.59196
G 3.68444 20.2644
M 3.6876 4.337343
D 5.35895 13.339738
J 5.368965 21.47586
I 101.7332 57.7995
N 101.7393 610.4358
L 102.8135 771.1012
O 102.818 925.3622
B 105.2167 210.4334
H 105.2167 368.2585
E 106.301 531.5846
K 106.3167 691.0584

The ICER for every two competing strategies was calculated and the results are presented in
Table 7.

Alternatives that are more expensive and less ineffective are excluded (A, F, D, J, N, O and H).
These are the strategies that have higher ICER when compared. Having excluded strategy A, F, D, J, N,
O and H, ICERs are recalculated for the remaining strategies (C, G, M, I, L, B, H and K) and are shown
in Table 8.
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Table 7. Incremental cost-effectiveness ratios of all combined strategies for Endemic region.

Strategy Strategy
Effects (E) Cost ($) (C) Incremental

Cost (∆C)
Incremental
Effect (∆E)

ICER
(∆C)/(∆E)

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999
A 1.687 5.0613 5.06128183 1.686987887 3.000189
F 1.6871 7.59196 2.53066 0.000099999 25306.6
G 3.68444 20.2644 12.67244 1.99734 6.344658
M 3.6876 4.337343 ´15.927057 0.00316 ´5040.21
D 5.35895 13.339738 9.002395 1.67135 5.386301
J 5.368965 21.47586 8.136122 0.010015 812.3936
I 101.7332 57.7995 36.32364 96.364235 0.376941
N 101.7393 610.4358 552.6363 0.0061 90596.11
L 102.8135 771.1012 160.6654 1.0742 149.5675
O 102.818 925.3622 154.261 0.0045 34280.22
B 105.2167 210.4334 ´714.9288 2.3987 ´298.048
H 105.2167 368.2585 157.8251 0 Inf
E 106.301 531.5846 163.3261 1.0843 150.6281
K 106.3167 691.0584 159.4738 0.0157 10157.57

Table 8. Exclusion of more costly and less effective intervention strategies for Endemic region.

Strategy Strategy
Effects (E) Cost ($) (C) Incremental

Cost (∆C)
Incremental
Effect (∆E)

ICER
(∆C)/(∆E)

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999
G 3.68444 20.2644 20.26438183 3.684427887 5.500008
M 3.6876 4.337343 ´15.927057 0.00316 ´5040.21
I 101.7332 57.7995 53.462157 98.0456 0.545278
L 102.8135 771.1012 713.3017 1.0803 660.2811
B 105.2167 210.4334 ´560.6678 2.4032 ´233.301
E 106.301 531.5846 321.1512 1.0843 296.183
K 106.3167 691.0584 322.7999 1.1 293.4545

The dominated strategies (G, I, L and K) are then excluded and the ICERs are recalculated again
(Table 9). These are the strategies that have higher ICER when compared.

Table 9. Exclusion of dominated alternative intervention strategies for Endemic region.

Strategy Strategy
Effects (E) Cost ($) (C) Incremental

Cost (∆C)
Incremental
Effect (∆E)

ICER
(∆C)/(∆E)

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999
M 3.6876 4.337343 4.33732483 3.687587887 1.176196
B 105.2167 210.4334 206.096057 101.5291 2.029921
E 106.301 531.5846 321.1512 1.0843 296.183

In Table 9 the most cost effective quadrant will be strategy M and strategy B and in deciding
between them the size of the available budget must be brought to bear. Strategy M is the combination
of ITNs, IRS and IPTp while strategy B is the use of treatment only.

Repeating the same procedure for the remaining epidemiological zones (epidemic, seasonal and
low), the findings shows that for the endemic regions the combination of ITNs u1, IRS u3, and IPTp u4

is the most cost-effective of all the combined strategies developed in this study for malaria disease
control and prevention; for the epidemic prone areas is the combination of the treatment u2, and IRS
u3; for seasonal areas is the combination ITNs u1 plus treatment u2; and for the low risk areas is the
use of treatment u2 only. The result confirms the role which the four intervention strategies are playing
in order to eradicate or minimize the spreading of the malaria disease.
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7. Discussion

This paper conducted cost effective analysis of one or all possible combinations of malaria control
strategies for different transmission settings in order to assess the extent to which the intervention
strategies are beneficial and cost effective. For the four different transmission settings the optimal
control model simulation was done for the 15 strategies and their associated effectiveness E, which is
the difference between the numbers of infections when there is no intervention and when there are
interventions, was used to rank the effectiveness of the interventions [7,8]. The marginal costs and
benefits have also been investigated. ICER was then used to compare the health and economic benefits
of the intervention strategies. Numerical simulation compared the marginal value and marginal effect
for the four intervention strategies [8] across the four different transmission settings.

The findings of the study shows that for the endemic regions the combination of ITNs, IRS, and
IPTp was the most cost-effective of all the combined strategies developed in this study for malaria
disease control and prevention. This findings are different from the findings of Okosun et al. [8],
who found that the combination of the spray of insecticides and treatment of infective individuals
were the cost effective strategies. This may be due to the fact that in our study we considered the
at most risk groups while in the Okusun et al. [8] they considered whole population. The findings
shows that preventive measures tends to have a greater health benefit in a cost effective or economical
manner in minimizing malaria transmission for the most at risk groups. Stuckey et al. [5] showed
that increasing coverage of vector control interventions (preventive strategies) had a larger simulated
impact compared to adding treatment measures.

Our results shows that for the epidemic prone areas the cost effective strategy was the combination
of the treatment and IRS which agrees with Okosun et al. [8]. This is because the combination of the
preventive and treatment actions tend to be more effective in the reduction of parasitic prevalence to
below 1% [32]. This is due to the fact that infected mosquito population is reduced by IRS and the
infected human population is reduced via the treatment.

For seasonal areas, the findings of this study showed that the combination ITNs and treatment
would be the most cost effective intervention strategy to reduce malaria transmission among the
under-five and the pregnant women. This is slightly different with the findings of Griffin et al. [30] who
found that for the high seasonal transmission settings the use of LLITNs, IRS and treatment would
help reduce the transmission of malaria.

The results showed that for the low risk areas is the use of treatment only. These findings were
different from Hansen et al. [9] who found that the most cost effective strategy was the use of ITNs
alone in Uganda low transmission settings.

The result confirms the role which the four intervention strategies are playing in order to eradicate
or minimize the spreading of the malaria disease among the at risk groups. The policy implications
of these findings is that different transmission settings require different interventions that are health
beneficial and cost effective. The results can guide decision makers in making more informed and
evidence-based choices on the health resources being allocated. These findings may help inform the
development of guidelines for prevention of malaria among the under-five and the pregnant women
in different transmission settings in Kenya as well as in other African countries.

These findings were based on the use of secondary data, a more designed study may be needed to
ascertain the findings of these studies. Including other possible positive externalities would improve
the cost-effectiveness of interventions strategies.

8. Conclusions

In this manuscript, we formulated and analyzed a deterministic model for malaria transmission
that incorporated the intervention strategies for the most at risk groups for malaria (pregnant women
and children under five years of age). Optimal control analysis of the model and cost effectiveness
analysis of the optimal control strategies has also been performed. Some of the main theoretical and
epidemiological findings can be summarized as follows:
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1. The disease free equilibrium point for System (1) is locally asymptotically stable whenever the
reproduction number, R0 ă 1 and unstable if R0 ą 1.

2. The sensitivity analysis showed that the main sensitive parameters to R0 across all the settings
was the mosquito’s natural death rate, µm, and mosquito biting rate, ε, this was followed by the
by the mosquito contact rate with humans, φ, probability of mosquito getting infected, λ, the
probability of humans getting infected, β, and the recruitment rate of mosquitoes and humans.

3. The numerical simulations and cost-effectiveness analysis showed that the most cost-effective
strategies for malaria disease control and prevention for the endemic regions was the combination
of ITNs, IRS, and IPTp; for the epidemic prone areas is the combination of the treatment and
IRS; for seasonal areas is the use of ITNs plus treatment; and for the low risk areas is the use of
treatment only.

4. The results also demonstrated that malaria transmission in Kenya can be minimized through
tailor-made intervention strategies for malaria control which produces health improvements
in the most cost effective way for different epidemiological zones. This will provide basis for
informed decision making about the value for money for the public health programs and can
guide in the allocation of malaria control resources for the post-2015 malaria eradication strategies
and the achievement of the Sustainable Development Goals.
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The following abbreviations are used in this manuscript:

ICER Incremental Cost Effectiveness Ratio
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ITNs Insecticides Treated Bed Nets
LLINs Long-lasting Insecticide-treated bed nets
IRS Indoor residual spraying
ACTs Artemisinin-based combination therapies
IPTp intermittent preventive treatment for pregnant women
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