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Abstract: Burg’s entropy plays an important role in this age of information euphoria, particularly
in understanding the emergent behavior of a complex system such as statistical mechanics. For
discrete or continuous variable, maximization of Burg’s Entropy subject to its only natural and mean
constraint always provide us a positive density function though the Entropy is always negative.
On the other hand, Burg’s modified entropy is a better measure than the standard Burg’s entropy
measure since this is always positive and there is no computational problem for small probabilistic
values. Moreover, the maximum value of Burg’s modified entropy increases with the number of
possible outcomes. In this paper, a premium has been put on the fact that if Burg’s modified entropy
is used instead of conventional Burg’s entropy in a maximum entropy probability density (MEPD)
function, the result yields a better approximation of the probability distribution. An important lemma
in basic algebra and a suitable example with tables and graphs in statistical mechanics have been
given to illustrate the whole idea appropriately.
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1. Introduction

The concept of entropy [1] figured strongly in the physical sciences during the 19th century,
especially in thermodynamics and statistical mechanics [2], as a measure of equilibrium and evolution
of thermodynamic systems. Two main views were developed which were the macroscopic view
formulated originally by Clausius and Carnot and the microscopic approach associated with Boltzmann
and Maxwell. Since then, both the approaches have made introspection in natural thermodynamic
and microscopically probabilistic systems possible. Entropy is defined as the measure of a system’s
thermal energy per unit temperature that is unavailable for doing useful work. Because work is
obtained from ordered molecular motion, the amount of entropy is also a measure of molecular
disorder or randomness of a system. The concept of entropy provides deep insight into the direction of
spontaneous change for many day-to-day phenomena. Now, how entropy was developed by Rudolf
Clausius [3] is discussed below.

1.1. Clausius’s Entropy

To provide a quantitative measure for the direction of spontaneous change, Clausius introduced
the concept of entropy as a precise way of expressing the second law of thermodynamics. The Clausius
form of the second law states that spontaneous change for an irreversible process [4] in an isolated
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system (that is, one that does not exchange heat or work with its surroundings) always proceeds in
the direction of increasing entropy. By the Clausius definition, if an amount of heat Q flows into a

large heat reservoir at temperature T above absolute zero, then ∆s “
Q
T

. This equation effectively
gives an alternate definition of temperature that agrees with the usual definition. Assume that there
are two heat reservoirs R1 and R2 at temperatures T1 and T2. (such as the stove and the block of ice).
If an amount of heat Q flows from R1 to R2, then the net entropy change for the two reservoirs is

∆s “ Q
ˆ

1
T2
´

1
T1

˙

which is positive, provided that T1 ą T2. Thus, the observation that heat never

flows spontaneously from cold to hot is equivalent to requiring the net entropy change to be positive
for a spontaneous flow of heat. When the system is in thermodynamic equilibrium, then dS “ 0, i.e.,
if T1 “ T2, then the reservoirs are in equilibrium, no heat flows, and ∆s “ 0. If the gas absorbs an
incremental amount of heat dQ from a heat reservoir at temperature T and expands reversibly against
the maximum possible restraining pressure P, then it does the maximum work and dW “ PdV. The
internal energy of the gas might also change by an amount dU as it expands. Then, by conservation of
energy, dQ “ dU ` PdV. Because the net entropy change for the system plus reservoir is zero when

maximum work is done and the entropy of the reservoir decreases by an amount dSreservoir “ ´
dQ
T

,

this must be counterbalanced by an entropy increase of dSsystem “
dU ` PdV

T
“

dQ
T

for the working
gas so that dSsystem ` dSreservoir “ 0. For any real process, less than the maximum work would be done
(because of friction, for example), and so the actual amount of heat dQ1 absorbed from the heat reservoir
would be less than the maximum amount dQ. For example, the gas could be allowed to expand freely

into a vacuum and do no work at all. Therefore, it can be stated that dSsystem “
dU ` PdV

T
ě

dQ1

T
with,

dQ1 “ dQ in the case of maximum work corresponding to a reversible process. This equation defines
Ssystem as a thermodynamic state variable, meaning that its value is completely determined by the
current state of the system and not by how the system reached that state. Entropy is a comprehensive
property in that its magnitude depends on the amount of material in the system.

In one statistical interpretation of entropy, it is found that for a very large system in
thermodynamic equilibrium, entropy S is proportional to the natural logarithm of a quantity Ω
corresponding to S and can be realized; that is, S “ KlnΩ, in which K is related to molecular energy.
On the other hand, entropy generation analysis [5–11] is used to optimize the thermal engineering
devices for higher energy efficiency; it has attracted wide attention to its applications and rates in
recent years. In order to access the best thermal design of systems, by minimizing the irreversibility, the
second law of thermodynamics could be employed. Entropy generation is a criterion for the destruction
of a systematized work.The development of the theory followed two conceptually different lines of
thought. Nevertheless, they are symbiotically related, in particular through the work of Boltzmann.

1.2. Boltzmann’s Entropy

In addition to thermodynamic (or heat-change) entropy, physicists also study entropy
statistically [12,13]. The statistical or probabilistic study of entropy is presented in Boltzmann’s law.
Boltzmann’s equation is somewhat different from the original Clausius (thermodynamic) formulation
of entropy. Firstly, the Boltzmann formulation is structured in terms of probabilities, while the
thermodynamic formulation does not consist in the calculation of probabilities. The thermodynamic
formulation can be characterized as a mathematical formulation, while the Boltzmann formulation is
statistical. Secondly, the Boltzmann equation yields a value of entropy S while the thermodynamic
formulation yields only a value for the change in entropy pdSq. Thirdly, there is a shift in content, as
the Boltzmann equation was developed for research on gas molecules rather than thermodynamics.
Fourthly, by incorporating probabilities, the Boltzmann equation focuses on microstates, and thus
explicitly introduces the question of the relationship between macrostates and microstates. Boltzmann
investigated such microstates and defined entropy in a new way such that the macroscopic maximum
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entropy state corresponded to a thermodynamic configuration which could be formulated by the
maximum number of different microstates. He noticed that the entropy of a system can be considered
as a measure of the disorder in the system and that in a system having many degrees of freedom, the
number measuring the degree of disorder also measured the uncertainty in a probabilistic sense about
the particular microstates.

The value W was originally intended to be proportional to the Wahrscheinlichkeit (means
probability) of a macrostate for some probability distribution of a possible microstate, in which
the thermodynamic state of a system can be realized by assigning different ξ and ρ of different
molecules. The Boltzmann formula is the most general formula for thermodynamic entropy; however,
his hypothesis was for an ideal gas of N identical particles, of which Nipi “ 1, 2, . . . . , lq are the ith
microscopic condition of position and momentum of a given distribution Di “ pN1, N2, . . . . , Nlq. Here,
D1 “ pN, 0, . . . . , 0q, D2 “ pN ´ 1, 1, . . . . , 0q, . . . etc. For this state, the probability of each microstate
system is equal, so it was equivalent to calculating the number of microstates associated with a

macrostate. Then the statistical disorder is given by [14] W “
N!

N1!N2!.. . . . Nl !
, rN1 ` N2 ` .. . . .` Nl “

Ns. Therefore, the entropy given by Boltzmann is: SB “ KlnW Where lnW “ ln
N!

N1!N2!.. . . . Nl !
“

lnN!´
l
ř

i“1
ln pNi!q

Let us now take an approximate value of W for a large N!. Using Stirling’s approximation
lnN! – NlnN ´ N, we have:

lnW – NlnN ´ N ´

«

l
ř

i“1
Niln pNiq ´

l
ř

i“1
pNiq

ff

“ ´
l
ř

i“1
NilnNi “ ´N

l
ř

i“1
pilnpi

SB “ ´K
n
ř

i“1
pilnpi where pi “

Ni
N

is the probability of the occurrence of i th microstates. Boltzmann

was the first to emphasize the probabilistic meaning of entropy and the probabilistic nature of
thermodynamics.

1.3. Information Theory andShannon’s Entropy

Unlike the first two entropy approaches (thermodynamic entropy by Clausius and Boltzmann’s
entropy), the third major form of entropy did not fall within the field of physics, but was developed
instead in a new field known as information theory [15–17] (also known as communication theory).
A fundamental step in using entropy in new contexts unrelated to thermodynamics was provided
by Shannon [18], who came to conclude that entropy could be used to measure types of disorder
other than that of thermodynamic microstates. Shannon was interested in information theory [19,20],
particularly in the ways in which information can be conveyed via a message. This led him to examine
probability distributions in a very general sense and he worked to find a way of measuring the level of
uncertainty in different distributions.

For example, suppose the probability distribution for the outcome of a coin toss experiment
is P(H) = 0.999 and P(T) = 0.001. One is likely to notice that there is much more “certainty” than
“uncertainty” about the outcome of this experiment and, consequently, the probability distribution.
If, on the other hand, the probability distribution governing that same experiment were P(H) = 0.5
and P(T) = 0.5, then there is much less “certainty” and much more “uncertainty” when compared to
the previous distribution. However, how can these uncertainties can be quantified? Is there some
algebraic function which measures the amount of uncertainty in any probabilistic distribution in
terms of the individual probabilities? From these types of simple examples and others, Shannon
was able to devise a set of criteria which any measure of uncertainty may satisfy. He then tried
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to find an algebraic form which would satisfy his criteria and discovered that there was only one
formula which fit. Let the probabilities of n possible outcomes E1, E2, . . . . . . . , En of an experiment

be p1, p2, .. . . . , pn, giving rise to the probability distribution P “ pp1, p2, . . . , pnq;
n
ř

i“1
pi “ 1; pi1s ě 0.

There is an uncertainty as to the outcome when the experiment is performed. Shannon suggested the

measure ´
n
ř

i“1
pilnpi, which is identical to the previous entropy relation if the constant of probability is

taken as the Boltzmann constant K. Thus, Shannon showed that entropy, which measures the amount
of disorder in a thermodynamic system, also measures the amount of uncertainty in any probability
distribution. Let us now give the formal definition of Shannon’s entropy as follows: Consider a random
experiment P “ pp1, p2, . . . , pnqwhose possible outcomes have probabilities pi, i “ 1, 2, . . . , n that are
known. Can we guess in advance which outcome we shall obtain? Can we measure the amount of
uncertainty? We shall denote such an uncertainty measure by HpPq “ Hnpp1, p2, . . . , pnq. The most
common as well as the most useful measure of uncertainty is Shannon's informational entropy (which
should satisfy some basic requirements), which is defined as follows:

Definition I: Let pp1, p2, . . . , pnq be the probability of the occurrence of the events E1, E2, . . . . . . , En

associated with a random experiment. The Shannon’s entropy probability distribution pp1, p2, . . . , pnq

of the random experiment system P is defined by HpPq “ Hnpp1, p2, . . . , pnq “ ´
n
ř

i“1
pilnpi where,

0ln0 – 0. The above definition is generalized straightforwardly as the definition of entropy of a
random variable.

Definition II: Let X P R be a discrete random variable which takes the value xi pi “ 1, 2, 3, . . . . , nq
with the probability pi, i “ 1, 2, . . . , n; then the entropy H pXq of X is defined by the expression

H pXq “ ´
n
ř

i“1
pilnpi Examination of H or Hn pPq reveals why Shannon’s measure is the most

satisfactory measure of entropy because of the following:

(i) Hn pPq is a continuous function of p1, p2, . . . , pn.
(ii) Hn pPq is a symmetric function of its arguments.

(iii) Hn`1pp1, p2, . . . , pn, 0q “ Hnpp1, p2, . . . , pnq, i.e., it should not change if there is an impossible
outcome to the probability.

(iv) Its minimum is 0 when there is no uncertainty about the outcome. Thus, it should vanish when
one of the outcomes is certain to happen so that

Hnpp1, p2, . . . , pnq “ 0; pi “ 1, pj “ 0, i ‰ j, i “ 1, 2, . . . , n

(v) It is the maximum when there is maximum uncertainty, which arises when the outcomes are

equally likely so that Hn pPq is the maximum when p1 “ p2 “ .. . . . “ pn “
1
n

.

(vi) The maximum value of Hn pPq increases with n.
(vii) For two independent probability distributions Ppp1, p2, . . . , pnq and Qpq1, q2, . . . , qmq, the

uncertainty of the joint scheme PY Q should be the sum of their uncertainties: Hn`mpPYQq “
Hn pPq ` Hm pQq

Shannon’s entropy has various applications in the field of portfolio analysis, the measurement
of economic analysis, transportation, and urban and regional planning as well as in the fields of
statistics, thermodynamics, queuing theory, parametric estimation, etc. It has been used in the
field non-commensurable and conflicting criteria [21] and in the nonlinear complexity of random
sequences [22] as well.
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2. Discussion

2.1. Jaynes’ Maximum Entropy (MaxEnt) Principle

Let the random variable of an experiment be X, and assume the probability mass associated
with the value xi is pi, i.e., PXpiq ” PpXq “ pi, i “ 1, 2, . . . . , n. The set pX, Pq “

tpx1, p2q , px2, p2q , . . . . , pxn, pnqu ,
n
ř

i“1
pi “ 1 is called the source ensemble as described by

Karmeshu [23]. In general, we may find expected values of the functions g1 pXq , g2 pXq , .. . . . , gz pXq

to get
n
ř

i“1
pigri “ ar, r “ 1, 2, . . . . . . . , z, pi ě 0 and with natural constraint

n
ř

i“1
pi “ 1, given a

number of constraints. Thus, we have z ` 1 relations between pp1, p2, . . . . . . , pnq. There may be
infinite probability distributions pp1, p2, . . . . . . , pnq satisfying the above equation. If we know only
g1 pxq , g2 pxq , .. . . . , gz pxq, then we get a family of max entropy distributions. If, in addition, we know
the values of a1, a2, . . . . . . , az, we get a specific member of this family and we call it the max entropy
probability distribution. According to a great article by Jaynes [24–26], we choose the probability
distribution out of all these which maximizes the measure of entropy as shown by Shannon’s equation,

S pPq “ ´
n
ř

i“1
pilnpi.

Any distribution of the form pi “ expr´λ0 ´ λ1g1pxiq ´ λ2g2
pxiq

´ .. . . . . . . ´ λzgzpxiqs,
i “ 1, 2, . . . . . . . . . . . . , n may be regarded as the maximum entropy distribution where
λ0, λ1, . . . . . . . , λz are determined as functions of a1, a2, . . . . . . , az; then the maximum entropy
Smax is given by Smax “ λ0 ` λ1a1 ` λ2a2 ` . . . . . .` λzaz.

Kapur [27,28] showed that there is always a concave function of a1, a2, . . . . . . , am. We also note
that all the probabilities given by pi are always positive. We naturally want to know whether there
is another measure of entropy other than Shannon’s entropy which, when maximized, subject to,

n
ř

i“1
pi “ 1,

n
ř

i“1
pigri “ ar, r “ 1, 2, . . . . . . . , z, pi ě 0, gives positive probabilities and for which Smax

is possibly a concave function [29] of parameters. Kapur [30] studied that Burg’s [31] measure
of entropy, which has been very successfully used in spectral analysis, does always give positive
probabilities. The maximum entropy principal of Jaynes has been used frequently to derive the
distribution of statistical mechanics by maximizing the entropy of the system subject to some given
constraints. The Maxwell-Boltzman distribution is obtained when there is only one constraint on
a system which prescribes the expected energy per particle of the system by Bose-Einstein (B.E.)
distribution, Fermi-Dirac (F.D.) distribution and intermediate statistics (I.S.) distributions; these
are obtained by maximizing the entropy subject to two constraints by Kapur and Kesavan, and
Kullback [32,33] and also by the present authors [34].

2.2. Formulation of MEPD in Statistical Mechanics Using Shannon’s Measure of Entropy

Let p1, p2, .. . . . , pn be the probabilities of a particle having energy levels ε1,ε2, . . . .,εn, respectively,
and let the expected value of energy be prescribed as ε; then, to get MEPD, we maximize the Shannon’s
measure of entropy:

S pPq “ ´
n
ÿ

i“1

pilnpi (1)

Subject to
n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

piεi “ ε (2)

Let the Lagrangian be

L “ ´
n
ÿ

i“1

pilnpi ´ pλ´ 1q

˜

n
ÿ

i“1

pi ´ 1

¸

´ µ

˜

n
ÿ

i“1

piεi ´ ε

¸

(3)
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Differentiating with respect to pi’s, we get:
lnpi ` λ` µεi “ 0 ñ pi “ expp´λ´ µεiq where, λ, µ are to be determined by using Equation (2)

so that

pi “
expp´µεiq

n
ř

i“1
expp´µεiq

, i “ 1, 2, . . . . , n, (4)

Where
n
ř

i“1
εiexpp´µεiq

n
ř

i“1
expp´µεiq

“ ε (5)

Equation (4) is the well-known Maxwell-Boltzmann distribution from statistical mechanics which
is used in many areas [35–37].

2.3. Burg’s Entropy Measure and MEPD

When S pPq “ ´
n
ř

i“1
pilnpi was replaced by Burg’s measure of entropy B pPq “

ř

i
lnpi, it gave

interesting results as shown by Kapur. Burg’s measure of entropy is always negative, but this does
not matter in entropy maximization, where it has been found that a probability distribution with
maximum entropy satisfies the same constraint and it does not matter if all the entropies are negative.
So, in Equation (1) when we use

B pPq “
ÿ

i

lnpi, with the constraints
n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

ipi “ m (6)

we get

pi “
1

λ` µi
, i “ 1, 2, 3, . . . . . . . , n (7)

where λ&µ are obtained by solving the equations

ÿ

i

1
λ` µi

“ 1,
ÿ

i

i
λ` µi

“ m (8)

Multiplying first and second Equation (8) by λ&µ respectively then adding
We get

ÿ

i

λ` µi
λ` µi

“ λ` µm or, n “ λ` µm (9)

so that from Equation (8),
n
ÿ

i“1

1
n´ µ pm´ iq

“ 1 (10)

Then, µ “ 0 is an obvious solution but that will give us λ “ n and this will satisfy the second
equation of (8)

if m “
n` 1

2
. Now, Equation (10) is the nth degree polynomial in µ, and one of its roots is zero.

Its non-zero solutions will be obtained by solving an equation of pn´ 1qth degree in µ. Lemma has
been proved by Kapur as the following:

Lemma: All the roots of
n
ř

r“1

1
n´ µ pm´ iq

“ 1 are real; in other words, none of the roots can be complex.

Proof: Let µ “ α` iβ, i “
?
´ 1 be a pair of complex conjugate roots of Equation (10). Then,
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n
ř

r“1

1
n´ pα` iβq pm´ iq

“ 1 and
n
ř

r“1

1
n´ pα´ iβq pm´ iq

“ 1; subtracting the second from the

first, we get
n
ř

r“1

2iβ pm´ rq
tn´ α pm´ rqu2

` β2
“ 0, which gives β “ 0, or

n
ř

r“1

pm´ rq
tn´ α pm´ rqu2

` β2
“ 0. The second

possibility can easily be ruled out. To find the actual location of the n real roots, let us assume

f pµq ”
ř

r

1
n´ µ pm´ rq

´ 1 and this function is discontinuous at the following points:

´
n

n´m
,´

n
n´ pm´ 1q

, . . . . . . . ,´
n

1´ l
,

n
l

, . . . . . . ,
n

m´ 2
,

n
m´ 1

, where m “ k` l, k “ rms and l

is a “+” fraction. More precisely, f pµq Ñ `8 when µ Ñ points from one side and f pµq Ñ ´8 when
µ Ñ points from other side. Again,

f pµq ”
ÿ

r

1
n´ µ pm´ rq

´ 1 “
1
n

«

ÿ

r

"

1´ µ

ˆ

m´ r
n

˙*´1
ff

´ 1

“
1
n

«

ÿ

r

"

1` µ

ˆ

m´ r
n

˙*

`O
´

µ2
¯

ff

´ 1 “
1
n

„

n`
µ

n

"

mn´
n pn` 1q

2

*

´ 1`O
´

µ2
¯

“
µ

n

"

m´
pn` 1q

2

*

`O
´

µ2
¯

2.4. d Burg’s Modifie Entropy (MBE) Measure and MEPD

2.4.1. Monotonic Character of MBE

We propose use of Burg’s modified entropy instead of Burg’s entropy. Maximizing the Burg’s
modified measure of entropy:

Bmod pPq “
n
ÿ

i“1

lnp1` apiq ´ lnp1` aq, a ą 0 (11)

d
da
pBmod pPqq “

n
ÿ

i“1

pi
1` api

´
1

1` a
“

n
ÿ

i“1

pi

„

1
1` api

´
1

1` a



“

n
ÿ

i“1

api p1´ piq

p1` aq p1` apiq
ą 0 (12)

Therefore, Bmod pPq is the monotonic increasing function of a. For the probability distribution

pp, 1´ pq

d
da
pBmod pPqq “

n
ÿ

i“1

pi
1` api

´
1

1` a
“

n
ÿ

i“1

pi

„

1
1` api

´
1

1` a



“

n
ÿ

i“1

api p1´ piq

p1` aq p1` apiq
ą 0 (13)

it is showed (see: Table 1.) that Max
P
pBmod pPqq “ ln

ˆ

1`
a2

4 p1` aq

˙

“ ln

˜

pa` 2q2

4 p1` aq

¸

.

The measure of entropy Max
P
pBmod pPqq is the Burg’s modified entropy. This is a better measure

than the standard Burg’s measure since it is always positive and there is no computational problem
when pi is very small. In the above case, the maximum value increases with the number of possible
outcomes n.
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Table 1. The a values & maximum values of Burg’s Modified Entropy.

a Max
P
pBmod pPqq

0.5 0.04082
1.0 0.11778
1.5 0.20294
2.0 0.28768
5.0 0.71376

10.0 1.1856
20.0 1.7512
30.0 2.1111
40.0 2.3754
50.0 2.5843
8 8

2.4.2. MBE and Its Relation with Burg’s Entropy

Bmod pPq “
n
ř

i“1
lnp1` apiq ´ lnp1` aq “

n
ř

i“1

„

lna` ln
ˆ

pi `
1
a

˙

´ lna´ ln
ˆ

1`
1
a

˙

“ pn´ 1q lna`
n
ř

i“1
ln
ˆ

pi `
1
a

˙

´ ln
ˆ

1`
1
a

˙

So, when a Ñ8 , maximizing pBmod pPqq and pB pPqqwill give the same result in both cases;again, if
pBmod pPqq is maximized under the constraints

n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

pigri “ ar, r “ 1, 2, . . . . . . . , m, pi ě 0 (14)

we get
1

1` api
“ rλ0`λ1g1pxiq`λ2g2

pxiq
` .. . . . . . .`λmgmpxiqs, i “ 1, 2, . . . . . . . . . . . . , n. Letting, we have

1
pi
“ λ10 ` λ11g1pxiq ` λ12g2

pxiq
` .. . . . . . .` λ1mgmpxiq (15)

The λ1i’s are determined by using Constraints (14) and (15) and this gives the MEPD when Burg’s
entropy is maximized as subject to Equation (14).

Therefore, when a Ñ8 , the MEPD of BMEÑ Burg’s MEPD; in fact:

pBmod pPqq ´ pB pPqq “ pn´ 1qlna`
n
ÿ

i“1

ln

ˆ

pi `
1
a

˙

pi
´ ln

ˆ

1`
1
a

˙

Ñ8 as

a Ñ8.

2.4.3. MBE and Its Concavity of Smax under Prescribed Mean

Maximize Bmod pPq “
n
ÿ

i“1

lnp1` apiq ´ ln p1` aq (16)

subjectto
n
ř

i“1
pi “ 1,

n
ř

i“1
ipi “ m.
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We obtain this using Lagranges multiplier mechanics:

ˆ

pi `
1
a

˙

“
1

λ` µi
Where,

ÿ

i

1
λ` µi

“
ÿ

i

ˆ

pi `
1
a

˙

“ 1`
n
a

(17)

From the above equation:

ÿ

i

i.1
λ` µi

“
ÿ

i

ˆ

pi `
1
a

˙

“

n
ÿ

i“1

ˆ

ipi `
i
a

˙

(18)

ř

i

i
λ` µi

“ m`
n pn` 1q

2a
, i.e.,

n pn` 1q
2a

`m “
ř

i

i
λ` µi

and

µn pn` 1q
2a

` µm “
ÿ

i

µi
λ` µi

, therefore
ÿ

i

λ

λ` µi
“
ÿ

i

ˆ

pi `
1
a

˙

“ λ
´

1`
n
a

¯

(19)

So
ÿ

i

λ

λ` µi
`
ÿ

i

µi
λ` µi

“λ
´

1`
n
a

¯

`
µn pn` 1q

2a
` µm “

ÿ

i

λ` µi
λ` µi

“

n
ÿ

i

1 “ n (20)

λ
´

1`
n
a

¯

`
µn pn` 1q

2a
` µm “ n ñ λ “

n´ µ

ˆ

m`
n pn` 1q

2a

˙

1`
n
a

(21)

Therefore,

λ` µi “
n` µ

„

´

1`
n
a

¯

i´m´
n pn` 1q

2a



1`
n
a

(22)

and
pi “

a` n

an` µ

„

pn` aq i´ am´
n pn` 1q

2

 ´
1
a

, i “ 1, 2, . . . . , n, (23)

where µ is determined as a function of m and that is

1`
n
a
“

n
ÿ

i

a` n

an` µ

„

pn` aq i´ am´
n pn` 1q

2

&

1
a
“

n
ÿ

i

1

an` µ

„

pn` aq i´ am´
n pn` 1q

2

 ,

Therefore,

Smax “
ř

i
ln p1` apiq ´ ln p1` aq

“
n
ř

i
ln

a
λ` µi

´ ln p1` aq “ ln
an

1` a
´
ř

i
ln pλ` µiq

“ ln
an

1` a
´

n
ř

i
ln
„

n` µ

ˆ

´

1`
n
a

¯

i´m´
n pn` 1q

2

˙

` nln
´

1`
n
a

¯
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dSmax

dm
“ ´

n
ř

i“1

„

dµ

dm

"

´

1`
n
a

¯

i´m´
n pn` 1q

2a

*

´ µ



n` µ

„

´

1`
n
a

¯

i´m´
n pn` 1q

2a



“ ´
ř

ˆ

pi `
1
a

˙

a` n
a
„

dµ

dm

„

´

1`
n
a

¯

i´m´
n pn` 1q

2a



´ µ



“
dµ

dm

„

m`
n pn` 1q

2
´m´

n pn` 1q
2



`
µa

a` n

´

1`
n
a

¯

So that

dSmax

dm
“

dµ

dm
&

d2Smax

dm2 “
dµ

dm
“

µ
n
ř

i

ˆ

pi `
1
a

˙2

n
ř

i

ˆ

pi `
1
a

˙2 „
´

1`
n
a

¯

i´m´
n pn` 1q

2a



(24)

Smax will be a concave function of m if
dµ

dm
ă 0, that is, if either µ ą 0, ă 0 when the denominator

ă 0, ą 0, respectively.
In the above case, when a “ 1 we get Smax and the derivative of Smax as follows:

dSmax

dm
“ ´

ÿ

i

1
λ` µi

„

d
dm

pλ` µiq


“
ÿ

i

„

n
2

dµ

dm
`

1
n` 1

ˆ

m
dµ

dm
` µ

˙

´
dµ

dm
i


(25)

“
dµ

dm

ÿ

i

p1` piq

ˆ

n
2
`

m
n` 1

´ i
˙

`
µ

n` 1

ÿ

i

p1` piq

“
dµ

dm

ÿ

i

ˆ

n
2
`

m
n` 1

´ i
˙

`
dµ

dm

ˆ

n
2
`

m
n` 1

˙

´
dµ

dm

ÿ

i

ipi `
µn

n` 1
`

µ

n` 1

“
dµ

dm

ÿ

i

ˆ

n
2

.n`
m

n` 1
.n´

n pn` 1q
2

˙

`
dµ

dm

ˆ

n
2
`

m
n` 1

˙

´
dµ

dm
m`

µn
n` 1

`
µ

n` 1

“
dµ

dm

ˆ

mn
n` 1

´
m

n` 1
´m

˙

`
µn

n` 1
`

µ

n` 1
“ µ

ˆ

n
n` 1

`
1

n` 1

˙

“ µ (26)

So that
d2Smax

dm2 “
dµ

dm
(27)

Additionally, we have

0 “ ´
ÿ

i

p1` piq
2
„

n
2

dµ

dm
`

1
n` 1

ˆ

m
dµ

dm
` µ

˙

´
dµ

dm
i


(28)

So that
dµ

dm

ÿ

i

p1` piq
2
ˆ

n
2
`

m
n` 1

´ i
˙

`
µ

n` 1

ÿ

i

pi` piq
2
“ 0 (29)

Therefore,

dµ

dm
“

µ

n` 1
ř

i
p1` piq

2

ř

i
p1` piq

2
ˆ

i´
n
2
´

m
n` 1

˙ (30)
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So,
d2Smax

dm2 ă 0 ñ
dµ

dm
ă 0 (31)

Therefore, from Equations (27) and (30),
Smax will be a concave function of m if either

piq µ ą 0,
ÿ

i

p1` piq
2
ˆ

i´
n
2
´

m
n` 1

˙

ă 0 (32)

Or

piiq µ ă 0,
ÿ

i

p1` piq
2
ˆ

i´
n
2
´

m
n` 1

˙

ą 0 (33)

Additionally, when µ “ 0,
d2Smax

dm2 “ 0, all the probabilities are equal, and from Equation (24) we
have:

We have,

m`
n pn` 1q

2
“

1
λ

n pn` 1q
2

or, m “
n pn` 1q

2

„

1
λ
´ 1



ñ m “
n` 1

2
. (34)

Now, if we proceed algebraically as done Section 2.3, we get:

1` pi “
1

λ` µi
“

1
1

n` 1
pn´ µmq ´ µ

´n
2
´ i

¯

, i “ 1, 2, . . . . , n,

n
ř

i“1

1
1

n` 1
pn´ µmq ´ µ

´n
2
´ i

¯

“
n
ř

1
p1` piq “ n` 1. The obvious solution of the above problem

is µ “ 0 which will give λ “
1
pi
“ n, i.e., uniform distribution, and thus we get, m “

n` 1
2

.

3. An Illustrative Example in Statistical Mechanics

3.1. Example

Let p1, p2, .. . . . , p10 be the probabilities of a particle having energy levels ε1,ε2, . . . .,ε10;
respectively, and let the expected value of energy be prescribed as m; then, we get the maximum
entropy probability distribution (MEPD) with MBE as follows:

Maximize
10
ÿ

i“1

ln p1` piq ´ ln2 such that,
10
ÿ

i“1

pi “ 1 and
10
ÿ

i“1

ipi “ m for m “ 1 p0.25q 10

Solution: Maximizing the measure of entropy subject to the given constraints, we have

p1` piq “
1

λ` µ i
.

When
ř

i

1
λ` µi

“ 10` 1 “ 11,
10 p10` 1q

2
`m “

ř

i

i
λ` µi

i.e.,
ř

i

i
λ` µi

“ 55`m, we get the

probability distribution in the form of a table and also get the values of Smax as described by Kapur
and Kesavan.

There may be two cases,

Case (i) when m ă
n` 1

2
“ 5.5.

In this case, when m lies between 1 and 5.5, µ ą 0 implies
dSmax

dm
ą 0 and then Smax is increasing.
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Case (ii) when m ą
n` 1

2
“ 5.5.

In this case, when m lies between 5.5 and 10, µ ă 0 implies
dSmax

dm
ă 0 and then Smax is decreasing.

When m “
n` 1

2
“ 5.5, µ “ 0,

dSmax

dm
“ 0.

it can be shown that Smax will be concave if we prescribe E pg pxqq instead of E pxq, where g pxq
is a monotonic increasing function of x; then we will apply the necessary changes. Again, since the
concavity of Smax has already been proven, this will enable us to handle the inequality constraint of

the type m1 ď
n
ř

i“1
ipi ď m2.

3.2. Simulated Results

Following Table (Table 2) Found Using LINGO Software 2011 where Different Max-Entropy
Values Are Given for Different m Values:

Table 2. Comparative Maximum Entropy Values.

m Maximum Entropy
Value of Bmod pPq

Maximum Entropy
Value of B pPq

Maximum Entropy
Value of S pPq

1.00 0 ´158.225 0
1.25 0.0896122 ´45.13505 0.6255029
1.50 0.1345336 ´38.98478 0.9547543
1.75 0.1633092 ´35.43113 1.194875
2.00 0.1836655 ´32.94620 1.385892
2.25 0.1989097 ´31.05219 1.542705
2.50 0.2107459 ´29.53735 1.675885
2.75 0.2201939 ´28.28982 1.790029
3.00 0.2279397 ´27.24394 1.888477
3.25 0.2344146 ´26.35851 1.973503
3.50 0.2399041 ´25.60649 2.046725
3.75 0.24461 ´24.96958 2.109324
4.00 0.248682 ´24.43512 2.162186
4.25 0.252127 ´23.99419 2.205980
4.50 0.2549453 ´23.64047 2.241209
4.75 0.257137 ´23.36942 2.268253
5.00 0.2587024 ´23.17789 2.287386
5.25 0.2596416 ´23.06376 2.298794
5.50 0.2599546 ´23.02585 2.302585
5.75 0.2596416 ´23.06376 2.298794
6.00 0.2587024 ´23.17789 2.287386
6.25 0.257137 ´23.36942 2.268253
6.50 0.2549453 ´23.64047 2.241209
6.75 0.252127 ´23.99419 2.205980
7.00 0.248682 ´24.43512 2.162186
7.25 0.24461 ´24.96958 2.109324
7.50 0.2399041 ´25.60649 2.046725
7.75 0.2344146 ´26.35851 1.973503
8.00 0.2279397 ´27.24394 1.888477
8.25 0.2201939 ´28.28982 1.790029
8.50 0.2107459 ´29.53735 1.675885
8.75 0.1989097 ´31.05219 1.542705
9.00 0.1836655 ´32.94620 1.385892
9.25 0.1633092 ´35.43113 1.194875
9.50 0.1345336 ´38.98478 0.9547543
9.75 0.0896122 ´45.13505 0.6255029
10.0 0 ´141.25285 0

Graphs obtained from the above table are given on the next page (Figures 1–3):
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Figure 1. Maximum Burg’s modified entropy.
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Figure 2. Maximum Burg’s entropy.
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Figure 3. Maximum Shannon’s entropy.

If pi is plotted against i, we get rectangular hyperbolic types of curves (Table 3 and Figure 4).
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Table 3. pi and i graph.

i pi

1 1.000000
2 0.2899575
3 0.1747893
4 0.1253783
5 0.1027619
6 0.1027620
7 0.1253782
8 0.1747891
9 0.2899574

10 1.000000
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4. Conclusions

In the present paper we have presented different MEPDs and respective entropy measures with
their properties. It has been found that MBE is a better measure than Burg’s entropy when the
maximized subject to the mean is prescribed, and it also has been shown that unlike Burg’s entropy,
the maximum value of MBE increases with n. The main problem here will consist of solving z` 1
simultaneous transcendental equations for the Lagranges multipliers. An application in statistical
mechanics with simulated data has been studied with the help of Lingo11 software and corresponding
graphs are provided. Now, one question arises: Will this result continue to hold for other moment
constraints also? When we take generalized moment expectation of gpxq instead of expectation of x,
then g pxqmust be a monotonic increasing function of x, and if pi becomes negative for some values
of the moments, then we have to set those probabilities to zero and reformulate the problem for the
remaining probabilities over the remaining range and solve it.
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Nomenclature

S = Entropy

pi “
Ni
N

, probability of ith event

HpPq “ Hnpp1, p2, . . . , pnq = Information entropy

S pPq orHn pPq “ ´
n
ř

i“1
pilnpi = Shannon’s entropy

B pPq “
ř

i
lnpi = Burg’s entropy

Bmod pPq = Burg’s modified entropy
n = Number of energy levels/number of possible outcome

µ “
1

KT
K = Boltzmann constant
T = Absolute temperature
N = Identical particle of ideal gas
∆s = Increase of entropy
dS = Change in entropy
rms = Greatest integer value of m
Where m is the mean value:
Epxq = Expectation
dV= Change in volume
PY Q = Union of two sets
m “ 1 p0.25q 10, m ranges from 1 to 10 with step length of 0.25
Smax = Maximum entropy
Max

P
pBmod pPqq = Maximum value under the given probability distribution

MBE=Modified Burg’s Entropy

Greek Symbols

Ω = The maximum number of microscopic ways in the macroscopic state
ξ = Position of the molecule
ρ = Momentum of the molecule
µ, λ=Lagrangian constant
ε1, ε2, . . . .=Different energy levels
ε =Mean energy

Subscripts

B=Boltzmann
max =Maximum
mod =modified

Superscript

λ1 =New constant different from λ
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