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Abstract: For the description of observables and states of a quantum system, it may be
convenient to use a canonical Weyl algebra of which only a subalgebra A, with a non-trivial
center Z , describes observables, the other Weyl operators playing the role of intertwiners
between inequivalent representations ofA. In particular, this gives rise to a gauge symmetry
described by the action of Z . A distinguished case is when the center of the observables
arises from the fundamental group of the manifold of the positions of the quantum system.
Symmetries that do not commute with the topological invariants represented by elements
of Z are then spontaneously broken in each irreducible representation of the observable
algebra, compatibly with an energy gap; such a breaking exhibits a mechanism radically
different from Goldstone and Higgs mechanisms. This is clearly displayed by the quantum
particle on a circle, the Bloch electron and the two body problem.
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1. Introduction

The mathematical foundations of quantum mechanics rely on the Dirac–von Neumann axioms (for a
critical review, see [1,2]), and the equivalence between the Heisenberg formulation in terms of canonical
operators and the Schrödinger formulation in terms of wave functions is provided by the Stone–von
Neumann theorem, which states the uniqueness of the Schrödinger representation of the canonical
algebra under general regularity conditions.
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Technically, this result is achieved by introducing the Weyl unitary operators (formally, the
exponentials of the canonical variables q, p) and the corresponding Weyl algebra, defined by algebraic
relations, which encode the canonical commutations relations of Heisenberg canonical variables.

The use of the Weyl algebra is usually motivated by the better behavior and mathematical control
of the unitary Weyl operators with respect to the Heisenberg canonical variables, which are necessarily
represented by unbounded operators.

It is usually taken for granted that the Dirac–Heisenberg quantization, in terms of the canonical
commutation relations of the q’s and p’s, and the Weyl quantization, in terms of the commutation
relations of the Weyl operators, are equivalent under the implicit assumption that one is interested only
in regular representations of the Weyl algebra, to which the Stone–von Neumann uniqueness theorem
applies.

The point is that the Dirac–Heisenberg quantization implicitly assumes that all of the canonical
variables describe observables so that the regularity of their exponentials (Weyl operators) is required
by their existence as (unbounded) operators in the Hilbert representation space.

The regularity condition at the basis of the Stone–von Neumann theorem is standard in the
mathematical analysis and classification of Lie group representations, and, in, the quantum mechanical
case, it amounts to considering the strongly (equivalently weakly) -continuous (unitary) representations
of the Heisenberg group.

However, for a class of physically-interesting systems, especially in connection with quantum gauge
theories, it has become apparent [3–6] that the Dirac–Heisenberg quantization is not compatible with a
gauge-invariant ground state, only the Weyl quantization being allowed.

In these cases, the inequivalence of the two quantization methods arises by the lack of regularity
of one-parameter groups generated by Weyl operators, so that the corresponding generators, i.e., the
corresponding Heisenberg canonical variables, cannot be defined as (self-adjoint) operators in the Hilbert
space of states.

The physical reason at the basis of such a lack of regularity is that the QM description of a class of
physical systems involves canonical variables, not all of which correspond to observable quantities; some
of them are introduced for the description of the states, namely of the inequivalent representations of
the algebra of observables, for which purpose only their exponentials are needed to exist as well-defined
operators in the Hilbert space of states, with the role of intertwiners between inequivalent representations.

Thus, the larger algebra F , in which the algebra of observables is embedded, may be characterized
as the minimal algebra, such that all of the automorphisms of A are inner. This means that F contains
the intertwiners between the inequivalent representations of A, i.e., all of the “variables” needed for a
complete description of the observables and the states of the given quantum system. Such an embedding
provides a natural C∗ norm forA. Clearly, the basis of such a structure, beyond the Stone–von Neumann
unique characterization of quantum mechanics, is the existence of inequivalent representations of A.
This typically occurs in the case of quantum systems on manifolds with a non-trivial fundamental group.

Thus, what might at first sight look to be an uninteresting singular, if not pathological, case turns out
to be crucial for the quantum description of physically-interesting systems.
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In general, this lack of regularity may be related to the existence of a gauge group. Typically, one has
the Weyl algebra AW generated by the exponentials of the full set of canonical variables needed for the
description of the observables and states of the system, but only a subalgebra A describes observables.

Generically, A has a non-trivial center Z , which generates transformations having the meaning of
gauge symmetries (gauge transformations). Thus, the algebra AW of canonical variables contains both
gauge-dependent and gauge-invariant (i.e., observable) variables.

Clearly, the regularity condition must be satisfied by the exponentials of the observable variables,
otherwise the representation is not physically acceptable, but there is no physical reason for the regularity
condition of the gauge-dependent Weyl operators, playing the role of intertwiners.

As we shall see, the representation of the Weyl algebra by a gauge-invariant ground state in general
requires the non-regularity of the gauge-dependent Weyl operators and implies the impossibility of
defining the corresponding generators as well-defined operators in the corresponding Hilbert space
(non-regular representation of the Heisenberg group or of the Weyl algebra).

Relevant quantum mechanical examples of such a structure are the electron in a periodic potential
(Bloch electron), the quantum Hall electron, the particle on a circle, where the gauge transformations are,
respectively, the lattice translations, the magnetic translations and the rotations of 2π. In gauge quantum
field theories (GQFT), the need of a non-regular Weyl quantization arises in (positive) representations of
the field algebra defined by a gauge-invariant vacuum state.

The non-regular Weyl representations for the quantization of systems with a gauge symmetry
exhibit the following characteristic structures, which do not have a counterpart in the Dirac–Heisenberg
canonical quantization:

(i) a gauge invariance constraint in operator form compatible with canonical Weyl quantization
(avoiding the mathematically-unacceptable recourse to non-normalizable states)

(ii) super-selected charges defined by the center of the observable algebra
(iii) gauge-invariant ground states, defining inequivalent representations of the observable algebra,

labeled by the spectrum of the super-selected charges (θ sectors)
(iv) the absence of “Goldstone states” associated with the spontaneous breaking of symmetries

(canonically) conjugated to the gauge transformations.

Particularly relevant is the case in which the above structure of the algebra of observables for a
(finite dimensional) quantum system arises as a consequence of the non-trivial topology of the manifold
M of the particle positions. The mechanism is that the fundamental group of the manifold, which
has been shown in [7] to be the only source of topological effects, gives rise to elements of the
center of the observable algebra and a corresponding gauge group. This leads to a mechanism of
symmetry breaking, which is substantially different from the standard Nambu–Goldstone case (with
associated Goldstone bosons) and from the Higgs mechanism (characterized by a dynamics that induces
a long-range Coulomb-like delocalization): the symmetry breaking is forced by the topology in any
irreducible representation of the observables, with a compatible energy gap related to the spectrum of
the first homology group of the manifold (symmetry breaking by topology and energy gap; see Section
5 below).
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In our opinion, the realization of such general structures and their clear and simple realization in
(finite dimensional) QM mechanical models, fully under control, shed light on the more difficult infinite
dimensional GQFT models, discussed within very specific approximations.

The physical relevance of non-regular representations of the Heisenberg group raises the problem of
the their classification, i.e., a generalization of the classical Stone–von-Neumann theorem [9–12], which
characterizes the regular ones.

Such a generalization may be obtained by exploiting the simple form of the Gelfand spectrum of the
maximal abelian subalgebraAZ of the Weyl algebra generated by the pairs Ui(−2π/λ), Vi(λ), i = 1, ...d

(d the space dimensions), formally corresponding to the exponentials exp−i(2π/λ)qi, exp iλ pi. Such
pairs of operators were introduced by Zak [13] in order to discuss the dynamics of electrons in solids in
external fields; the crucial distinctive property (see [14]) of the corresponding C∗-algebra, called the Zak
algebra, is that its Gelfand spectrum Σ is given by d copies of the two-dimensional torus Σ = (T2)d.

Then, one may prove [14] that all of the representations of the Weyl algebra that are spectrally
multiplicity free as representations of its Zak algebra (a condition that generalizes irreducibility) and are
strongly measurable (a condition that replaces regularity in non-separable spaces) are unitarily equivalent
to a representation of the Weyl algebra of the same form of the standard Schrödinger representation on
L2(Σ, dµ), with dµ a (positive) translationally-invariant Borel measure, which reduces to the Lebesgue
measure iff the regularity condition is satisfied.

The conditions that yield such a classification are satisfied by all of the non-regular representations of
physical interest mentioned above; thus, they all have the above form, each with a corresponding Borel
measure on (T2)d.

This represents a radical departure from the standard structure of quantum mechanics, since it requires
non-separable Hilbert spaces, very discontinuous expectations of one-parameter groups of unitary
operators (vanishing for all non-zero values of the parameters, so that the corresponding generators
do not exist), etc. Such features have been regarded as pathological and to be avoided for an acceptable
physical interpretation. Actually, they have a very sound mathematical status; there is no problem for
the physical interpretation, and they explain the important role of the gauge group and of topology for
the evasion of the Goldstone theorem in the case of gauge symmetry breaking.

The role of topology in (flat space) GQFT, especially in quantum chromodynamics (QCD), had been
realized a long time ago, but in terms of topological classification of the Euclidean configurations
(the instanton solution in QCD) assumed to dominate the functional integral within a semiclassical
approximation. Such a classification requires the regularity and continuity of such Euclidean
configurations, and it is well known that regular configurations have zero functional measure. Apart
from this consistency problem, the above exploitation of topology appears to be strictly bound to very
special mechanisms, and the question arises whether there is an underlying general framework, a point
not clearly addressed in the literature.

One of the aims of this paper is to emphasize, on the basis of quantum mechanical models recognized
to mimic the basic structures of GQFT, that the crucial and basic ingredient is the existence of a nontrivial
center of the observables and its topological origin. This clarification, in terms of the topology of the
gauge group, provides a general abstraction of the mechanism, similar to that provided by studying the
properties of a Lie group rather than those of the vectors of one of its representations (Section 2).
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Such a topological origin of the center of the observable algebra arises as a consequence of the
topology of the manifold of the QM configurations (Section 3 and examples that are reviewed under
this more general perspective).

The main focus of the paper is to study the implications on spontaneous breaking of symmetries not
commuting with the topological invariants, which define elements of the centerZ of the observables. The
conclusion (Theorem 3) is that such symmetries are broken in any irreducible (or factorial) representation
of the observables and that (contrary to the classical Goldstone theorem) the energy spectrum may have
a gap given by the spectrum of the topological invariants belonging to Z .

2. Gauge Invariance, Super-Selection Rules and Non-Regular Canonical Quantization

A general case leading to non-regular representations is when:

(i) a quantum system is described by canonical variables, generating a Heisenberg groupGH , but only
a subset of them, and consequently, only a subgroup Gobs ⊂ GH , describes observable quantities,
the other canonical variables providing the intertwiners for the description of the inequivalent
representations of the observable algebra,

(ii) Gobs is generated by a Heisenberg subgroup and by an Abelian subgroup G, which commutes
with Gobs.

Then, G generates a group of transformations αg, g ∈ G, which leave the observables
pointwise invariant:

αg(A) = A, ∀A ∈ Gobs, ∀g ∈ G (1)

i.e., G has the meaning of a gauge group.
The elements of GH generate a C∗-algebra FW , called field algebra, and the elements of Gobs

generate a C∗-algebra A of observables, characterized by gauge invariance, Equation (1). A has a
non-trivial center generated by the elements of G. A representation of FW is physical if Gobs is
regularly represented.

In the irreducible representations of A, Z is represented by multiples of the identity. The generators
of G have the meaning of super-selected charges and the points θ of the spectrum σ(Z) of Z label
inequivalent representations (Hθ, πθ) of A, called θ sectors. The Stone–von Neumann uniqueness
theorem does not apply, and this can be traced back to the fact that, contrary to the Weyl C∗-algebra, A
is not simple.

By definition, a gauge-invariant state ω on FW satisfies

ω(αg(F )) = ω(F ), ∀F ∈ FW ,

and therefore, in the Gelfand-Naimark-Segal (GNS) representation πω of FW defined by ω, the gauge
transformations are implemented by unitary operators U(g) defined by (Ψω denotes the vector, which
represents ω):

U(g)Ψω = Ψω, U(g)πω(F )Ψω = πω(αg(F )) Ψω, ∀F ∈ FW
Let V (g) denote the element of G, which defines αg:

αg(F ) = V (g)F V (g)−1, ∀F ∈ FW



Mathematics 2015, 3 989

then πω(V (g))U(g)∗ commutes with FW and, in each irreducible representation of FW ,
πω(V (g))U(g)∗ = eiθ(g)1. Hence, Ψω is an eigenvector of πω(V (g)), with eigenvalue eiθ(g),

πω(V (g))Ψω = πω(V (g))U(g)∗Ψω = eiθ(g)Ψω (2)

Thus, the GNS representation πω of FW , equivalently of GH , defined by a gauge invariant state ω is
non-regular,

Hπω =
∑
θ∈σ(Z)

⊕Hθ

and the subspaces Hθ carrying disjoint irreducible representations of A are proper subspaces of the
non-separable spaceHπω .

Summarizing, one has:

Proposition 1. Let GH be the Heisenberg group defined by the set of canonical variables {qi, pi},
FW the corresponding canonical C∗-algebra, A ⊂ FW the C∗-subalgebra of observables and G the
commutative group of gauge transformations, defined by a subgroup G ⊂ GH .

Then, the GNS representation of FW defined by a gauge-invariant state is a non-regular
representation of FW , as well as of the Heisenberg group GH , and the elements of G define
super-selection rules.

Relevant examples of such a structure are provided by quantum mechanical models, in particular
those exhibiting strong analogies with gauge quantum field theories (as discussed below).

The prototype is provided by the non-regular representation [15] of the Weyl algebra AW (R2)

generated by the one-parameter unitary groups U(α), V (β), α, β ∈ R, with U(α)V (β) =

V (β)U(α)e−iαβ , V (β) describing gauge transformations.

Proposition 2. The GNS representation (π0,H0) of AW (R2) defined by a pure gauge-invariant state ω0

is unitarily equivalent to the following representation:

ω0(U(α)V (β)) = 0, if α 6= 0, ω0(V (β)) = eiβp̄, p̄ ∈ R (3)

Thus, the one-parameter group U(α) is non-regularly represented. The GNS representation space H0

contains as representative of ω0 a cyclic vector Ψ0, such that (denoting by the same symbols the elements
of the Weyl algebra and their representatives):

V (β)Ψ0 = eiβp̄ Ψ0, (U(α) Ψ0, U(α′) Ψ0) = 0, if α 6= α′ (4)

The linear span D of the vectors U(α)Ψ0, α ∈ R is dense inH0, which is therefore non-separable.
The generator of the one-parameter group U(α) does not exist, but nevertheless, a generic vector

of D:
ΨA = AΨ0, A =

∑
n∈Z

anU(αn), {an} ∈ l2

may be represented by a wave function ψA(x) =
∑

n∈Z an e
iαnx, with the scalar product given by the

ergodic mean:

(ψA, ψA) =
∑
n∈Z

|an|2 = lim
L→∞

(2L)−1

∫ L

−L
dx ψ̄A(x)ψA(x) (5)

The spectrum of V (β) is a pure point spectrum.
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Proof. By the gauge invariance of ω0 and the Weyl relations, one has, ∀γ ∈ R,

ω0(U(α)V (β)) = ω0(V (γ)U(α)V (β)V (γ)∗) =

= ω0(U(α)V (γ)V (β)V (γ)∗)eiαγ = ω0(U(α)V (β))eiαγ

which proves the first Equation (3); furthermore, by Equation (2) and the group law:

V (β)Ψ0 = eip̄βΨ0, p̄ ∈ R

The rest of the proposition easily follows.

Example 1. Gauge invariance in the two-body problem:

The quantum description of two interacting particles is given by the Weyl algebraAW , corresponding
to the two particle canonical variables q1, q2, p1, p2; however, for the discussion of the bound state
spectrum of the two-body problem and, in particular, the lowest energy level, the position of the center
of mass is irrelevant.

It is therefore natural to consider as observable C∗-algebra A the algebra generated by the relative
canonical variable q, p and by the center of mass momentum P .

Hence, the translations v(β) of the center of mass have the meaning of gauge transformations. The
lowest energy state ω0 must satisfy ω0(P 2) = 0, so that the corresponding vector Ψ0 satisfies P 2Ψ0 = 0,
i.e., it is gauge invariant v(β)Ψ0 = Ψ0. This condition is incompatible with the canonical commutation
relations in the Heisenberg form. It has been suggested to bypass such incompatibility by allowing Ψ0

to be non-normalizable [16].
In our opinion, such a choice would have catastrophic consequence on the GNS representation

defined by such a ground state; by the cyclicity of Ψ0, all vectors of such a representation would
be non-normalizable; all matrix elements (including the ground state expectations of gauge-invariant
operators) would be divergent; and one could not extract finite results in a consistent mathematical way.

A canonical quantization is not forbidden, provided it is done in terms of the Weyl algebra, rather
than of the Heisenberg algebra, and it is given by Proposition 2.

In our opinion, from a mathematical point of view, the non-regularity of the representation is a much
better price to pay, rather than living with non-normalizable state vectors.

The advantages of such a quantization is that the states are described by normalizable vectors of
a Hilbert space; the basic quantum mechanical rules are not violated; the observable subalgebra A
is regularly represented in the standard way; the canonical variables that are not gauge invariant are
non-regularly represented, only their exponentials being well defined.

Thus, the model suggests a general strategy for quantizing systems with a gauge-invariance constraint.

Example 2. Bloch electron:

Another relevant quantum mechanical example is provided by an electron in a periodic bounded
measurable potential W (q) = W (q + a). The periodic structure of the system leads to considering as
observable C∗-algebra A the subalgebra of the Weyl algebra FW , generated by the translations V (β)

and by the periodic functions of the position U(2πn/a), n ∈ Z.
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The center Z of A is generated by the translations V (a), and the irreducible representations of A are
given by the subspaces Hθ (θ sectors), corresponding to the GNS representations of A defined by the
states invariant under the gauge group of translations V (a).

The operators U(α/a), α 6= 2πn do not commute with the center of A and, therefore, intertwine
between the inequivalent representations πθ and πθ+α; the corresponding one-parameter group is
non-regularly represented in the representation of FW defined by the gauge-invariant ground state [17].

3. Topology, Gauge Groups and Weyl Non-Regular Quantization

The structure of an observable algebra A naturally embedded in a larger Weyl algebra FW , with the
non-trivial center ofA generating gauge transformations on FW , arises for example as a consequence of
the non-trivial topology of the manifoldM, which describes the configurations of the quantum system.

In fact, the quotient of the fundamental group π1(M̃), of the universal covering space M̃ of the
manifold, with its commutator group, i.e., the first homology group H1(M̃) of M̃, defines topological
invariants, which are represented by elements of the center of the observable algebra [7,8].

For simplicity, we consider the case of a quantum particle on a circle, where the observable algebraA
can be taken as the C∗-subalgebra of the standard Weyl (field) algebra FW , generated by U(n) = einϕ,
n ∈ Z and V (β) = eiβp, β ∈ R; with the canonical commutation relations:

U(n)V (β) = e−inβ V (β)U(n) (6)

The rotations of 2π define elements of the observable algebraA, which may actually be characterized
as the subalgebra of FW invariant under the translations γn of 2πn, n ∈ Z, which, therefore, get the
meaning of gauge transformations.

The structure fits into the general discussion of Heisenberg group GH , observable subgroup Gobs and
gauge group G, with corresponding C∗-algebras FW , A and a non-trivial center Z of A, as discussed
above. The non-trivial center of A may be traced back to the non-trivial fundamental group of the
circle: π1(S1) = Z. The representation π of A is regular if π(V (β)) is a weakly-continuous group of
unitary operators.

In each irreducible representation of A, the element V (2π) is a multiple of the identity, say eiθ,
θ ∈ [0, 2π).

Theorem 1. [1] For any given θ, all of the irreducible regular representations πθ of A with πθ(ei2πp) =

eiθ are unitary equivalent.
The Hilbert space H of the unique regular representation πS of the Weyl algebra FW decomposes as

a direct integral:

H =

∫ 2π

0

dθHθ

over the spectrum of πS(V (2π). There is a unique irreducible representation π of FW , whose Hilbert
space decomposes as a direct sum of the irreducible representations of the observable algebra A; in
such a representation, V (β) is regularly represented, but the algebra generated by U(α), α ∈ R is not.
The operators U(α) intertwine between inequivalent representations of A.
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A similar structure is displayed by an electron in a periodic crystal, i.e., subject to a periodic potential.
For simplicity, we consider the one-dimensional case. In this case, the Hamiltonian is H = −d2/dx2 +

W (x), with the potential satisfying the periodicity condition W (x + a) = W (x), for a suitable a. The
field algebra FW is generated by the Weyl operators U(α), V (β), α, β ∈ R.

As in the case of a particle on a circle, the center of the observable algebra may be viewed as arising
from the non-trivial topology of R/[0, a]. In this case, the non-regular representations of FW are defined
by the gauge-invariant ground states (θ vacua).

Proposition 3. [17] Let W (x) be a bounded measurable periodic potential, W (x) = W (x + a),
then there exists one and only one irreducible representation (π,K) of the Weyl algebra AW in which
the Hamiltonian

H = p2/2 +W (x)

is well defined, as a strong limit of elements ofAW (on a dense domain), and has a ground state Ψ0 ∈ K.
Moreover, such a representation is independent of W , in the class mentioned above, and it is the

unique non-regular representation π0 in which the subgroup V (β), β ∈ R is regularly represented; its
generator p has a discrete spectrum.

The Hilbert space K of π0 consists of the formal sums:

ψ(x) =
∑
n∈Z

cn e
iαnx, {cn} ∈ l2(C), x ∈ R, αn ∈ R (7)

with the scalar product given by the ergodic mean:

(ψ, ψ) =
∑
n∈Z

|cn|2 = lim
L→∞

(2L)−1

∫ L

L

dx ψ̄(x)ψ(x) (8)

The Weyl operators are represented by:

(πo(U(α))ψ)(x) = eiαxψ(x), (π0(V (β))ψ)(x) = ψ(x+ β) (9)

The (orthogonal) decomposition of K over the spectrum of V (a) is:

K =
⊕

θ∈[0, 2π)

Hθ, V (a)Hθ = eiθHθ, θ ∈ [0, 2π) (10)

The spectrum of p inHθ is σ(p)|Hθ
= {2πn/a+ θ/a, n ∈ Z}, and the wave functions ψθ ∈ Hθ are

quasi-periodic of the form:
ψθ(x) = eiθx/a

∑
cne

i2πnx/a (11)

(Bloch waves). The unique ground state is a vector ofHθ=0.
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4. Non-Regular Representations and Symmetry Breaking

We briefly recall that, given aC∗-algebraA, an algebraic symmetry is an automorphism β ofA; given
a state ω, the symmetry is unbroken in the corresponding representation space if β is implemented by a
unitary operator T (β) there, i.e.,

πω(β(A)) = T (β) πω(A)T (β)∗, ∀A ∈ A (12)

This means that the representation defined by the state ωβ , ωβ(A) ≡ ω(β(A)) is unitary equivalent to
πω: πωβ(A) = T (β) πω(A)T ∗(β) and that ω and ωβ are described by vectors of the same Hilbert space.

In this case, β gives rise to a Wigner symmetry in Hω, i.e., all transition amplitudes are invariant.
Otherwise, if there is no unitary operator that implements β inHω, by the Wigner theorem on symmetries,
at least one transition amplitude is not invariant, and the symmetry β is said to be broken inHω.

A one-parameter group βλ, λ ∈ R, of symmetries shall be called a continuous symmetry. A symmetry
is called internal if it commutes with the one-parameter group αt, t ∈ R, of the time translations.
In the following, the breaking of an internal symmetry shall be called spontaneous symmetry breaking.
An algebraic symmetry is said to be regular if it maps regular representations into regular ones. For a
discussion of the meaning and the mechanism of spontaneous symmetry breaking, see [18].

In the case of quantum systems described by the canonical Weyl algebra AW , any regular algebraic
symmetry ofAW is unbroken in any regular irreducible representation, since, by the Stone–von Neumann
theorem, all such representations are unitarily equivalent. Thus, the important phenomenon of symmetry
breaking, in the strong sense of a loss of symmetry as defined above (which goes much beyond the mere
non-invariance of the ground state), cannot appear in the case of Heisenberg quantization, more generally
in the case of regular Weyl quantization.

The situation drastically changes in the case of quantum systems whose algebra of observables A
has a non-trivial center. A distinguished case is when one has the structure discussed in Section 2,
namely a canonical algebra FW and an observable (gauge-invariant) subalgebra A, with a non-trivial
center Z ⊂ A.

Clearly, any symmetry β of A, defined by an element of FW , is implemented by a unitary operator
T (β) in the non-regular representation π of FW , defined by a gauge-invariant state ωθ, θ ∈ σ(Z).

However, if β does not commute with the gauge group G, β is broken in each irreducible representation
Hθ of the observable subalgebraA, i.e., β fails to define a Wigner symmetry of the gauge invariant states
ofHθ = AΨωθ , because T (β) does not leaveHθ invariant.

In the regular irreducible representation, πr ofFW , the symmetry β is unbroken; however the elements
of Z have a continuous spectrum inHπr , and there is not a gauge-invariant (proper) state vector inHπr .

Proposition 4. Let FW denote the canonical field C∗-algebra defined by a Heisenberg group GH , A
the observable C∗-subalgebra, Z the non-trivial center of A generated by the commutative subgroup
G ⊂ GH (gauge group), then:

(i) any algebraic symmetry β of A, defined by an element of GH that does not commute with each
element of G, is spontaneously broken in each irreducible representation of A (θ sector);
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(ii) in any representation of FW defined by a gauge-invariant state ω, the one-parameter subgroups
that do not commute with G are non-regularly represented, so that the corresponding generators
cannot be defined as operators inHω; only their exponentials exist.

Proof

(i) In fact, βλ(Z) ⊆ Z , and since Z is not left pointwise-invariant under βλ, there is at least one
V ∈ Z , which may be taken as unitary, such that Vλ ≡ βλ(V ) 6= V , and in a given irreducible
representation ofA, Vλ and V are different multiples of the identity. Then, the symmetry breaking
condition is realized.

(ii) Furthermore, if U(λ) denotes the one-parameter unitary group that implements βλ, R(λ, V ) ≡
V −1 U(λ)−1 V U(λ) ∈ Z and is a multiple of the identity ei θ(λ,V ) in each irreducible representation
of A. Hence, ∀A ∈ A, with < A >6= 0, using V U(λ) = U(λ)V R(λ, V ),

< U(λ)A >=< V U(λ)AV −1 >=< U(λ)AR(λ, V ) >=

eiθ(λ,V ) < U(λ)A >

so that:

< U(λ)A >=

0, if λ 6= 0,

< A >, if λ = 0,

i.e., U(λ) is not weakly continuous in λ.

�

For representations of A defined by a ground state ω0, (more generally, by a state ω invariant under
time translations), the non-invariance of ω0,

< A >≡ ω0(A) 6= ω0(β(A)), for some A ∈ A (13)

is still compatible with β giving rise to a Wigner symmetry in the GNS representation spaceHω0 . In this
case, if β commutes with the dynamics, Equation (13) implies degeneracy of the ground state. This
is what happens if Equation (13) holds for β defined by an element of the field algebra FW , which
commutes also with the gauge group.

5. Symmetry Breaking by Topology and Energy Spectrum

The spontaneous breaking of a continuous symmetry in the quantum theory of infinitely-extended
systems is usually accompanied by a strong constraint on the energy spectrum.

In fact, if the symmetry commutes with the dynamics (i.e., if the Hamiltonian is symmetric) and
it is generated by a conserved current at all times, the Goldstone theorem predicts the absence of an
energy gap with respect to the ground state, in the channels related to the ground state by the broken
generators and by the operator that provides the order parameter. For a review and critical discussion of
the Goldstone theorem, see [18].

The existence of more than one representation for finite-dimensional quantum systems, corresponding
to a non-trivial center of the algebra of observables leading to non-regular representations of canonical
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Weyl field algebra, opens the possibility of spontaneous symmetry breaking also in the case of quantum
systems described by a finite number of canonical variables. In this case, the question arises of the
implications on the energy spectrum.

For this purpose, given a C∗-algebra A, a one-parameter group βλ, λ ∈ R of automorphisms of
A commuting with the time translations αt and a representation π of A defined by a ground state ω0,
we consider:

(i) the infinitesimal variation of a generic element F = π(A), A ∈ A,

δF = δ(π(A)) =
d π(βλ(A))

dλ
|λ=0

(ii) the generation of the continuous symmetry βλ by elements of the strong closure π(A)′′ of π(A),
in the sense that there is a sequence Qn = Q∗n ∈ π(A)′′, n = 1, .., such that:

δF = i lim
n→∞

[Qn, F ] (14)

If, in the GNS representation defined by ω0, there is a sequence Qn that generates βλ and converges
weakly to a self-adjoint operatorQ, then βλ is implementable by the unitary operator eiλQ, the symmetry
is not broken and < δF >≡ ω0(F ) 6= 0 implies that ω0 is not invariant, i.e., QΨ0 6= 0. Furthermore,
if βλ commutes with the time translations αt, Ψλ ≡ eiλQΨ0 is a family of degenerate ground states.

However, if there is no sequenceQn ∈ π(A)′′ that generates βλ and converges weakly to a self-adjoint
operator Q, then, if < δF >6= 0, the symmetry is broken, and < δF > has the meaning of a symmetry
breaking order parameter.

Furthermore, by the invariance of the ground state under αt, one has:

lim
n→∞

< [Qn(t), F ] >= lim
n→∞

< [αt(Qn), F ] >=

= lim
n→∞

< [Qn, α−t(F ) ] >=< δ(α−t(F )) >=< δF >=

= lim
n→∞

< [Qn, F ] >

where the commutation βλ αt = αt β
λ has been used in the last, but one equality.

It is worthwhile to stress that such a time independence of the Ward identity holds also in the
more general case in which the symmetry does not commute with the Hamiltonian, but commutes
with the time translations in the ground state expectations of the order parameter F . For example,
limn→∞[Qn(t), H ] = δH 6= 0, but < [ δH, F ] >= 0.

This is, e.g., the case in which the Hamiltonian is invariant up to a time derivative, which commutes
with F on the ground state (see the example of the quantum particle on a circle discussed below).

In conclusion, by the above arguments, for finite dimensional quantum systems one has the following
analog of the Goldstone theorem.

Theorem 2. (Goldstone) Let A be a C∗-algebra, αt the one-parameter group of automorphisms of A
describing the time translations and π the representation of A defined by a state ω0, invariant under αt;
if:
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(i) βλ, λ ∈ R, is a one-parameter group of automorphisms of the algebra A,
(ii) there is one F ∈ π(A), such that,

< δ F >≡ d < βλ(F ) > /dλ|λ=0 6= 0

(iii) and:
< δ F >= i lim

n→∞
< [Qn, F ] >= i lim

n→∞
< [Qn(t), F ] > (15)

for a suitable sequence of Qn = Q∗n ∈ π(A)′′, Qn(t) ≡ αt(Qn), the limit being understood in the sense
of the convergence of tempered distributions in the variable t, then there is no energy gap above the
ground state. Actually, there is a state (Goldstone-like state) orthogonal to the ground state, with the
ground state energy.

Proof. In fact, Equation (15) implies that, putting Jn(t) ≡ 2 Im < QnU(−t)F >,

lim
n→∞

J̃n(ω) =< δF > δ(ω)

therefore the spectral measure of U(t) contains a δ(ω).

It is worthwhile to stress that the non-invariance of the ground state expectation of a field F does not
guarantee that one can write a corresponding Ward identity, Equation (15), a crucial ingredient for the
Goldstone theorem.

The interplay between gauge invariance and the breaking of a continuous symmetry provides a
mechanism for evading the conclusions of the Goldstone theorem, i.e., for allowing an energy gap in
the presence of symmetry breaking.

This is typically the case in which the gauge group arises as a consequence of a non-trivial topology
(symmetry breaking by topology).

The prototypic realization of such a structure is when the manifold of the configurations of the
quantum system has a nontrivial fundamental group leading through its topological invariants
(corresponding to its first homology group) to elements of the center of the observable algebra.

The role of the topology in triggering symmetry breaking and affecting its consequences has been
realized in specific models of GQFT, through a topological classification of Euclidean field configurations.
The following theorem provides the general mechanism with no reference to specific (mathematically
questionable) ingredients, involving the semiclassical approximation.

Theorem 3. (Spontaneous symmetry breaking and energy gap)
LetFW be a canonical (field) algebra,A the observable subalgebra andZ the center ofA generating

gauge transformations on FW ; if an automorphism β of A does not leave Z pointwise invariant, in
particular if the topological invariants that define elements of Z are not invariant under β, then β is
spontaneously broken in each irreducible representation of A. Furthermore, if:

(i) βλ is a one-parameter group of automorphisms of A defined by elements of FW ,
(ii) in the irreducible representation πθ ofA defined by a gauge invariant ground state ωθ (θ vacuum),

θ ∈ σ(Z), there is a non-symmetric order parameter:

ωθ(β
λ(A)) 6= ωθ(A), A ∈ A (16)



Mathematics 2015, 3 997

(iii) βλ commutes with the time translations in the ground state expectations of the order parameter
A, i.e.,

ωθ(β
λ(αt(A))) = ωθ(β

λ(A)) (17)

(iv) and βλ does not leave Z pointwise invariant,

then βλ cannot be generated by elements of π(A)′′, in πθ, so that the crucial condition of the Goldstone
theorem fails and an energy gap is allowed.

Proof. The inevitable breaking of β in any irreducible representation of A follows as in Proposition 4.
Let us assume that βλ is generated in πθ by an element of the strong closure of π(FW )′′, i.e., there is an
operator Q ∈ π(FW )′′, such that:

δA = i [Q, A ], πθ(δA) = i [πθ(QA)− πθ(AQ)] ∀A ∈ A (18)

If βλ does not leave Z pointwise invariant, there is at least one unitary V ∈ Z , such that:

i[Q, V ] = δV 6= 0

Now, since [V, [Q, A ] ] = 0, one has:

[[Q, V ], A ] = −[[A, Q ], V ]− [ [V, A ], Q ] = 0

i.e., [Q, V ] ∈ Z .
Therefore, by the gauge invariance of ωθ, one has:

ωθ(QA) = ωθ(V QAV
−1) = ωθ(QV AV

−1 + [Q, V ]AV −1) =

= ωθ(QA) + ωθ([Q, V ]V −1)ωθ(A)

Thus, the expectations ωθ(QA) cannot be defined, and one cannot write the symmetry breaking
Ward identities, which are crucial for the conclusion of the Goldstone theorem. An energy gap is
therefore compatible with the spontaneous breaking of βλ in irreducible representations of the observable
algebra A.

In the irreducible regular representation πr of the field algebra FW , βλ is implemented by a (weakly
continuous) group of unitary operators T (λ); all of the matrix elements are invariant, but there is no
gauge-invariant state (proper) vector invariant under time translations. The symmetry gets broken by the
direct integral decomposition ofHπr over the spectrum of Z , but one cannot write a symmetry breaking
Ward identity for the expectation on the gauge-invariant ground state.

On the other side, in the representation of FW defined by a gauge-invariant ground state ωθ, the
one-parameter group T (λ) is not regularly represented. Therefore, its generator cannot be defined as
an operator in Hωθ and ωθ(δF ) 6= 0 cannot be written in terms of a commutator. In conclusion, the
symmetry breaking Ward identity cannot be written in terms of expectations on θ states.

This is well displayed by the following examples.
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Example 3. Quantum particle on a circle:

As discussed above, the observable algebra A is a subalgebra of canonical Weyl (field) algebra FW
and has a non-trivial center generated by the translations γn corresponding to the non-trivial fundamental
group of the circle. The one-parameter group of automorphisms of A:

βλ(U(n)) = U(n), βλ(V (β)) = e−i λ β V (β + λ) (19)

is realized by the adjoint action of U(λ) ∈ FW :

βλ(U(n)V (β)) = U(λ)U(n)V (β)U(−λ)

Actually, FW is the minimal extension of A, such that the automorphisms βλ are inner and FW
includes the operators, which intertwine between inequivalent representations of A. This justifies the
use of the (canonical) field algebra FW for a canonical description of both the observables and all the
states of the quantum system.

In the representation πθ of A, there is a non-symmetric order parameter:

ωθ(β
λ(V (β))) = e−i λ β ωθ(V (β)), ωθ(V (β)) = ei θ β/2π

and βλ commutes with the time translations eiHt H = p2/2m in expectations of the order parameter:
ωθ(β

λ αt(V (β))) = ωθ(αtβ
λ(V (β))).

Furthermore, βλ does not leave the center of A pointwise invariant. Theorem 3 applies, and an
energy gap is allowed; in fact, in the representation πθ ofA, the spectrum of the Hamiltonian is discrete,
given by:

σθ(H) =
(n+ θ/2π)2

2m
, n ∈ Z

and displays an energy gap above the ground state energy (θ/2π)2/2m, compatibly with the spontaneous
symmetry breaking of βλ. It is worthwhile to note that the energy gap is provided by the spectrum of the
center, i.e., by the (discrete) spectrum of the fundamental group.

Example 4. Bloch electron:

For simplicity, we consider the one-dimensional case. The field algebra FW is the canonical Weyl
algebra, and the observable subalgebra is characterized by its pointwise invariance under the gauge
transformations defined by the adjoint action of the center of A, which arises from the non-trivial
topology of R/[0, a]. The automorphisms βλ defined by the Weyl operators U(λ), do not leave the
center pointwise invariant. In the representation πθ, defined by the gauge-invariant states ωθ, there is a
symmetry breaking order parameter ωθ(V (β)).

Furthermore, βλ commutes with T (τ) ≡ e−iτ p
2/2m on expectations of the order parameter:

ωθ(β
λ(T (τ)V (β)T (τ)−1)) = ωθ(β

λ(V (β))) =

= ωθ((T (τ) βλ(V (β))T (τ)−1)

since the states ωθ are invariant under the one-parameter group T (τ). Thus, if βλ would be generated by
q in the representation πθ, one could apply the Goldstone theorem and conclude that the spectrum of p2
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does not have a gap above the ground state value. However, Theorem 3 applies, and in fact, the spectrum
of p2 has a gap given by the spectrum of the fundamental group of R/[0, a].
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