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Abstract: A SEIR control model describing the Ebola epidemic in a population of a
constant size is considered over a given time interval. It contains two intervention control
functions reflecting efforts to protect susceptible individuals from infected and exposed
individuals. For this model, the problem of minimizing the weighted sum of total fractions
of infected and exposed individuals and total costs of intervention control constraints at
a given time interval is stated. For the analysis of the corresponding optimal controls,
the Pontryagin maximum principle is used. According to it, these controls are bang-bang,
and are determined using the same switching function. A linear non-autonomous system
of differential equations, to which this function satisfies together with its corresponding
auxiliary functions, is found. In order to estimate the number of zeroes of the switching
function, the matrix of the linear non-autonomous system is transformed to an upper
triangular form on the entire time interval and the generalized Rolle’s theorem is applied
to the converted system of differential equations. It is found that the optimal controls of the
original problem have at most two switchings. This fact allows the reduction of the original
complex optimal control problem to the solution of a much simpler problem of conditional
minimization of a function of two variables. Results of the numerical solution to this problem
and their detailed analysis are provided.



Mathematics 2015, 3 962

Keywords: SEIR model; control the spread of Ebola epidemic; nonlinear control system;
Pontryagin maximum principle; non-autonomous quadratic differential system; generalized
Rolle’s theorem

1. Introduction

Ebola is a lethal virus for humans. It was previously confined to Central Africa, but recently was also
identified in West Africa ([1]). As of October 8, 2014, the World Health Organization (WHO) reported
4656 cases of Ebola virus deaths, with most cases occurring in Liberia ([2]). The extremely rapid
increase of the disease, high mortality rate, and the nonexistence of a vaccine make this virus a major
problem for public health. Ebola is transmitted through direct contact with blood, bodily secretions and
tissues of infected humans and primates ([3,4]). Therefore, the practical control interventions of public
health measures are major factors for stopping Ebola transmission. To understand the dynamics of the
spread of Ebola infection in the affected countries, it is crucial to have models of this process to simulate.

In this paper we focus our attention on a SEIR deterministic model and its use for the description
of the Ebola epidemics ([5–7]). In order to deal with the epidemics of Ebola, governments of affected
countries decided to implement intervention measures: some applied social distancing, early detection of
infectious individuals, quarantine procedures, campaigns for information and education, and acceleration
of the burial process. In this context, we introduce into the SEIR model the control functions reflecting
these intervention measures and consider the optimal control problem to study the effect of these
intervention control strategies on the epidemic spread. Optimality is measured as the minimization of
the weighted sum of total fractions of infected end exposed individuals and the total cost of intervention
control constraints over a given time interval.

We model the effects from intervention control measures by reducing the rate at which the disease is
contracted from an average individual during such measures (called shortly transmission rate). We justify
this as follows: suppose during an outbreak one starts the measures orienting susceptible individuals to
avoid contracting the virus (assuming some protective behavior, for example, washing hands, avoiding
close environments, etc.). The effect of these measures will be that the probability of a susceptible
individual contracting the virus will decrease. This reduction (increase) is bounded below (above)
and costs of such measures are linear on the controls. Hence, the original problem renders itself to
analytical treatment and we can establish the main properties about optimal strategies of intervention
control measures. It simplifies the problem and allows its complete numerical study. Influence of
health-promotion and educational campaigns on the spread of epidemic, which is described by various
SIR models, was previously studied in [8,9].

The paper is organized as follows. In Section 2, we introduce a SEIR control model, describe its
variables, control functions, parameters and study the properties of these variables. In Section 3 we state
the optimal control problem and consider in detail the epidemiological significance of the introduced
functional. Next, we discuss the existence of the optimal solutions in our problem. In Section 4, for
the analysis of these solutions, we use the Pontryagin maximum principle to write the Hamiltonian of
the optimal control problem and corresponding adjoint system and find the formulas which determine
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the appropriate optimal controls through solutions of this system. Based on these formulas we find
the switching function that defines the type of the optimal controls. Finally, we obtain the system of
differential equations to which this function satisfies with its corresponding auxiliary functions. Section 5
is devoted to studying the properties of the switching function, which lead to the conclusion regarding
bang-bang type of the optimal controls and help in the estimation of the number of switchings. These
results are the basis of the method of the solution to the optimal control problem, a description of which
is given in Section 6. Here the Lipschitz constant is found for use in the numerical algorithm. Results of
numerical calculations and their detailed analysis are presented in Section 7. Finally, Section 8 contains
our conclusions.

2. SEIR Model and Its Properties

At a given time interval [0, T ] we consider a SEIR model described by the following system of
differential equations:

Ṡ(t) = −N−1 (βI(t) + αE(t))S(t),

Ė(t) = N−1 (βI(t) + αE(t))S(t)− δE(t),

İ(t) = δE(t)− γI(t),

Ṙ(t) = γI(t),

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0; S0, E0, I0, R0 > 0.

(1)

Such a model describes the spread of the epidemic in a population of the constant size N . Indeed,
considering that the equality

S0 + E0 + I0 +R0 = N (2)

holds, we add together the equations of system (1). Taking into account relationship (2), we find
the equality:

S(t) + E(t) + I(t) +R(t) = N. (3)

System (1) was used in [5] to describe the Ebola outbreak in Zaire (1976), then, in [6], for studying the
effects of public health measures during Ebola outbreaks in Congo (1995) and Uganda (2000). Finally,
this system was applied in [7] for the study of recent Ebola outbreaks in Guinea, Liberia and Sierra
Leone (2014).

In system (1) the quantity S(t) is the number of susceptible individuals. The quantity E(t) denotes
the number of individuals exposed to the virus of infected but not yet infectious. Individuals that are
infected with the disease and are suffering the symptoms of Ebola are classified as infectious individuals,
the number of them is denoted by I(t). Similarly, the number of deceased or recovered individuals is
denoted by R(t). In system (1) the value βN−1I(t)S(t) is the number of individuals infected due to
direct contact with an infected individual, and the value αN−1E(t)S(t) is the number of individuals
infected due to direct contact with an exposed individual. Here β is the transmission rate; α = qβ,
where q ∈ [0, 1] is a weight factor taking into account that a susceptible individual has a higher chance
of getting infected from an infectious individual than from an exposed individual. The value δE(t) is
the individuals in the exposed stage, which show symptoms of the disease and pass on to the infectious
stage; δ is the infectious rate. The value γI(t) is the individuals in the infectious stage, which die; γ is
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the death rate. We consider that death and recovery are taken to be the same, since there has not been
a case in which a person who survived Ebola contracts the disease again.

Now, we will make controllable SEIR model, described by system (1). For this, we introduce
two control functions u(t), v(t) implying the efforts of preventing susceptible individuals from becoming
infectious individuals as a result of contact with infectious and exposed ones. For our controls we have
the following constraints:

0 < umin ≤ u(t) ≤ umax, 0 ≤ vmin ≤ v(t) ≤ vmax, (4)

where umax = β, vmax = α. We observe that the control functions u(t), v(t) regulate the goals and
efforts of two similar interventions. In the case of control u(t), the equality u(t) = β corresponds to not
having an intervention affecting the susceptible individuals and the equality u(t) = umin corresponds to
the maximum effort that can be made. Similar conclusions are valid for the control v(t). Today there are
no licensed treatment and approved vaccines for Ebola; there are examples of experimental vaccines as
proof of the possibility of treatment by vaccinating infected individuals (see [10]). Therefore, controlled
interventions are the major factor for stopping Ebola transmission.

Thus, we have the following SEIR control model of the type:

Ṡ(t) = −N−1 (u(t)I(t) + v(t)E(t))S(t), t ∈ [0, T ],

Ė(t) = N−1 (u(t)I(t) + v(t)E(t))S(t)− δE(t),

İ(t) = δE(t)− γI(t),

S(0) = S0, E(0) = E0, I(0) = I0,

S0, E0, I0 > 0; S0 + E0 + I0 < N,

(5)

in which the equation for the function R(t) is excluded, and this function can be found from equality (3)
by the formula:

R(t) = N − S(t)− E(t)− I(t).

Moreover, in system (5) we introduce the new variables:

s(t) = N−1S(t), e(t) = N−1E(t), i(t) = N−1I(t)

with corresponding initial values:

s0 = N−1S0, e0 = N−1E0, i0 = N−1I0,

for which the following inequalities hold:

s0, e0, i0 > 0; s0 + e0 + i0 < 1.

These variables are fractions of the quantities S(t), E(t), I(t) in a population of size N .
Then, for the variables s(t), e(t), i(t) we obtain the following nonlinear control system:

ṡ(t) = −(u(t)i(t) + v(t)e(t))s(t), t ∈ [0, T ],

ė(t) = (u(t)i(t) + v(t)e(t))s(t)− δe(t),
i̇(t) = δe(t)− γi(t),
s(0) = s0, e(0) = e0, i(0) = i0,

s0, e0, i0 > 0; s0 + e0 + i0 < 1.

(6)
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For this system the set of all admissible controls is formed by all possible Lebesgue measurable functions
u(t), v(t), which for almost all t ∈ [0, T ] satisfy constraints (4).

Now, we introduce a region:

Λ =
{

(s, e, i)> ∈ <3 : s > 0, e > 0, i > 0, s+ e+ i < 1
}
.

Here a sign > means transpose.
It is easy to establish the boundedness, positiveness, and continuation of solutions for system (6) by

the following lemma.

Lemma 1. If the inclusion (s0, e0, i0) ∈ Λ holds, then for any admissible controls u(t), v(t) the
corresponding solutions s(t), e(t), i(t) for system (6) are defined on the entire interval [0, T ] and satisfy
the inclusion:

(s(t), e(t), i(t))> ∈ Λ, t ∈ (0, T ]. (7)

Proof of this fact is standard, and so we omit it. Relationship (7) implies that the region Λ is a positive
invariant set for system (6).

3. Optimal Control Problem for a SEIR Model

For controlled system (6) on the set of all admissible controls (4) we consider the functional:

J1(u, v) =

T∫
0

(
νe(t) + σi(t)

)
dt, (8)

which defines the weighted sum of the total fractions of exposed and infected individuals on the given
time interval [0, T ].

Next, as in [9], we introduce the following costs of intervention control constraints:

J2(u, v) =

T∫
0

(
(α− v(t))e(t) + (β − u(t))i(t)

)
dt. (9)

These costs are linear in the controls u(t), v(t) and supposed to be proportional to the fractions of the
exposed and infected individuals. If one assumes that these fractions are proportional to the fraction of
the number of regions where the disease occurs, to the population size, and therefore to the the fraction
of the number of regions to be converted by our intervention controls to the population size as well. The
higher the fractions of exposed and infected, the higher corresponding costs.

Finally, for system (6) on the set of all admissible controls (4) we consider the optimal control problem
of minimization of the sum of values (8), (9):

min
u(·),v(·)

{
J(u, v) =

T∫
0

(
(ν + α− v(t))e(t) + (σ + β − u(t))i(t)

)
dt
}
. (10)

The existence in problem (10) of the optimal controls u∗(t), v∗(t) and corresponding optimal solutions
s∗(t), e∗(t), i∗(t) for system (6) follows from Lemma 1 and Theorem 4 ([11], Chapter 4).
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4. Pontryagin Maximum Principle

In order to analyze problem (10), we apply the Pontryagin maximum principle ([12]). According to
it, we write the Hamiltonian as

H(s, e, i, ψ1, ψ2, ψ3, u, v) = (ui+ ve)s(ψ2−ψ1) + δe(ψ3−ψ2)− γiψ3− (ν +α− v)e− (σ+ β − u)i,

where ψ1, ψ2, ψ3 are the adjoint variables. We calculate the necessary derivatives:

∂H
∂s

(s, e, i, ψ1, ψ2, ψ3, u, v) = (ui+ ve)(ψ2 − ψ1),

∂H
∂e

(s, e, i, ψ1, ψ2, ψ3, u, v) = vs(ψ2 − ψ1) + δ(ψ3 − ψ2)− (ν + α− v),

∂H
∂i

(s, e, i, ψ1, ψ2, ψ3, u, v) = us(ψ2 − ψ1)− γψ3 − (σ + β − u),

∂H
∂u

(s, e, i, ψ1, ψ2, ψ3, u, v) = is
(

(ψ2 − ψ1) + s−1
)
,

∂H
∂v

(s, e, i, ψ1, ψ2, ψ3, u, v) = es
(

(ψ2 − ψ1) + s−1
)
.

Then, by the Pontryagin maximum principle, for the controls u∗(t), v∗(t) and corresponding solutions
s∗(t), e∗(t), i∗(t) there exists a nontrivial solution ψ∗(t) = (ψ∗1(t), ψ∗2(t), ψ∗3(t))> of the adjoint system:

ψ̇∗1(t) = −(u∗(t)i∗(t) + v∗(t)e∗(t))(ψ
∗
2(t)− ψ∗1(t)), t ∈ [0, T ],

ψ̇∗2(t) = −v∗(t)s∗(t)(ψ∗2(t)− ψ∗1(t))− δ(ψ∗3(t)− ψ∗2(t)) + (ν + α− v∗(t)),
ψ̇∗3(t) = −u∗(t)s∗(t)(ψ∗2(t)− ψ∗1(t)) + γψ3 + (σ + β − u∗(t)),
ψ∗1(T ) = 0, ψ∗2(T ) = 0, ψ∗3(T ) = 0,

(11)

such that the controls u∗(t), v∗(t) maximize the Hamiltonian

H(s∗(t), e∗(t), i∗(t), ψ
∗
1(t), ψ∗2(t), ψ∗3(t), u, v)

with respect to u ∈ [umin, umax], v ∈ [vmin, vmax] for almost all t ∈ [0, T ], and therefore satisfy
the relationships:

u∗(t) =


umax , if L(t) > 0,

∀u ∈ [umin, umax] , if L(t) = 0,

umin , if L(t) < 0,

(12)

v∗(t) =


vmax , if L(t) > 0,

∀v ∈ [vmin, vmax] , if L(t) = 0,

vmin , if L(t) < 0.

(13)

Here the function L(t) = (ψ∗2(t)− ψ∗1(t)) + s−1
∗ (t) is the switching function, which defines the types of

the optimal controls u∗(t), v∗(t) according to formulas (12), (13).
In order to investigate the behavior of the switching function L(t) we will introduce the following

auxiliary functions:

G(t) = (ψ∗3(t)− ψ∗2(t))− δ−1(ν + α), P (t) = ψ∗3(t) + γ−1(σ + β).
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Now, using the equations of systems (6), (11), we obtain the differential equations for the functions
L(t), G(t), P (t):

L̇(t) = (ψ̇∗2(t)− ψ̇∗1(t))− s−2
∗ (t)ṡ∗(t)

= (u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t))
(

(ψ∗2(t)− ψ∗1(t)) + s−1
∗ (t)

)
−δ
(

(ψ∗3(t)− ψ∗2(t))− δ−1(ν + α)
)

= (u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t))L(t)− δG(t),

Ġ(t) = ψ̇∗3(t)− ψ̇∗2(t) = (v∗(t)− u∗(t))s∗(t)
(

(ψ∗2(t)− ψ∗1(t)) + s−1
∗ (t)

)
+δ
(

(ψ∗3(t)− ψ∗2(t))− δ−1(ν + α)
)

+ γ
(
ψ∗3(t) + γ−1(σ + β)

)
= (v∗(t)− u∗(t))s∗(t)L(t) + δG(t) + γP (t),

Ṗ (t) = ψ̇∗3(t) = −u∗(t)s∗(t)
(

(ψ∗2(t)− ψ∗1(t)) + s−1
∗ (t)

)
+ γ
(
ψ∗3(t) + γ−1(σ + β)

)
= −u∗(t)s∗(t)L(t) + γP (t).

Using the initial conditions of system (11), we find the initial conditions for the functions L(t),
G(t), P (t):

L(T ) = s−1
∗ (T ) > 0, G(T ) = −δ−1(ν + α) < 0, P (T ) = γ−1(σ + β) > 0.

Combining the obtained differential equations and the found initial conditions, we have the system:
L̇(t) = (u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t))L(t)− δG(t), t ∈ [0, T ],

Ġ(t) = (v∗(t)− u∗(t))s∗(t)L(t) + δG(t) + γP (t),

Ṗ (t) = −u∗(t)s∗(t)L(t) + γP (t),

L(T ) = s−1
∗ (T ), G(T ) = −δ−1(ν + α), P (T ) = γ−1(σ + β).

(14)

System (14) can be simplified by introducing the following functions:

a(t) = u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t), b(t) = (v∗(t)− u∗(t))s∗(t), c(t) = u∗(t)s∗(t).

Finally, we obtain the system of differential equations for the functions L(t), G(t), P (t):
L̇(t) = a(t)L(t)− δG(t), t ∈ [0, T ],

Ġ(t) = b(t)L(t) + δG(t) + γP (t),

Ṗ (t) = −c(t)L(t) + γP (t),

L(T ) = s−1
∗ (T ), G(T ) = −δ−1(ν + α), P (T ) = γ−1(σ + β).

(15)

This system will be the subject of our investigation.

5. Properties of the Switching Function

Analyzing system (15), we establish the properties of the switching function L(t). The following
lemma is valid.

Lemma 2. The switching function L(t) cannot be zero on any subinterval of the interval [0, T ].
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Proof of Lemma 2. We assume the contrary. Let the function L(t) become zero everywhere on the
interval ∆ ⊂ [0, T ]. Then, it is obvious that L̇(t) = 0 almost everywhere on this interval. Therefore,
from the first equation of system (15) we find that G(t) = 0 for all t ∈ ∆. Hence, the derivative Ġ(t)

becomes zero almost everywhere on the interval ∆. From the second equation of this system we obtain
that P (t) = 0 for t ∈ ∆. Therefore, we have the equality Ṗ (t) = 0 almost everywhere on the interval
∆. Then, the third equation of system (15) is also satisfied. Thus, we find the equalities:

L(t) = 0, G(t) = 0, P (t) = 0, (16)

which are valid for all t ∈ ∆. System (15) is the linear non-autonomous homogeneous system of
differential equations. Therefore, relationships (16) hold on the entire interval [0, T ], and, in particular,
at t = T . This fact contradicts the initial conditions of system (15). Our assumption was wrong, and the
switching function L(t) does not vanish on any subinterval of the interval [0, T ].

Lemma 2 and formulas (12), (13) show that the optimal controls u∗(t), v∗(t) are bang-bang functions
taking values {umin;umax}, {vmin; vmax}, respectively. Moreover, these controls switch from maximum
values to minimum values and vice versa at the same moments of switching.

The following important fact is contained in the lemma presented below.

Lemma 3. The switching function L(t) has at most two distinct zeros on the interval [0, T ].

Proof of Lemma 3. Justification of this statement consists of three stages. At the first stage, using
special substitutions of variables we reduce the matrix of linear non-autonomous system (15) to the
upper triangular form. At first, the following change of the variables is made:

r(t) = L(t), q(t) = G(t), µ(t) = P (t) + g1(t)L(t) + g2(t)G(t),

where the functions g1(t), g2(t) will be further defined. Using system (15), we write the system of
differential equations for the functions r(t), q(t), µ(t) as

ṙ(t) = a(t)r(t)− δq(t),
q̇(t) = (b(t)− γg1(t))r(t) + (δ − γg2(t))q(t) + γµ(t),

µ̇(t) =
{
ġ1(t)− γg1(t)g2(t) + (a(t)− γ)g1(t) + b(t)g2(t)− c(t)

}
r(t)

+
{
ġ2(t)− γg2

2(t)− δg1(t)− (γ − δ)g2(t)
}
q(t) + γ(1 + g2(t))µ(t).

(17)

We choose the functions g1(t), g2(t) in such a way that the expressions inside the braces of the last
equation of system (17) become zero. Then, this system can be rewritten as

ṙ(t) = a(t)r(t)− δq(t),
q̇(t) = (b(t)− γg1(t))r(t) + (δ − γg2(t))q(t) + γµ(t),

µ̇(t) = γ(1 + g2(t))µ(t),

(18)

and the corresponding differential equations for the functions g1(t), g2(t) have the following form:{
ġ1(t) = γg1(t)g2(t)− (a(t)− γ)g1(t)− b(t)g2(t) + c(t),

ġ2(t) = γg2
2(t) + δg1(t) + (γ − δ)g2(t).

(19)
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Now, a change of variables of the following form in system (18) is executed:

r̃(t) = r(t), q̃(t) = q(t) + g3(t)r(t), µ̃(t) = µ(t),

where the function g3(t) will be further defined. Using system (18), we write the system of differential
equations for the functions r̃(t), q̃(t), µ̃(t) as

˙̃r(t) = (a(t) + δg3(t))r̃(t)− δq̃(t),
˙̃q(t) =

{
ġ3(t) + γg2(t)g3(t) + δg2

3(t)− γg1(t) + (a(t)− δ)g3(t) + b(t)
}
r̃(t)

+(δ − γg2(t)− δg3(t))q̃(t) + γµ̃(t),
˙̃µ(t) = γ(1 + g2(t))µ̃(t).

(20)

We choose the function g3(t) in such a way that the expression in the braces of the second equation of
system (20) becomes zero. Then, this system has the form:

˙̃r(t) = (a(t) + δg3(t))r̃(t)− δq̃(t),
˙̃q(t) = (δ − γg2(t)− δg3(t))q̃(t) + γµ̃(t),
˙̃µ(t) = γ(1 + g2(t))µ̃(t),

(21)

and the corresponding differential equation for the function g3(t) is written as follows

ġ3(t) = −γg2(t)g3(t)− δg2
3(t) + γg1(t)− (a(t)− δ)g3(t)− b(t). (22)

Thus, using relationships (19), (22), we have the non-autonomous quadratic system of differential
equations for the functions g1(t), g2(t), g3(t):

ġ1(t) = γg1(t)g2(t)− (a(t)− γ)g1(t)− b(t)g2(t) + c(t),

ġ2(t) = γg2
2(t) + δg1(t) + (γ − δ)g2(t),

ġ3(t) = −γg2(t)g3(t)− δg2
3(t) + γg1(t)− (a(t)− δ)g3(t)− b(t).

(23)

The problem of continuability of solutions of non-autonomous quadratic systems of differential
equations was considered in [13,14]. In these studies, as well as in the classic textbook on differential
equations [15], it was noted that, when the initial conditions gj(0) = g0

j , j = 1, 3 were added to
system (23), an appropriate solution g(t) = (g1(t), g2(t), g3(t))> will be determined on the interval
[0, tmax), which is the maximum possible interval for the existence of such solution, and either
tmax = +∞ or tmax < +∞. In the latter case, it may be so that tmax ≤ T . Therefore, at the second stage
of our arguments we show the existence of such solution ĝ(t) for system (23), that is defined on the entire
interval [0, T ]. For this, we write the system in a matrix form. Introduce the symmetric matrices:

Q1 =

 0 0.5γ 0

0.5γ 0 0

0 0 0

 Q2 =

0 0 0

0 γ 0

0 0 0

 Q3 =

0 0 0

0 0 −0.5γ

0 −0.5γ −δ

 ,

vector functions:

d1(t) =

−(a(t)− γ)

−b(t)
0

 d2(t) =

 δ

(γ − δ)
0

 d3(t) =

 γ

0

−(a(t)− δ)

 ,
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and scalar functions:
f1(t) = c(t), f2(t) = 0, f3(t) = −b(t).

Then, system (23) can be written as follows
ġ1(t) = g>(t)Q1g(t) + d>1 (t)g(t) + f1(t),

ġ2(t) = g>(t)Q2g(t) + d>2 (t)g(t) + f2(t),

ġ3(t) = g>(t)Q3g(t) + d>3 (t)g(t) + f3(t).

(24)

Next, we assume the contrary, i.e., whatever a solution g(t) for system (24) we do not consider, it is
defined on the interval [0, t1), where t1 ≤ T , and this interval is the maximum possible of the existence
of such solution. Then, from Lemma ([16], § 14, Chapter 4) for solution g(t) it follows the relationship:

lim
t→t1−0

||g(t)|| = +∞, (25)

where || · || is the usual Euclidean norm of a vector. This relationship implies the existence of the number
ρ > 0 and the value t0 ∈ [0, t1) for which the inequality ||g(t)|| ≥ ρ holds for all t ∈ [t0, t1). Note that
the values ρ and t0 will be defined below.

Now, on the interval [t0, t1) we calculate the derivative of the function ||g(t)|| with respect to
system (24). We have the equality:

d
dt

(
||g(t)||

)
= ||g(t)||−1

([
g1(t)g>(t)Q1g(t) + g2(t)g>(t)Q2g(t) + g3(t)g>(t)Q3g(t)

]
+
[
g1(t)d>1 (t)g(t) + g2(t)d>2 (t)g(t) + g3(t)d>3 (t)g(t)

]
+ [g1(t)f1(t) + g2(t)f2(t) + g3(t)f3(t)]

)
.

(26)

Using Lemma 1 and the inequalities from (4), we evaluate the upper boundary of the expressions inside
the square brackets in formula (26).

At first, we consider the third expression, and the corresponding chain of inequalities:

g1(t)f1(t) + g2(t)f2(t) + g3(t)f3(t) ≤
√
b2(t) + c2(t)||g(t)|| ≤ C||g(t)||,

where C =
√

2u2
max + v2

max.
Now, we consider the second expression, and the following chain of inequalities:

g1(t)d>1 (t)g(t) + g2(t)d>2 (t)g(t) + g3(t)d>3 (t)g(t)

≤
√

(a(t)− γ)2 + (a(t)− δ)2 + b2(t) + (γ − δ)2 + γ2 + δ2||g(t)||2 ≤ B||g(t)||2,

where B =
√

5u2
max + 9v2

max + 4γ2 + 4δ2.
Finally, we consider the first expression, and the corresponding inequality:

g1(t)g>(t)Q1g(t) + g2(t)g>(t)Q2g(t) + g3(t)g>(t)Q3g(t)

≤ |g1(t)| · ||Q1g(t)|| · ||g(t)||+ |g2(t)| · ||Q2g(t)|| · ||g(t)||+ |g3(t)| · |g>(t)Q3g(t)|.
(27)

For the first two terms of the right hand side of this relationship, we obtain the inequalities:

||Q1g(t)|| ≤ γ

2
||g(t)||, ||Q2g(t)|| ≤ γ||g(t)||. (28)
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Next, let us find the eigenvalues of matrix Q3. We have the formulas:

λ1 = 0, λ2,3 =
−δ ±

√
γ2 + δ2

2
.

Then, for the last term in the right hand side of relationship (27) the inequality is valid:

|g>(t)Q3g(t)| ≤ δ +
√
γ2 + δ2

2
||g(t)||2. (29)

Using inequalities (28), (29), we continue evaluating the right hand side in (27):

|g1(t)| · ||Q1g(t)|| · ||g(t)||+ |g2(t)| · ||Q2g(t)|| · ||g(t)||+ |g3(t)| · |g>(t)Q3g(t)| ≤ A||g(t)||3,

where A =

√
7γ2

4 + δ2.
Substituting the obtained relationships for the expressions in the square brackets into formula (26),

we finally have the differential inequality:

d

dt

(
||g(t)||

)
≤ A||g(t)||2 +B||g(t)||+ C, t ∈ [t0, t1). (30)

Now, let us consider the quadratic equation

AK2 −BK + C = 0. (31)

We define the sign of its discriminant:

B2 − 4AC = 5u2
max + 9v2

max + 4γ2 + 4δ2 −
√

8u2
max + 4v2

max ·
√

7γ2 + 4δ2

=
(√

8u2
max + 4v2

max

)2

−
√

8u2
max + 4v2

max ·
√

7γ2 + 4δ2

+
(√

7γ2 + 4δ2
)2

+
(

5v2
max − 3u2

max − 3γ2
)

≥ 4u2
max + 2v2

max +
7

2
γ2 + 2δ2 + 5v2

max − 3u2
max − 3γ2

= u2
max + 7v2

max +
1

2
γ2 + 2δ2.

It is easy to see that this discriminant is positive. Let us denote by K0 the biggest root of equation (31).
Then, the following formula holds:

K0 =
B +

√
B2 − 4AC

2A
.

Now, for all vectors g ∈ <3 such that ||g|| ≥ ρ we introduce the function W (g) = ||g|| + K0, and
then rewrite differential inequality (30) for this function. We have the inequality:

d

dt

(
W (g(t))

)
≤ A

(
W (g(t))−K0

)2

+B
(
W (g(t))−K0

)
+ C.

After its transformations regarding relationship AK2
0 −BK0 +C = 0 we find the differential inequality:

d

dt

(
W (g(t))

)
≤ AW 2(g(t))− (2AK0 −B)W (g(t)), t ∈ [t0, t1). (32)
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Finally, let us consider the auxiliary Cauchy problem:{
ḣ(t) = Ah2(t)− (2AK0 −B)h(t), t ∈ [t0, t1],

h(t0) = h0, h0 ≥ K0 + ρ.
(33)

It is easy to see that the value h0 satisfies the inequality

h0 >
2AK0 −B

A
. (34)

Let us find the solution to Cauchy problem (33). We solve the corresponding Bernoulli equation and
satisfy the initial condition. Then, the following formula can be obtained:

h(t) =
( A

2AK0 −B
+
[ 1

h0

− A

2AK0 −B

]
e(2AK0−B)(t−t0)

)−1

, t ∈ [t0, t1]. (35)

In this equality we assume that the values ρ and t0 are such that the expression inside the brackets is
defined for all t ∈ [t0, t1]. We can do this, for example, by choosing for a given ρ, a value t0 such that
the difference (t1− t0) is sufficiently small. By inequality (34) the expression inside the square brackets
in (35) is negative, and hence h(t) is a finite positive function increasing on the interval [t0, t1]. Then, we
have the inequality h(t) < h(t1) for all t ∈ [t0, t1). Therefore, from differential inequality (32), Cauchy
problem (33), the Chaplygin’s Theorem ([17]), and the equality:

h0 = W (g(t0)) = ||g(t0)||+K0,

the chain of inequalities follows:

||g(t)|| < h(t)−K0 < h(t1)−K0, t ∈ (t0, t1),

which contradicts relationship (25). Our assumption was wrong. Therefore, there exists the solution
ĝ(t) for system (24), and hence for system (23), which is defined on the entire interval [0, T ]. Then,
system (21) is also defined on this interval. We rewrite this system using the components of the solution
ĝ(t) = (ĝ1(t), ĝ2(t), ĝ3(t))> as

˙̃r(t) = (a(t) + δĝ3(t))r̃(t)− δq̃(t),
˙̃q(t) = (δ − γĝ2(t)− δĝ3(t))q̃(t) + γµ̃(t),
˙̃µ(t) = γ(1 + ĝ2(t))µ̃(t).

(36)

Finally, at the third stage, we show that the function r̃(t) = L(t) has at most two distinct zeros on
the interval [0, T ]. Again, we assume the contradiction. Let the function r̃(t) has on the interval [0, T ]

at least three distinct zeros τ1, τ2, τ3, where 0 ≤ τ1 < τ2 < τ3 ≤ T . Applying the generalized Rolle’s
Theorem ([18]) to the first differential equation of system (36), we conclude that the function q̃(t) has
on the interval (0, T ) at least two distinct zeros η1, η2, where 0 < η1 < η2 < T . Applying now this
theorem to the second differential equation from (36), we find that the function µ̃(t) has at least one zero
ξ on the interval (0, T ). However, this function satisfies the linear homogeneous differential equation,
and therefore µ̃(t) = 0 everywhere on the interval [0, T ]. Considering then the second equation of
system (36), we conclude that the function q̃(t) is also zero everywhere on the interval [0, T ]. Therefore,
using the first equation of this system, the similar conclusion is obtained for the function r̃(t), i.e.,
r̃(t) = 0 for all t ∈ [0, T ]. This fact contradicts Lemma 2. Hence, our assumption was wrong, and the
switching function L(t) has at most two distinct zeros on the interval [0, T ].



Mathematics 2015, 3 973

Let us note one important fact of the proof of Lemma 3. Due to various ways of evaluation of
expressions inside square brackets in formula (26), the values A , B, C are not uniquely defined. They
can be made as big in value or not. Analysis of the formula of K0, relationship (35), and the initial
condition at Cauchy problem (33) shows that the values B, (B2− 4AC) should be the smallest possible.
Therefore, the values A , C should be the biggest possible as well, and satisfy the inequality 4AC < B2.

Arguments similar to those presented in Lemma 3, were previously used in [19,20] to estimate
the number of zeros of switching functions in optimal control problems for the SIR model of the
epidemic spread.

By Lemma 3, the initial conditions of system (15), and formulas (12), (13), we find the type of the
optimal controls u∗(t), v∗(t):

u∗(t), v∗(t) =


umax, vmax, if 0 ≤ t ≤ θ∗1,

umin, vmin, if θ∗1 < t ≤ θ∗2,

umax, vmax, if θ∗2 < t ≤ T,

(37)

where θ∗1, θ
∗
2 ∈ [0, T ) are the moments of switching.

6. Solution to Optimal Control Problem

We describe the method of solving the optimal control problem (10). At first, we define the set:

Ω =
{
θ = (θ1, θ2)> ∈ <2 : 0 ≤ θ1 ≤ θ2 ≤ T

}
.

Next, for arbitrary point θ ∈ Ω we define the controls uθ(t), vθ(t) by formula:

uθ(t), vθ(t) =


umax, vmax, if 0 ≤ t ≤ θ1,

umin, vmin, if θ1 < t ≤ θ2,

umax, vmax, if θ2 < t ≤ T.

(38)

It is easy to see that the controls uθ(t), vθ(t), defined in this way, include the type of the optimal controls
u∗(t), v∗(t) given by formula (37).

Finally, substituting the controls uθ(t), vθ(t) into system (6), and integrating this system over
interval [0, T ], we find the functions sθ(t), eθ(t), iθ(t), which correspond to these controls. Then,
using the controls uθ(t), vθ(t) and the functions eθ(t), iθ(t), we find the value of functional J(uθ, vθ)

by formula (10), corresponding to these controls, or, in other words, to the point θ ∈ Ω.
Thus, the function of two variables is defined:

F (θ) = J(uθ, vθ), θ ∈ Ω, (39)

and problem (10) is now reduced to the problem of constrained minimization:

min
θ∈Ω

{
F (θ)

}
. (40)

Methods for numerical solution of such problem are well-known (see [21]). Problem (40) is considerably
simpler than optimal control problem (10) and can be solved numerically by using, for example, the
overlapping method. Using this method assumes a knowledge of the Lipschitz constant of the function
F (θ). The following lemma is devoted to finding of this constant.
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Lemma 4. The function F (θ) satisfies the Lipschitz condition with constant L0 defined as

L0 =
√

6
(

(umax − umin) + (vmax − vmin)
)

e

(√
γ2+(ν+α)2+(σ+β)2+2δ2+

√
5(umax+vmax)

)
T
. (41)

Proof of Lemma 4. We express the value of the functional J(uθ, vθ) through the solution of the
following Cauchy problem:{

ẇθ(t) = (ν + α− vθ(t))eθ(t) + (σ + β − uθ(t))iθ(t), t ∈ [0, T ],

wθ(0) = 0.
(42)

Then, it is obvious that J(uθ, vθ) = wθ(T ), and hence, by (39), we find that F (θ) = wθ(T ).
Let us consider arbitrary points τ, η ∈ Ω. We suppose that uτ (t), vτ (t), and uη(t), vη(t) are

controls, defined by formula (38), which correspond to these points; and pτ (t), pη(t) are solutions of
systems (6), (42) corresponding to these controls, where:

pτ (t) = (sτ (t), eτ (t), iτ (t), wτ (t))
>, pη(t) = (sη(t), eη(t), iη(t), wη(t))

>.

We need to find a constant L0 > 0 that the following inequality holds:

|F (τ)− F (η)| ≤ L0||τ − η||. (43)

Then, this relationship is called the Lipschitz condition for the function F (θ), and L0 the
Lipschitz constant.

To do this, we find the chain of relationships:

|F (τ)− F (η)| = |wτ (T )− wη(T )| ≤ ||pτ (T )− pτ (T )||, (44)

which shows that it is necessary to estimate the value ||pτ (T )− pτ (T )||.
Next, for the point θ ∈ Ω we write systems (6), (42) in a matrix form:{

ṗθ(t) = Mpθ(t) + U(pθ(t))uθ(t) + V (pθ(t))vθ(t), t ∈ [0, T ],

pθ(0) = p0 = (s0, e0, i0, 0)>,
(45)

where M is the matrix:

M =


0 0 0 0

0 −δ 0 0

0 δ −γ 0

0 (ν + α) (σ + β) 0

 ,

and U(pθ(t)), V (pθ(t)) are the vector functions:

U(pθ(t)) =


−sθ(t)iθ(t)
sθ(t)iθ(t)

0

iθ(t)

 , V (pθ(t)) =


−sθ(t)eθ(t)
sθ(t)eθ(t)

0

eθ(t)

 .

Now, we rewrite Cauchy problem (45) as the integral equation:

pθ(t) = p0 +

t∫
0

Mpθ(ξ)dξ +

t∫
0

U(pθ(ξ))uθ(ξ)dξ +

t∫
0

V (pθ(ξ))vθ(ξ)dξ, t ∈ [0, T ],
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and then this equality we write for the points τ, η ∈ Ω:

pτ (t) = p0 +
t∫

0

Mpτ (ξ)dξ +
t∫

0

U(pτ (ξ))uτ (ξ)dξ +
t∫

0

V (pτ (ξ))vτ (ξ)dξ,

pη(t) = p0 +
t∫

0

Mpη(ξ)dξ +
t∫

0

U(pη(ξ))uη(ξ)dξ +
t∫

0

V (pη(ξ))vη(ξ)dξ.

Next, the difference of these expressions can be found as

pτ (t)− pη(t) =
t∫

0

M
(
pτ (ξ)− pη(ξ)

)
dξ

+
t∫

0

{
U(pτ (ξ))(uτ (ξ)− uη(ξ)) +

(
U(pτ (ξ))− U(pη(ξ))

)
uη(ξ)

}
dξ

+
t∫

0

{
V (pτ (ξ))(vτ (ξ)− vη(ξ)) +

(
V (pτ (ξ))− V (pη(ξ))

)
vη(ξ)

}
dξ.

Using Lemma 1 and the inequalities from (4), we estimate the norm of such difference:

||pτ (t)− pη(t)|| ≤
(
||M ||+

√
5(umax + vmax)

) t∫
0

||pτ (ξ)− pη(ξ)||dξ

+
√

6
(

(umax − umin) + (vmax − vmin)
)
||τ − η||,

(46)

where ||M || is the Euclidean norm of the matrix M . It is easy to see that

||M || =
√
γ2 + (ν + α)2 + (σ + β)2 + 2δ2.

Applying the Gronwall’s inequality ([21]) to expression (46), we find the expression:

||pτ (t)− pη(t)|| ≤
√

6
(

(umax − umin) + (vmax − vmin)
)

e(||M ||+
√

5(umax+vmax))t||τ − η||, t ∈ [0, T ].

Putting in it t = T and using relationships (44), we finally have required inequality (43) in which the
constant L0 is defined by formula (41). The proof is completed.

7. Numerical Simulation

In order to find the global minimum of the function F (θ), the overlapping method is used, because
the Lipschitz constant of this function was found in Lemma 4. Since the Pontryagin maximum principle
is only a necessary optimality condition, then the function F (θ) can have local minima different from the
global minimum. To take this into account, we introduce a grid of points on the set Ω. The partitioning
of the grid depends on the Lipschitz constant. Comparing the values of the function F (θ) at the nodes of
the grid with each other, we find approximately its local minima. Finally, comparing the obtained results
we approximately determine the global minimum, which is the solution of problem (40), and hence the
solution of the original problem (10).

We conducted numerical calculations for the values of the parameters N , T , α, β, γ, δ, σ, ν, and the
initial conditions S0, E0, I0 for system (1), and also control constraints umin, umax, vmin, vmax from (4),
which are presented in Table 1. These values are adopted from [5,6,22–24] and based on actual data of
Ebola epidemics.
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Table 1. Values for parameters, initial conditions for system (1), and control constraints (4).

Parameter Zaire (1976) Congo (1995) Uganda (2000) Guinea (2014) Liberia (2014)
or Constraint Value Value Value Value Value

N (humans) 900 5000 1000 4000 6000

S0 (humans) 890 4950 987 3960 5940

E0 (humans) 3 17 4 13 20

I0 (humans) 5 28 6 22 33

T (days) 90 150 150 400 300

α(days−1) 0.141779 0.000000 0.000000 0.000000 0.000000

β(days−1) 0.567114 0.330000 0.380000 0.270000 0.450000

γ(days−1) 0.142857 0.178253 5.263158 0.178253 0.178253

δ(days−1) 0.833333 0.188679 4.347826 0.158730 0.158730

σ 0.01− 10 0.01− 10 0.01− 10 0.01− 10 0.01− 10

ν 0.01− 10 0.01− 10 0.01− 10 0.01− 10 0.01− 10

umin 0.283557 0.090000 0.190000 0.135000 0.225000

umax 0.567114 0.330000 0.380000 0.270000 0.450000

vmin 0.070889 0.000000 0.000000 0.000000 0.000000

vmax 0.141779 0.000000 0.000000 0.000000 0.000000

Figures 1–3 show the graphs of the optimal solutions S∗(t), E∗(t), I∗(t), R∗(t) for Ebola epidemics
in Zaire (1976), Uganda (2000), and Liberia (2014), respectively. The solution S∗(t) is shown as a green
curve, E∗(t) as blue and I∗(t) as a red curves, and, finally, the solution R∗(t) is shown in magenta.
Figures 4–5 show the graphs of the corresponding optimal controls u∗(t), v∗(t). The control u∗(t) is
shown in red, and the control v∗(t) is shown in blue. For these Ebola outbreaks, Table 2 shows the
dependence of the values of the switchings θ∗1, θ∗2 of the controls u∗(t), v∗(t), and the optimal value of
the functional J̃∗ = NJ(u∗, v∗) on the values of the weighting coefficients σ and ν.

Let us discuss the results presented by Table 2 and obtained for Zaire (1976). We can see that the
type of the optimal controls u∗(t), v∗(t) for 0.01 ≤ σ = ν ≤ 0.1 is very different from the type of these
controls corresponding to 0.5 ≤ σ = ν ≤ 10. In the first case, if 0.01 ≤ σ = ν ≤ 0.1, the moments of
switching θ∗1, θ∗2 of the controls u∗(t), v∗(t) are almost the same, which means that almost no intervention
is needed in order to minimize the functional from (10), and all preventive control measures would take
less than one day. In the second case, if 0.5 ≤ σ = ν ≤ 10, the type of the optimal controls u∗(t), v∗(t)
are qualitatively different, that is θ∗1 = 0, and the switching θ∗2 moves to the end of the interval [0, T ] as
the values of the weighting coefficients σ, ν increase. In particular, if σ = ν = 0.5, active intervention
control measures take place during the first 29–30 days, then they stop. If σ = ν = 1, then these measures
continue at the maximum effort during the first 80–81 days. Finally, if σ = ν = 10, then intervention
control measures continue at the maximum rate almost during the entire time interval (90 days). Note
that similar behavior of the optimal controls u∗(t), v∗(t) can be observed for the Ebola outbreaks in
Uganda (2000) and Liberia (2014). Such behavior of these controls is explained by the fact that the
weighting coefficients σ and ν from formula (8) determine the relative importance of the functional
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J1(u, v) to J2(u, v). If the values of these weighting coefficients are small (0.01 ≤ σ = ν ≤ 0.1),
then the costs of intervention control constraints are relatively more important than the total fractions of
exposed and infected individuals, and vice versa.

Figure 1. Graphs of the optimal solutions S∗(t), E∗(t), I∗(t), R∗(t) for the Ebola outbreak
in Zaire (1976) for σ = 1, ν = 1.

Figure 2. Graphs of the optimal solutions S∗(t), E∗(t), I∗(t), R∗(t) for the Ebola outbreak
in Uganda (2000) for σ = 10, ν = 10.



Mathematics 2015, 3 978

Figure 3. Graphs of the optimal solutions S∗(t), E∗(t), I∗(t), R∗(t) for the Ebola outbreak
in Liberia (2014) for σ = 0.01, ν = 0.01.

Figure 4. Graphs of the optimal controls u∗(t), v∗(t) for the Ebola outbreak in Zaire (1976)
for σ = 1, ν = 1.
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Figure 5. Graphs of the optimal controls u∗(t), v∗(t) for the Ebola outbreak in
Uganda (2000) for σ = 10, ν = 10.

Figure 6. Graphs of the optimal controls u∗(t), v∗(t) for the Ebola outbreak in Liberia (2014)
for σ = 0.01, ν = 0.01.
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Table 2. Dependence of the optimal switchings θ∗1, θ∗2 and the optimal value J̃∗ from the
parameters σ, ν.

σ = ν σ = ν σ = ν σ = ν σ = ν σ = ν

= 0.01 = 0.05 = 0.1 = 0.5 = 1.0 = 10.0

Zaire θ∗1 = 41.10 θ∗1 = 72.00 θ∗1 = 70.20 θ∗1 = 0.000 θ∗1 = 0.000 θ∗1 = 0.000

(1976) θ∗2 = 41.40 θ∗2 = 72.30 θ∗2 = 70.50 θ∗2 = 29.40 θ∗2 = 80.40 θ∗2 = 89.10

J̃∗ = 168.1 J̃∗ = 840.3 J̃∗ = 1680.5 J̃∗ = 8345.2 J̃∗ = 15, 515.2 J̃∗ = 138, 231.4

Uganda θ∗1 = 14.10 θ∗1 = 31.20 θ∗1 = 23.40 θ∗1 = 9.000 θ∗1 = 35.10 θ∗1 = 0.000

(2000) θ∗2 = 16.20 θ∗2 = 39.60 θ∗2 = 29.40 θ∗2 = 9.900 θ∗2 = 149.70 θ∗2 = 18.90

J̃∗ = 0.0314 J̃∗ = 0.1571 J̃∗ = 0.3142 J̃∗ = 1.5711 J̃∗ = 3.1421 J̃∗ = 30.126

Liberia θ∗1 = 58.80 θ∗1 = 59.10 θ∗1 = 0.000 θ∗1 = 0.000 θ∗1 = 0.000 θ∗1 = 0.000

(2014) θ∗2 = 59.10 θ∗2 = 59.40 θ∗2 = 286.2 θ∗2 = 296.7 θ∗2 = 298.2 θ∗2 = 299.7

J̃∗ = 637.9 J̃∗ = 3189.7 J̃∗ = 5858.7 J̃∗ = 17, 219.2 J̃∗ = 31, 413.1 J̃∗ = 286, 889.3

Finally, Figures 7–9 represent the surfaces describing the dependence of values of the function
J̃(θ) = NJ(uθ, vθ) on the moments of switching θ = (θ1, θ2)> ∈ Ω. One of the points of such
surfaces correspond to the optimal values J̃∗. Analyzing these surfaces it is easy to see that the function
J̃(θ) has not only the global minimum, the search of which is the subject of our investigation, but also
local minima. This once again demonstrates that the Pontryagin maximum principle is only a necessary
optimality condition.

Figure 7. Surface J̃(θ) for the Ebola outbreak in Zaire (1976) for σ = 1, ν = 1.
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Figure 8. Surface J̃(θ) for the Ebola outbreak in Uganda (2000) for σ = 10, ν = 10.

Figure 9. Surface J̃(θ) for the Ebola outbreak in Liberia (2014) for σ = 0.01, ν = 0.01.
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8. Conclusions

In this paper, a problem of minimizing the weighted sum of total fractions of infected and exposed
individuals and total costs of intervention control constraints over a given time interval for the SEIR
control model describing the spread of an Ebola epidemic in a population of a constant size was
considered. Analysis of the optimal solutions of this problem was made using the Pontryagin maximum
principle. The established properties of the switching function allowed the reduction of the original
optimal control problem to the solution of the problem of a constrained minimization of the function of
two variables. Results of the numerical calculations and their analysis are presented.
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