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Abstract: Analytical solutions are developed to work out the two-dimensional (2D) 

temperature changes of flow in the passages of a plate heat exchanger in parallel flow and 

counter flow arrangements. Two different flow regimes, namely, the plug flow and the 

turbulent flow are considered. The mathematical formulation of problems coupled  

at boundary conditions are presented, the solution procedure is then obtained as a special 

case of the two region Sturm-Liouville problem. The results obtained for two different 

flow regimes are then compared with experimental results and with each other. The 

agreement between the analytical and experimental results is an indication of the accuracy 

of solution method. 

Keywords: plate heat exchanger; temperature distribution; analytical approach;  

Sturm-Liouville problem 

 

1. Introduction 

The study of the coupled forms of heat transfer between forced convection flows and conduction in 

surfaces is very important due to the existence of these simultaneous effects in practical heat transfer 

processes. In particular, the design and performance of counter flow multilayered heat exchangers offer 

excellent opportunities to analyze these complex physical phenomena. Many theoretical investigations 

of heat transfer characteristics of heat exchangers under plug, laminar, and turbulent flows have been 
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published in the literature. Specifically, research on fin efficiency, double pipe, and parallel plate 

exchangers is progressing. In connection with the conjugate heat transfer process over surfaces, the 

effect of wall heat conduction and convective heat transfer has been analyzed in several works. 

The temperature distribution in a horizontal flat plate of finite thickness was analyzed by Luikov [1] 

and Payvar [2]. In this conjugate problem the lower surface was maintained at a uniform temperature, 

while the upper surface was transferring heat to a laminar boundary layer by convection. Two 

approximate solutions were presented by Luikov [1], based respectively on differential and integral 

analyses. The first solution was performed considering low Prandtl number assumption, while the 

second solution was conducted using polynomial forms for the velocity and temperature profiles. In 

the case of large Prandtl numbers the Lighthill approximation [3] was used by Payvar [2] and an 

integral equation was obtained and then solved numerically. 

 From the practical point of view, the specific wall temperature boundary condition is the least 

important, since its use as a representation of an actual condition in a plate heat exchanger is applicable 

only for certain special limiting cases. Boundary conditions that specify heat fluxes apply more 

directly to any actual situation, such as coolant passages of nuclear reactors. 

Except for certain special circumstances, none of the boundary conditions treated in the literature 

would be applicable. In view of the practical importance of heat exchangers in general, it is surprising 

that investigations of applicable Sturm-Liouville problem have not been investigated. A possible 

reason for this appears to be related to the applicability of the classical mathematical techniques to 

obtain analytical solutions to similar problems. However, the analytical treatment of Graetz and 

conjugated Graetz problems is mainly based on the Eigen-function expansion technique in terms of 

power series in many studies [4]. Nunge and Gill [5] developed an orthogonal expansion technique for 

solving a new class of counter-flow heat transfer problems. Nunge and Gill [5] solved the exchanger 

problem assuming fully developed laminar velocity profiles, negligible conduction in the fluid streams, 

and temperature independent fluid properties.  

The main purpose of this paper is conducting an introductory analytical investigation of temperature 

distribution in parallel flow and counter flow plate heat exchangers using Sturm-Liouville problem. 

Mehrabian [6] derived one dimensional temperature distributions in plate heat exchangers using four 

simplifying assumptions. These assumptions were uniform heat flux, constant overall heat transfer 

coefficient, linear relationship between the overall heat transfer coefficient and cold flow temperature, 

linear relationship between the overall heat transfer coefficient and temperature difference between 

cold and hot flows. Ansari et al. [7] developed a mathematical model to analyze the heat transfer 

characteristics in a double pipe heat exchanger. They used laminar flow assumption for flow in the 

internal tube and turbulent flow in the annular channel in parallel flow arrangement. The heat transfer 

coefficients derived for inner flow and outer flow were predicted using the mathematical model and 

compared with standard correlations. The model deviation from the standard correlation was less than 

10 percent [7]. This paper is an extension of [6,7], using analytical approach to obtain temperature 

distributions in plate heat exchangers in longitudinal direction as well as in the direction perpendicular 

to the plates. 

The temperature distribution in plate heat exchangers is obtained based on a two region Sturm-Liouville 

system consisting of two equations coupled at common boundary. The solutions of this system form an 

infinite sequence of Eigen functions with corresponding eigenvalues. If the velocity distributions are 
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assumed to be uniform, the Eigen functions are the familiar tabulated functions and eigenvalues are 

given by the positive nonzero roots of an eigenvalue transcendental equation. The plug flow and  

the turbulent flow models of the heat exchanger fluid flows are utilized in this paper with the  

following idealizations: 

1- At the inlet to each channel the temperature is uniform in the channel cross-section. 

2- Frictional heating is negligible. 

3- Longitudinal heat conduction in the plates is negligible. 

4- Physical properties are temperature independent. 

5- Longitudinal heat conduction in the fluids is negligible. 

6- The effect of corrugations in flow and heat transfer is neglected. 

The first three idealizations are reasonable in most heat exchangers applications. The fourth 

idealization is normally acceptable when considering density, specific heat and thermal conductivity 

for liquid-liquid applications. The variations of viscosity with respect to temperature in plate heat 

exchanger channels were studied by Mehrabian et al. [8]. Their study shows, in a plate heat exchanger 

with water as the process and service fluid the performance does not considerably change when an 

average viscosity based on T = (Tinlet + Toutlet)/2 is used for each fluid. The accuracy of this assumption 

is more pronounced when Tin − Tout is not very large. 

The fifth idealization has been shown to be valid for a variety of special cases when Peclet numbers 

are larger than 50 [9–11], it seems reasonable to assume that this idealization is valid for the particular 

cases of interest here, where Peclet number exceeds 50. The sixth idealization can be more realistic by 

considering the developed plate area instead of the projected plate area in heat transfer calculations. 

 

Figure 1. Plate heat exchanger geometry. 
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2. Problem Description and Mathematical Formulation Based on Plug Flow Model 

The plate heat exchanger consists of channels separated by common walls with fluids flowing 

through the channels, as illustrated in Figure 1. Plate heat exchangers are widely used, their great 

advantage being their diversity of application and simplicity of construction. They consist of a number 

of rectangular plates separated with gaskets to contain a constant space and then clamped together.  

The gaskets control the inlet and outlet ports in the corners of the plates, allowing the hot and cold 

fluids to flow in alternative channels of the exchanger. Since it is easy to alter the number of plates 

used in an exchanger, and since a wide variety of flow arrangements is possible, these exchangers can 

be used for many applications [6]. 

Based on the previous simplifications, the energy conservation and Fourier’s heat conduction law, 

for the heat exchanger channels shown in Figure 1 are as follows: 

2
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Heat balance equation at the interface of fluid 1 and wall (x1 = a1) can be expressed as; 
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Equations (1) and (2) are special cases of the two-region Sturm-Liouville problem. 

2.1. Dimensionless Equations 

The dimensionless space variables for channel 1 and 2 are respectively defined as follows: 

1

1
1 a

x
X   (6)

2

2
2 a

x
X   (7)

The dimensionless length Z is defined for channels 1 and 2, referenced arbitrarily to the properties 

of channel 1: 
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where Pe1 is the Peclet number for channel 1, defined as: 
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Other dimensionless parameters are defined as follows: 
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The governing equations and boundary condition are re-written in terms of dimensionless variables 

θi, Xi and Z: 
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2.2. Solution 

To solve the problem, the method of separation of variables is used. A separation in the following 

form is assumed for channel 1: 
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θ1(X1,Z) = N1(Z).M1(X1) (22)

Applying Equation (22) to Equation (15) gives: 

" '
21 1 1

1 1 1

( ) ( )

( ) ( ) n

M X N Z
k

M X N Z
     (23)

where λ is the Eigen value. Equation (22) will become indeterminate for positive k while for negative 
k, 1  will converge to a limiting value, this is explained with more details in [4,5,12]. The solution for 

N1(Z) with respect to  is: 
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A similar method applied to Equation (17) gives: 
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Applying the new variables θ1 and θ2 into Equation (15) and Equation (16) yields: 
" 2
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Applying the new variables θ1 and θ2 into Equation (20) to Equation (22) gives: 
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2.3. Eigenvalue Equation 

Assuming M1n(X1) = A.F (λ, X1) and M2n(X2) = B.G (λ, X2), where A and B are arbitrary constants, 

for λ = λ0, λ1, λ2, λ3, ..., Equation (31) and Equation (32) respectively become: 
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We can write Equations (33) and (34) as: 
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In order this system of simultaneous homogeneous linear algebraic equations have nonzero 

solutions for A and B, the coefficient determinant must be made equal to zero by proper choice of λ: 
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This gives the eigenvalue equation: 
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In order to find λ = λ0, λ1, λ2, λ3, ... for each condition (K, Kw, H), Equation (35) should be solved. 

S(λ) represents Equation (35) for parallel flow and counter flow conditions in Table 1. 

Table 1. F, G and Eigen functions for parallel flow and counter flow plate heat exchangers. 

Type F(λ, X1) G(λ, X2) S(λ) 

Parallel flow cos(λX1) cos(ψλX2) 
cos( )sin( ) sin( ) cos( )

sin( )sin( ) 0
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sin( )sinh( ) 0
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For K = 1, H = 1, Kw = 0 we have following Eigenvalues (parallel flow condition): 

λ = λ0, λ1, λ2, λ3, λ4, λ5… 

λ = 1.5705, 3.1415, 4.7125, 6.2835, 7.8535, 9.4245… 

and for K = 1, H = 1, Kw = 0 we have following Eigenvalues (Counter flow condition): 

λ = λ0, λ1, λ2, λ3, λ4, λ5… 

λ = 3.9266, 7.0686, 10.2102, 13.3518, 16.4934, 19.6350… 

Equation (33) gives: 
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Since the system is homogeneous, either A or B can be chosen arbitrarily, Hence: 

2
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The Eigen functions M1n and M2n can be represented by: 
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Constants A and B calculated in this section satisfy Equation (34). Ansari [13] proved that for 

arbitrary constants ψ, K, Kw, and values of A, and B obtained in this section Equation (34) is true.  

He [13] also calculated the values of λ for which the boundary conditions are fulfilled. 

2.4. Finding F(λ, X1) and G(λ, X2) 

The solution for Equation (27) along with boundary condition, Equation (20) is: 

1 1 1 1( ) ( , ) cos( )nM X AF X A X     (40)

Equation (28) and boundary condition for channel 2 are: 
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The solution for counter flow arrangement (m = 1) is: 

2 2 2 2( ) ( , ) cosh( )nM X BG X B X     (43)

F(λ, X1), G(λ, X2) and Eigen functions are given in Table 1 for plate heat exchangers. M1n(X1) and 

M2n(X2) are also given in Equations (38) and (39). 

2.5. Orthogonality of the Eigen functions 

The orthogonality condition for the M1n and M2n will now be established. The differential Equation (27) 

is first manipulated for n = i and j in the same manner used to derive properties of the familiar  

Sturm-liouville system. For example, Equation (27) is written for n = i and then for n = j with i ≠ j. the 

equation for n = i is multiplied by M1j and the equation for n = j is multiplied by M1i. The two resulting 

equations are subtracted, simplified and then integrated between X1 = 0 and X1 = 1. The following 

equation is obtained: 
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In a similar manner, Equation (28) is written for n = i and then for n = j with i ≠ j. the equation for  

n = i is multiplied by M2j and the equation for n = j is multiplied by M2i. The two resulting equations 

are subtracted, simplified and then integrated between X2 = 0 and X2 = 1. The following equation  

is obtained; 
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Equations (44) and (45) can be related to each other using the coupling boundary conditions at  

X = 1. Thus, Equations (31) and (32) respectively become: 
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Using these conditions in Equations (44) and (45) gives: 
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Equation (48) is the orthogonality condition for the Eigen function M1n and M2n. For the case of  

i = j = n, Equation (48) leads to a normalizing factor defined by: 
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Equations (38) and (39) for the case of n = 0 with λ = 0 give 

M10 = M20 = 1 

Applying the above condition into Equation (49) gives: 
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2.6. Finding Cn and θi 

The following expansions are considered regarding Equations (25) and (26) at Z = 0: 

)(0 11
0

XMC n
n

n




  (51)

)(1 22
0

XMC n
n

n




  (52)

Multiplying Equation (51) by M1n(X1)dX1 and Equation (52) by H.M2n(X2)dX2, adding the resulting 

expressions and integrating between Xi = 0 and Xi = 1 using Equation (49), the following equation for 

the Cn is obtained: 
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Equations (50) and (53) give: 
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Using Equations (38), (39) and (53) and simplifying the results gives: 
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where S′(λ) is the differential of the Eigen function. The solution for the two-dimensional temperature 

distribution can subsequently be written as: 
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The average temperature can be used as one-dimensional form of temperature distribution: 
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3. Modification for the Turbulent Flow 

Equations (1) and (2) used for plug flow condition in Section 2 can be applied for turbulent flow 

when α is replaced by α + ε [14]. Since α = k/ρc, the general form for Equations (1) and (2) applied to 

turbulent flow becomes: 

  T T
k c c u

X X Z
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 (59)

In this equation   represents a turbulent diffusivity for heat transfer. The term k c   can be 

interpreted as an effective total conductivity, tk  written as: 

1 Prtk k
v

   
 

 (60)

where v is the kinematic viscosity and Pr is the Prandtl number. Now an average effective conductivity 

mk  is defined: 


1

0

dXkk tm  (61)

The mk  value for the parallel plate channel was obtained experimentally by Lyon [15], He proposed 

the following correlation for predicting km with respect to Peclet number: 

 8.002.08.5
6
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k

km   (62)

The average effective conductivity, mk , must be applied to Equations (11) and (12) in order to 

convert the plug flow solution into the turbulent flow solution. In other words, K in Equation (11) and 

KW in Equation (12) are respectively replaced by: 
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4. Results 

The results are presented in four different cases representing in Figures 2–5. 

(a) 

(b) 

(c) 

Figure 2. Temperature distribution for a parallel flow plate heat exchanger (Plug flow).  

(a) Two dimensional temperature distribution for K = 1, H = 0.5, KW = 0; (b) Two 

dimensional temperature distribution for K = 1, H = 1, KW = 0; (c) Two dimensional 

temperature distribution for K = 1, H = 2, KW = 0. 



Mathematics 2015, 3 1266 

 

 

(a) 

(b) 

(c) 

Figure 3. Temperature distribution for a parallel flow plate heat exchanger (Turbulent flow). 

(a) Two dimensional temperature distribution for K = 1, H = 0.5, KW = 0, and Kt = 0.33; 

(b) Two dimensional temperature distribution for K = 1, H = 1, KW = 0 and Kt = 0.33;  

(c) Two dimensional temperature distribution for K = 1, H = 2, KW = 0 and Kt = 0.33. 
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(a) 

(b) 

(c) 

Figure 4. Temperature distribution for a counter flow plate heat exchanger (Plug flow).  

(a) Two dimensional temperature distribution for K = 1, H = 0.5, KW = 0; (b) Two 

dimensional temperature distribution for K = 1, H = 1, KW = 0; (c) Two dimensional 

temperature distribution for K = 1, H = 2, KW = 0. 
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(a) 

(b) 

(c) 

Figure 5. Temperature distribution for a counter flow plate heat exchanger (Turbulent flow). 

(a) Two dimensional temperature distribution for K = 1, H = 0.5, KW = 0 and Kt = 0.33;  

(b) Two dimensional temperature distribution for K = 1, H = 1, KW = 0, and Kt = 0.33;  

(c) Two dimensional temperature distribution for K = 1, H = 2, KW = 0 and Kt = 0.33. 



Mathematics 2015, 3 1269 

 

 

4.1. Parallel Flow Arrangement-Plug Flow Regime (Pe1 = 75000, and Pe2 = 3500) 

The dimensionless temperature distributions for hot and cold flows in this case are shown in Figure 2 

for Kw = 0, where Kw is defined in Equation (12), the wall thermal resistance (Rw) is much smaller 

than the fluid thermal resistance (Rw << R1), therefore KW is very small (KW ≈ 0). 

4.2. Parallel Flow Arrangement-Turbulent Flow Regime (Pe1 = 75000, and Pe2 = 3500) 

The dimensionless temperature distributions for hot and cold flows in this case are shown in Figure 3 

for Kw = 0 and Kt = 0.33. 

4.3. Counter Flow Arrangement-Plug Flow Regime (Pe1 = 75000, and Pe2 = 3500) 

The dimensionless temperature distributions for hot and cold flows in this case are shown in Figure 4 

for Kw = 0. 

4.4. Counter Flow Arrangement-Turbulent Flow Regime (Pe1 = 75000, and Pe2 = 3500) 

The dimensionless temperature distributions for hot and cold flows in this case are shown in Figure 5 

for Kw = 0 and Kt = 0.33. 

5. Comparison, Validation, and Discussion 

The temperature distribution obtained for counter flow arrangement is compared with the established 

experimental data available in the literature using similar plate dimensions and flow details [6,16,17]. 

To get a clearer picture of the problem, a plate heat exchanger consisting of four standard plates is 

considered. Plate dimensions and flow details are shown in Table 2. Fluid temperatures at five 

intermediate points in the main chevron region are evaluated. 

Table 2. Plate dimensions and flow details. 

Developed Plate Length L 1 m 

Flow wide W 0.35 m 
Flow thickness 2a1, a2 0.00367 m 
Wall thickness b 0.0006 m 

Thermal conductivity of wall kw 73 W/m.K 
 Hot fluid Cold fluid 

Inlet temperature 77.9 °C 47.9 °C 
Outlet temperature 71.7 °C 76.9 °C 

Heat capacity 4191J/kg.K 4184 J/kg.K 
Mass flow rate 472.6 kg/h 101.2 kg/h 

density 994 kg/m3 994 kg/m3 
Kinematics Viscosity × 106 0.461 m2/s 0.623 m2/s 

Thermal conductivity 0.664 W/m.K 0.651 W/m.K 
Pr 3.48 3.75 
Re 406.8 64.4 



Mathematics 2015, 3 1270 

 

 

The plate dimensions briefly mentioned in Table 2 correspond to standard APV SR3 chevron plates, 

which are widely used in the process industry [16]. The flow details given in Table 2 have been 

applied in a test machine. The local temperatures along the central exchanger channel (cold fluid flow) 

have been measured experimentally [16]. 

The dimensionless parameters for analytical procedure are as follows: 

68.4H , 03.1tK , 0015.0, wtK , 2 4.59   (65)

The experimental data [15] and analytical-numerical results developed in [6] are listed in Table 3. 

In reality, the temperature varies not only along z, but also along x. Table 3 is dedicated to the 

variations of temperature along z. 

Table 3. Temperature distribution of the cold flow in two sides of the central channel of 

the plate heat exchanger. 

TE (°C) TN (°C) Error T (°C) Error Distance 

47.9 47.9 0 47.9 0 0 m 
61.9 60.3 2.6 62.6 3.1 1/6 m 
66.8 67.6 1.2 66.1 0.4 2/6 m 
70.2 72 2.6 69.7 1.5 3/6 m 
72.6 74.5 2.6 72.1 2 4/6 m 
74.3 76 2.2 74.6 1.8 5/6 m 
76.9 76.9 0 76.9 0 1 m 

TE: Experimental data [14], TN: Local temperature of plate heat exchanger using the analytical-numerical 

method developed in [15] for constant overall heat transfer coefficient, T: Local temperature of plate heat 

exchanger using the analytical method developed in this paper. 

Mehrabian et al. [17] established an experimental technique to measure the local temperatures along 

the flow channels of a plate heat exchanger. Mehrabian, et al. [18] also conducted a three dimensional 

computational analysis to investigate the hydrodynamics and thermal characteristics of plate heat 

exchangers. In this investigation they predicted the temperature, pressure, and velocity distributions in 

the flow channels of a plate heat exchanger. The present paper tackles the same problem from an 

analytical point of view, and therefore completes this cycle of computational, experimental, and 

analytical methodologies. Each methodology has its own difficulties, analytical approach however 

requires the governing equations are as simplified as possible and this leads to certain simplifying 

assumptions. The major assumptions affecting the analytical results are: 

 Ignoring the heat transfer enhancement in the development region for the fluids, 

 Not taking account of the effect of corrugations by assuming the plates are flat, and 

 Assuming turbulent flow in the flow channels while the Reynolds numbers are not large enough. 

It should be mentioned that the flow visualization experiments [19] support this assumption. 

6. Conclusions 

In this study, the mathematical model of the heat transfer phenomena in a plate heat exchanger with 

counter flow or parallel flow arrangements has been developed and investigated. The analytical 
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solution is obtained based on a two region Sturm-Liouville system consisting of two equations coupled 

at a common boundary. In order to provide mathematical simplicity, a plug flow model of the heat 

exchanging fluids were utilized for this analysis. An approximate method was developed for converting 

the plug flow formulation into the turbulent flow formulation. The mathematical method performed in 

this study can be applied for the prediction of the temperature distribution. The predictions of the method 

developed in this study are in close agreement with experimental results available in the literature. 
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Nomenclature 

Dimensional Quantities W Plate wide, m 

2a1 Width of channel 1, m   Eigenvalue 

a2 Width of channel 2, m Dimensionless Quantities 

b Wall thickness, m H Heat capacity flow rate ratio 

ki Thermal conductivity of fluid i, W/m.K K Relative thermal resistance of fluid 

kw Thermal conductivity of wall. W/m.K KW Relative thermal resistance of wall 

kt 
Thermal conductivity for turbulent  

flow, W/m.K 
Pe Peclet number 

km Average effective conductivity, W/m.K Pr Prandtl number 

i  Thermal diffusivity of fluid i,m2/s Re Reynolds number 

ci Heat capacity of fluid i, J/kg.K θi Local temperature of fluid i 

qi Heat flux density at wall in channel i, W/m2 X Dimensionless distances 

Ti Local temperature of fluid i, °C Z Dimensionless length 

Tc(in) Inlet temperature for channel 1, °C M Mass flow rate of fluid, kg/s 

Th(in) Inlet temperature for channel 2, °C SUBSCRIPTS 

Th(out) Outlet temperature for channel 2, °C B Average temperature 

x Coordinate normal to heat transfer surface, m c Cold 

z Axial coordinate or heat exchanger length, m h Hot 

iu  Absolute value of the velocity of fluid i m 0 for parallel flow , 1 for counter flow 

v  Kinematic viscosity, m2/s n 0, 1, 2, 3, … 

  Turbulent diffusivity for heat transfer, m2/s t Turbulent 
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