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Abstract:

 In a joint paper with Srivastava and Chopra, we introduced far-reaching generalizations of the extended Gammafunction, extended Beta function and the extended Gauss hypergeometric function. In this present paper, we extend the generalized Mittag–Leffler function by means of the extended Beta function. We then systematically investigate several properties of the extended Mittag–Leffler function, including, for example, certain basic properties, Laplace transform, Mellin transform and Euler-Beta transform. Further, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag–Leffler function are investigated. Some interesting special cases of our main results are also pointed out.
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1. Introduction, Definitions and Preliminaries

Several interesting generalizations of the familiar Euler-Gamma function [image: there is no content], Euler-Beta function B(α,β), the Gauss hypergeometric functions 2F1 and the generalized hypergeometric functions rFs with r numerator and s denominator were studied and investigated by various authors (see, for example, [1,2,3,4,5,6,7] and the references cited in each of these papers). For example, for an appropriately-bounded sequence [image: there is no content] of arbitrary (real or complex) numbers, Srivastava et al. [8] (p. 243, Equation (2.1)) recently considered the function:



Θ[image: there is no content];z:=∑ℓ=0∞κℓzℓℓ!(|z|<R;0<R<∞;κ0:=1)[image: there is no content]zωexp(z)1+O1zℜ(z)→∞;[image: there is no content]>0;ω∈C



(1)




for some suitable constants [image: there is no content] and ω depending essentially on the sequence [image: there is no content]. In terms of the function Θ[image: there is no content];z defined by Equation (1), in a joint paper with Srivastava and Chopra [8], we introduced far-reaching generalizations of the extended Gamma function, extended Beta function and the extended Gauss hypergeometric function by:


Γp[image: there is no content](z)=∫0∞tz-1Θ[image: there is no content];-t-ptdt



(2)






ℜ(z)>0;ℜ(p)≧0










B[image: there is no content](α,β;p):=∫01tα-1(1-t)β-1Θ[image: there is no content];-pt(1-t)dt



(3)






min{ℜ(α),ℜ(β)}>0;ℜ(p)≧0








and:


Fp[image: there is no content](a,b;c;z):=∑n=0∞(a)nB[image: there is no content](b+n,c-b;p)B(b,c-b)znn!



(4)






|z|<1;ℜ(c)>ℜ(b)>0;ℜ(p)≧0








respectively, provided that the defining integrals in the definitions (Equations (2)–(4)) exist.
For various special choices of the sequence [image: there is no content], the definition in Equations (2)–(4) would reduce to (known or new) extensions of the Gamma, Beta and hypergeometric functions. In particular, if we set:



κℓ=(ρ)ℓ(σ)ℓℓ∈N0



(5)




the definition (Equations (2)–(4)) immediately reduces to the extended Gamma function [image: there is no content], the extended Beta function [image: there is no content] and the extended hypergeometric function [image: there is no content] introduced by Özergin et al. [7]:


Γp(ρ,σ)(z):=∫0∞tz-11F1ρ;σ;-t-ptdt



(6)






min{ℜ(z),ℜ(ρ),ℜ(σ)}>0;ℜ(p)≧0










B(ρ,σ)(α,β;p):=∫01tα-1(1-t)β-11F1ρ;σ;-pt(1-t)dt



(7)






min{ℜ(α),ℜ(β),ℜ(ρ),ℜ(σ)}>0;ℜ(p)≧0








and:


Fp(ρ,σ)(a,b;c;z):=1B(b,c-b)∑n=0∞(a)nB(ρ,σ)(b+n,c-b;p)znn!



(8)






|z|<1;min{ℜ(ρ),ℜ(σ)}>0;ℜ(c)>ℜ(b)>0;ℜ(p)≧0








respectively. Furthermore, for the sequence:


[image: there is no content]



(9)




the definition (Equations (2)–(4)) reduces immediately to the generalized gammafunction, extended betafunction and extended Gauss hypergeometric function studied earlier by Chaudhry and Zubair [3] (p. 9, Equation (1.66)), Chaudhry et al. [1] and Chaudhry et al. [2]:


Γp(z):=∫0∞tz-1exp-t-ptdt(ℜ(p)>0;z∈C)



(10)






B(x,y;p)=∫01tx-1(1-t)y-1exp-pt(1-t)dt(ℜ(p)>0)



(11)




and:


Fp(a,b;c;z):=∑n=0∞(a)nB(b+n,c-b;p)B(b,c-b)znn!



(12)






p≥0,|z|<1;ℜ(c)>ℜ(b)>0








respectively. For [image: there is no content] or (alternatively) for:


κℓ=0(ℓ∈N)








the definitions (Equations (2)–(4)) would reduce immediately to classical Gamma, Beta and Gauss hypergeometric functions (see, for details, [9,10]), respectively.
The one-parameter Mittag–Leffler function:



Eα(z)=∑n=0∞znΓ(αn+1)(α∈C,ℜ(α)>0,z∈C)



(13)




and its two-parameter extension, nowadays called the Mittag–Leffler function:


Eα,β(z)=∑n=0∞znΓ(αn+β)(α,β∈C;ℜ(α)>0,ℜ(β)>0)



(14)




were introduced and studied by Mittag–Leffler [11,12], Wiman [13,14], Agarwal [15], Humbert [16] and Humbert and Agarwal [17].
In 1971, Prabhakar [18] introduced the three-parameter generalization of Equation (14) as:



Eα,βγ(z)=∑n=0∞(γ)nΓ(αn+β)znn!(α,β,γ∈C;ℜ(α)>0,ℜ(β)>0)



(15)




called usually the Prabhakar function. Further, various authors studied and investigated generalized Mittag–Leffler functions (see, for details, [19,20,21,22,23,24,25]). Motivated essentially by the demonstrated potential for applications of these extended hypergeometric functions, we extend the generalized Mittag–Leffler function (Equation (15)) by means of the extended Beta function B[image: there is no content](x,y;p) defined by Equation (3) and investigate certain basic properties, including differentiation formulas and the integral property, Laplace transform, Euler-Beta transform and Mellin transform with their several special cases and relationships with generalized hypergeometric function pFq and H-function. Further, certain relations between the extended generalized Mittag–Leffler function and the Riemann–Liouville fractional integrals and derivatives are investigated. Some interesting special cases of our main results are also considered.


2. A Class of Extended Mittag–Leffler Functions

In terms of the extended Beta function B[image: there is no content](x,y;p) defined by Equation (3), we propose a different extension of the generalized Mittag–Leffler function by replacing:



(γ)n(1)n=B(γ+n,1-γ)B(γ,1-γ)→B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)








in Equation (15) as follows:


Eα,β[image: there is no content];γ(z;p)=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)znΓ(αn+β)



(16)






(z,β,γ∈C;ℜ(α)>0,ℜ(β)>0,ℜ(γ)>1;p≥0)








Remark 1. The special case of Equation (16) when we set the sequence κℓ=(ρ)ℓ(σ)ℓ(ℓ∈N0), yields another form of the extended generalized Mittag–Leffler function:



Eα,β(ρ,σ);γ(z;p)=∑n=0∞B(ρ,σ)(γ+n,1-γ;p)B(γ,1-γ)znΓ(αn+β)



(17)






(z,β,γ∈C;ℜ(ρ)>0,ℜ(σ)>0,ℜ(α)>0,ℜ(β)>0,ℜ(γ)>1;p≥0)








Again, the sequence κℓ=1(ℓ∈N) yields the known definition of Özarslan and Yilmaz [26] (with c = 1):



Eα,βγ(z;p)=∑n=0∞B(γ+n,1-γ;p)B(γ,1-γ)znΓ(αn+β)



(18)






(z,β,γ∈C;ℜ(α)>0,ℜ(β)>0,ℜ(γ)>1;p≥0)








For [image: there is no content] or (alternatively) for κℓ=0(ℓ∈N), this immediately reduces to Prabhakar’s definition (Equation (15)).

Remark 2. The special case for [image: there is no content] in Equations (16)–(18) can be expressed in terms of the extended confluent hypergeometric functions as:



E1,1[image: there is no content];γ(z;p)=Φp[image: there is no content](γ;1;z)










E1,1(ρ,σ);γ(z;p)=Φp(ρ,σ)(γ;1;z)








and:


E1,1γ(z;p)=Φp(γ;1;z)










3. Basic Properties of Eα,β{κℓ}ℓ∈N0;γ(z;p)

In this section, we obtain certain basic properties, including the differentiation formula and the integral property of the extended generalized Mittag–Leffler function in Equation (16).

Theorem 1. The following differentiation formula for the extended generalized Mittag–Leffler function in Equation (16) holds true:



Eα,β[image: there is no content];γ(z;p)=βEα,β+1[image: there is no content];γ(z;p)+αzddzEα,β+1[image: there is no content];γ(z;p)



(19)






(α,β,γ∈C;ℜ(α)>0,ℜ(β)>0,ℜ(p)>0)








In particular, we have:



[image: there is no content]



(20)




Proof. Using the definition (Equation (16)) in right-hand side of Equation (19), we have:



βEα,β+1[image: there is no content];γ(z;p)+αzddzEα,β+1[image: there is no content];γ(z;p)










=βEα,β+1[image: there is no content];γ(z;p)+αzddz∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)znΓ(αn+β+1)










=βEα,β+1[image: there is no content];γ(z;p)+∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)αnznΓ(αn+β+1)










=βEα,β+1[image: there is no content];γ(z;p)+∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)(αn+β-β)znΓ(αn+β+1)










=Eα,β[image: there is no content];γ(z;p).








The relation Equation (20) follows from Equation (19) when [image: there is no content] or for κℓ=0(ℓ∈N). ☐
Theorem 2. The following derivative formulas for the extended generalized Mittag–Leffler function in Equation (16) are satisfied:



ddzmzβ-1Eα,β[image: there is no content];γ(ωzα;p)=zβ-m-1Eα,β-m[image: there is no content];γ(ωzα;p)(ℜ(β-m)>0,m∈N)



(21)




where α,β,γ,ω∈C; ℜ(α)>0,ℜ(β)>0; [image: there is no content].
In particular, we have:



[image: there is no content]



(22)




Proof. Using Equation (16) and employing term-wise differentiation m times on the left-hand side of Equation (21) under the summation sign, which is possible in accordance with the uniform convergence of the series in Equation (16), we get:



ddzmzβ-1Eα,β[image: there is no content];γ(ωzα;p)










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)ωnΓ(αn+β)ddzm[zαn+β-1]










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)Γ(αn+β)Γ(αn+β-m)ωnzαn+β-1-mΓ(αn+β)










=zβ-m-1Eα,β-m[image: there is no content];γ(ωzα;p)








The special cases of Equation (21) when [image: there is no content] or for κℓ=0(ℓ∈N) are easily seen to yield Equation (22).

Corollary 1. The following integral property for the extended generalized Mittag–Leffler function in Equation (16) holds true:



∫0ztβ-1Eα,β[image: there is no content];γ(ωtα;p)dt=zβEα,β+1[image: there is no content];γ(ωzα;p)



(23)




where α,β,γ,ω∈C; ℜ(α)>0,ℜ(β)>0; [image: there is no content].
In particular, we have:



∫0ztβ-1Eα,βγ(ωtα)dt=zβEα,β+1γ(ωzα)



(24)






4. Integral Transforms of Eα,β{κℓ}ℓ∈N0;γ(z;p)

In this section, we obtain the Laplace transform, Mellin transform representations and the Euler-Beta transform, alternatively called the Erdélyi–Kober fractional integral for the extended generalized Mittag–Leffler function Eα,β[image: there is no content];γ(z;p), in Equation (16) as follows.


4.1. Laplace Transform

The Laplace transform (see, e.g., [27]) of the function [image: there is no content] is defined, as usual, by:



L{f(z)}=∫0∞e-szf(z)dz



(25)




Theorem 3. The following Laplace transform representation for the extended generalized Mittag–Leffler function in Equation (16) holds true:



L{zβ-1Eα,β[image: there is no content];γ(xzα;p)}:=1sβFp[image: there is no content]1,γ;1;xsα



(26)






(ℜ(p)>0;ℜ(s)>0,ℜ(α)>0,ℜ(β)>0,ℜ(γ)>0)








Proof. Using the definition (Equation (25)) of the Laplace transform, we find from Equation (16):



L{zβ-1Eα,β[image: there is no content];γ(xzα;p)}:=∫0∞zβ-1e-szEα,β[image: there is no content];γ(xzα;p)dz










=∫0∞zβ-1e-sz∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnzαnΓ(αn+β)dz










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnΓ(αn+β)∫0∞zαn+β+1e-szdz










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnΓ(αn+β)Γ(αn+β)sαn+β










=1sβ∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xsαn










=1sβ∑n=0∞(1)nB[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xsαnn!








Now, using the definition (Equation (12)) to express the involved sum as an extended hypergeometric function, we are led to the desired result. ☐

Remark 3. The special case of Equation (26) when [image: there is no content] or for κℓ=0(ℓ∈N) is seen to yield the known Laplace transform of the generalized Mittag–Leffler function (see [18] (p. 8, Equation (2.5)); see also [23] (p. 37, Equation (2.19))):



∫0∞zβ-1e-szEα,βγ(xzα)dz=1sβ1-xsα-γ










4.2. Mellin Transform

The Mellin transform [27] of a suitably-integrable function [image: there is no content] with index s is defined, as usual, by:



Mf(τ):τ→s:=∫0∞τs-1f(τ)dτ



(27)




whenever the improper integral in Equation (27) exists.
Theorem 4. The following Mellin transform representation for the extended generalized Mittag–Leffler function in Equation (16) holds true:



MEα,β[image: there is no content];γ(z;p):p→s:=Γ0[image: there is no content](s)Γ(1-γ+s)Γ(γ)Γ(1-γ)2Ψ2(1,1),(γ+s,1);(1+2s,1),(β,α);z



(28)






(ℜ(s)>0andℜ(1-γ+s)>0)








where Γ0[image: there is no content](s) is the specialized case in Equation (2) for [image: there is no content].
Proof. Using the definition (Equation (27)) of the Mellin transform, we find from Equation (16):



MEα,β[image: there is no content];γ(z;p):p→s:=∫0∞ps-1Eα,β[image: there is no content];γ(z;p)dp










=∫0∞ps-1∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)znΓ(αn+β)dp



(29)




Upon interchanging the order of integration and summation in Equation (29), which can easily be justified by uniform convergence under the constraints stated with Equation (28), we get:



MEα,β[image: there is no content];γ(z;p):p→s:=1B(γ,1-γ)∑n=0∞znΓ(αn+β)










∫0∞ps-1B[image: there is no content](γ+n,1-γ;p)dp



(30)




Using the easily-derivable result as in Section 4 of Srivastava et al. [8] (p. 251, Theorem 5):



∫0∞ps-1B[image: there is no content](x,y;p)dp=Γ0[image: there is no content](s)B(x+s,y+s)(ℜ(s)>0)



(31)




we obtain:


MEα,β[image: there is no content];γ(z;p):p→s=Γ0[image: there is no content](s)B(γ,1-γ)∑n=0∞B(γ+n+s,1-γ+s)znΓ(αn+β)










=Γ0[image: there is no content](s)Γ(1-γ+s)Γ(γ)Γ(1-γ)∑n=0∞Γ(γ+s+n)Γ(1+2s+n)znΓ(β+αn)



(32)




Using the definition of the Wright generalized hypergeometric function pΨq(z) (see, e.g., [28,29]) in Equation (32), we get the desired representation Equation (28). ☐

Corollary 2. The following Mellin transform representation is expressed in terms of generalized hypergeometric functions in Equation (28) as follows:



MEα,β[image: there is no content];γ(z;p):=Γ0[image: there is no content](s)B(γ+s,1-γ+s)B(γ,1-γ)










2F1+α1,γ+s;1+2s,Δ(α;β);zαα



(33)




where [image: there is no content] and [image: there is no content] is an array of α parameters [image: there is no content].
Remark 4. The Wright generalized hypergeometric function pΨq(z) (see, e.g., [28,29]) is expressible in terms of Fox H-function [image: there is no content] (see, e.g., [30,31,32]) as follows (see, e.g., [32] (p. 25, Equation (1.140)) and [31] (p. 11, Equation (1.7.8)):



pΨq(a1,A1),⋯,(ap,Ap);(b1,B1),⋯,(bq,Bq);z=Hp,q+11,p-z∣(1-a1,A1),⋯,(1-ap,Ap)(0,1),(1-b1,B1),⋯,(1-bq,Bq)



(34)




Now, applying the relationship Equation (34) to Equation (28), we can deduce an interesting representation for the extended Mittag–Leffler function in Equation (16) asserted by Corollary 3 below. We state here the resulting representation without proof.

Corollary 3. The following Mellin transform representations is expressed in terms of Fox H-functions in Equation (28) as follows:



MEα,β[image: there is no content];γ(z;p):=Γ0[image: there is no content](s)Γ(1-γ+s)Γ(γ)Γ(1-γ)










H2,31,2-z∣(0,1),(1-γ-s,1)(0,1),(0,1),(-2s,1),(1-β,α)



(35)






4.3. Euler-Beta Transform

The Euler-Beta transform [27], alternatively called the Erdélyi–Kober fractional integral of the function [image: there is no content], is defined, as usual, by:



B{f(z);a,b}=∫01za-1(1-z)b-1f(z)dz



(36)




Theorem 5. The following Euler-Beta transform or Erdélyi–Kober fractional integral representation for the extended generalized Mittag–Leffler function in Equation (16) holds true:



BEα,β[image: there is no content];γ(xzα;p):β,b=Γ(b)Eα,β+b[image: there is no content];γ(x;p)



(37)






(ℜ(p)>0;ℜ(b)>0,ℜ(α)>0,ℜ(β)>0,ℜ(γ)>0)








Proof. Using the definition (Equation (36)) of the Euler-Beta transform, we find from Equation (16):



BEα,β[image: there is no content];γ(xzα;p):β,b:=∫01zβ-1(1-z)b-1Eα,β[image: there is no content];γ(xzα;p)dz










=∫01zβ-1(1-z)b-1∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnzαnΓ(αn+β)



(38)




Upon interchanging the order of integration and summation in Equation (38), which can easily be justified by uniform convergence under the constraint state with Equation (37), we get:



BEα,β[image: there is no content];γ(xzα;p):β,b










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnΓ(αn+β)∫01zβ+αn-1(1-z)b-1dz










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnΓ(αn+β)Γ(αn+β)Γ(b)Γ(αn+β+b)










=Γ(b)∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)xnΓ(αn+β+b)








Using the definition (Equation (16)), we get the desired representation Equation (37). ☐

Corollary 4. In a similar manner, we obtain:



∫01za-1(1-z)β-1Eα,β[image: there is no content];γ(x(1-z)α;p)dz=Γ(a)Eα,β+a[image: there is no content];γ(x;p)



(39)




In general, we have:


∫tx(z-u)a-1(z-t)β-1Eα,β[image: there is no content];γ(w(z-t)α;p)dz=Γ(α)(x-t)β+a-1Eα,β+a[image: there is no content];γ(w(x-t)α;p)



(40)







5. Fractional Calculus Operators of Eα,β{κℓ}ℓ∈N0;γ(z;p)

In this section, we derive certain interesting properties of the extended generalized Mittag–Leffler function Eα,β[image: there is no content];γ(z;p) in Equation (16) associated with right-sided Riemann–Liouville fractional integral operator [image: there is no content] and the right-sided Riemann-Liouville fractional derivative operator [image: there is no content], which are defined as (see, e.g., [33,34]):



[image: there is no content]φ(x)=1Γ(μ)∫axφ(t)(x-t)1-μdtμ∈C,ℜ(μ)>0



(41)




and:


[image: there is no content]φ(x)=ddxnIa+n-μφ(x)μ∈C,ℜ(μ)>0;n=[ℜ(μ)]+1



(42)




where [image: there is no content] means the greatest integer not exceeding real x.
A generalization of Riemann–Liouville fractional derivative operator [image: there is no content] in Equation (42) by introducing a right-sided Riemann–Liouville fractional derivative operator Da+μ,ν of order [image: there is no content] and type [image: there is no content] with respect to x by Hilfer (see, e.g., [35]) is as follows:



Da+μ,νφ(x)=Ia+ν(1-μ)ddxIa+(1-ν)(1-μ)φ(x)μ∈C,ℜ(μ)>0;n=[ℜ(μ)]+1



(43)




The generalization Equation (43) yields the classical Riemann–Liouville fractional derivative operator [image: there is no content] when [image: there is no content].

Theorem 6. Let a∈R+=[0,∞),α,β,γ,μ,ω∈Candℜ(α)>0,ℜ(β)>0,ℜ(μ)>0. Then, for [image: there is no content], the relation holds:



[image: there is no content](t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)(x)










=(x-a)β+μ-1Eα,β+μ[image: there is no content];γ(ω(x-a)α;p)



(44)






[image: there is no content](t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)(x)










=(x-a)β-μ-1Eα,β-μ[image: there is no content];γ(ω(x-a)α;p)



(45)




and


Da+μ,ν(t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)(x)










=(x-a)β-μ-1Eα,β-μ[image: there is no content];γ(ω(x-a)α;p)



(46)




Proof. By virtue of the formulas (Equation (41) and Equation (16)), the term-by-term fractional integration and the application of the relation [34]:



Ia+α[(t-a)β-1](x)=Γ(β)Γ(α+β)(x-a)α+β-1α,β∈C,ℜ(α)>0,ℜ(β)>0



(47)




yield for [image: there is no content]:


[image: there is no content][(t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)](x)










=[image: there is no content]∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)ωn(t-a)αn+β-1Γ(αn+β)n!(x)










=(x-a)β+μ-1Eα,β+μ[image: there is no content];γ(ω(x-a)α;p)



(48)




Next, by Equation (42) and Equation (16), we find that:


[image: there is no content][(t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)](x))










=ddxnIa+n-μ[(t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)](x)










=ddxn(x-a)β+n-μ-1Eα,β+n-μ[image: there is no content];γ(ω(x-a)α;p)



(49)




Applying Equation (21), we are led to the desired result Equation (45).
Finally, by Equation (43) and Equation (16), we have:



Da+μ,ν(t-a)β-1Eα,β[image: there is no content];γ(ω(t-a)α;p)(x))










=Da+μ,ν∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)ωn(t-a)αn+β-1Γ(αn+β)(x)










=∑n=0∞B[image: there is no content](γ+n,1-γ;p)B(γ,1-γ)ωnΓ(αn+β)Da+μ,ν(t-a)αn+β-1(x)



(50)




Using the known relation of Srivastava and Tomovski [36] (p. 203, Equation (2.18)):



Dα+μ,ν(t-α)λ-1(x)=Γ(λ)Γ(λ-μ)(x-α)λ-μ-1x>α;0<μ<1;0≦ν≦1;ℜ(λ)>0



(51)




in Equation (50), we are led to the desired result Equation (46).
Remark 4. The special cases of the results presented here when [image: there is no content] or for κℓ=0(ℓ∈N) would reduce to the corresponding well-known results for the generalized Mittag–Leffler function (see, for details, [18] and [23]).
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