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Abstract:

 This paper proposes an approach for the space-fractional diffusion equation in one dimension. Since fractional differential operators are non-local, two main difficulties arise after discretization and solving using Gaussian elimination: how to handle the memory requirement of [image: there is no content] for storing the dense or even full matrices that arise from application of numerical methods and how to manage the significant computational work count of [image: there is no content] per time step, where N is the number of spatial grid points. In this paper, a fast iterative finite difference method is developed, which has a memory requirement of [image: there is no content] and a computational cost of [image: there is no content] per iteration. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
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1. Introduction

The history of fractional calculus is almost as long as integer calculus, however it is only in the last few decades that it has gained much importance. The modeling of a variety of non-classic phenomena, i.e., anomalous diffusion using fractional differential equations have proven to be promising to describe processes with memory and hereditary in geophysics [1], physics [2], chemistry [3], biology [4] and even finance and economics [5]. The primary advantage of such modeling lies in the introduction of a parameter, namely the fractional order of the equation, which can be used to model non-Markovian behavior of spatial or temporal processes. While analytical methods, such as the Fourier transform method, the Laplace transform methods, and the Mellin transform method, have been developed to seek closed-form analytical solutions for fractional partial differential equations [6], there are very few cases in which the closed-form analytical solutions are available, just like in the case of integer-order partial differential equations. Numerical methods for the fractional partial differential equations, such as finite difference methods [7], finite element methods [8,9], spectral methods [10], and discontinuous Galerkin methods [11,12] have recently been developed and remains a relatively new topic of research because of the difficulties encountered.

Due to the non-local nature of fractional differential operators, numerical methods for fractional diffusion equations [9,13,14] raise numerical difficulties that were not encountered in the numerical methods for second-order diffusion equations. A significant obstacle that is the direct result of this non-local behavior is that these methods generate discrete systems with full or dense coefficient matrices. Meerschaert and Tadjeran [15,16] utilized a shifted Grünwald-Letnikov difference approximation to develop an implicit Euler finite difference method for space-fractional diffsuion equation in one-dimension. Further, they proved that the method is unconditionally stable and has first-order convergence in space and time. However, these methods were solved via Gaussian elimination, consequently [image: there is no content] account of operations and [image: there is no content] account of storage are required to solve a problem of size N.

This work focuses on the development of a fast iterative finite difference method for the accurate and efficient solution of the one-dimensional space-fractional diffusion equation. The immense computational cost and storage requirement for the one-dimensional space fractional diffusion equation was broken down recently by the authors of [17]. In [17] they proved that the stiffness matrix of [15,16] can be decomposed as a sum of diagonal matrix multiplied by a Toepltiz matrix. They utilize this decomposition and applied an operator splitting technique to the one-dimensional space-fractional diffusion equation to develop a fast operator-splitting finite difference method for the space-fractional diffusion equation in one space dimension. However, this method has a computational work account of [image: there is no content] per iteration and has a memory need of [image: there is no content] per time step, due to the use of the banded coefficient matrix. While this is a vast improvement from the traditional methods solved via Gaussian elimination, there is room for improvement. In this paper the proposed method retains the same accuracy as the regular finite difference methods solved via Gaussian elimination and the resulting fast algorithm has a computational cost of [image: there is no content] per iteration at each time step and a memory requirement of only [image: there is no content] per time step.

The rest of this paper is organized as follows. Section 2 outlines the space-fractional diffusion equation we attempt to solve and presents the corresponding Meerschaert-Tadjeran finite difference method. Section 3, begins by discussing the impact of the significantly increased computational work and memory requirement of the traditional implicit finite difference method. Then we continue with the development of the fast conjugate gradient squared finite difference formulation. This section concludes by describing how to efficiently store the stiffness matrix and how to implement a fast matrix-vector multiplication to speed up the iterative scheme. Our work in this section establishes that the fast method has a computational work of [image: there is no content] per iteration and a memory requirement of [image: there is no content] per time step, while retaining the same accuracy as the traditional finite difference methods. This is followed by numerical experiments in Section 4 and concluding remarks in Section 5.



2. The Implicit Finite Difference Method for Time-Dependent Space Fractional Diffusion Equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Fractional derivatives in space are used to model anomalous diffusion, where particles spread either faster or slower than the classical model predicts. When a fractional derivative of order α replaces the second derivative in a diffusion model, it leads to enhanced diffusion if [image: there is no content] (a process known as superdiffusion) or leads to subdiffusion, if [image: there is no content].

For a one-dimensional fractional diffusion model with constant coefficients, analytic solutions are available [18] using Fourier transform methods. However many practical problems require a model with variable coefficients [19,20]. In [18], a space-fractional diffusion equation was used to describe Lévy flights.

We now proceed to develop a fast numerical method for space-fractional diffusion equations. Consider the following initial-boundary value problem of a class of time-dependent space-fractional diffusion of order [image: there is no content] [15,16,18]



∂u(x,t)∂t-d+(x,t)[image: there is no content]-d-(x,t)[image: there is no content]=f(x,t)xL<x<xR,0<t≤Tu(xL,t)=0,u(xR,t)=0,0≤t≤Tu(x,0)=u0(x),xL≤x≤xR



(1)




The case [image: there is no content] has useful applications [21]. It is also a physically meaningful case, as explained in [22]. A two-sided fractional partial differential equation allows modeling different flow regime impacts from either side. Here the left-sided (+) and the right-sided (−) fractional derivatives [image: there is no content] and [image: there is no content] can be defined in the (computationally feasible) Grünwald-Letnikov form [23]



[image: there is no content]=limh→0+1hα∑k=0⌊(x-xL)/h⌋[image: there is no content]u(x-kh,t)∂αu(x,t)∂-xα=limh→0+1hα∑k=0⌊(xR-x)/h⌋gk(α)u(x+kh,t)



(2)




where [image: there is no content] represents the floor of x and [image: there is no content][image: there is no content] with [image: there is no content] being the fractional binomial coefficients. We note that the Grünwald weights [image: there is no content] can be evaluated using the recurrence relation


g0(α)=1,[image: there is no content]=1-α+1kgk-1(α)fork≥1



(3)




and satisfy the following properties [15,16,23]


g0(α)=1,g1(α)=-α<0,1≥g2(α)≥g3(α)≥⋯≥0∑k=0∞[image: there is no content]=0,∑k=0m[image: there is no content]≤0(m≥1)



(4)




We also note that the left-handed fractional derivative of u at a point depends on all function values to the left of that point. Similarly, the right-handed fractional derivatives of u at a point depends on all function values to the right of this point. In other words, fractional derivatives are non-local operators.

This paper focuses on the development of a fast numerical method for problem Equation (1). We refer to [24], for the existence and uniqueness of the weak solution to fractional partial differential equations.

Let N and M be positive integers and [image: there is no content] and [image: there is no content] be the sizes of spatial grid and time step, respectively. We define a spatial and temporal partition [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

We discertize the first-order time derivative in Equation (1) by a standard first-order time difference quotient, but for the discretization of the fractional spatial derivative we use the shifted Grünwald approximations. Meerschaert and Tadjeran [15,16] showed that a fully implicit finite difference scheme with a direct truncation of the series in Equation (2) turns out to be unstable! Using the following shifted Grünwald approximations



∂αu(xi,[image: there is no content])∂+xα=1hα∑k=0i+1[image: there is no content]ui-k+1m+O(h)∂αu(xi,[image: there is no content])∂-xα=1hα∑k=0N-i+1[image: there is no content]ui+k-1m+O(h)



(5)




they proved that the corresponding implicit finite difference scheme


uim+1-uimΔt-d+,1m+1hα∑k=0i+1gk(α)ui-k+1m+1-d-,1m+1hα∑k=0N-i+1[image: there is no content]ui+k-1m+1=fim+1



(6)




is unconditionally stable and convergent. Numerical experiments show that this scheme generates very satisfactory numerical approximations.
Let [image: there is no content], [image: there is no content], [image: there is no content], and I be the identity matrix of order [image: there is no content]. Then the numerical scheme Equation (6) can be expressed in the following matrix form



(I+Δthα[image: there is no content])um+1=[image: there is no content]+Δtfm+1



(7)




Here the entries of matrix [image: there is no content] are given by



ai,jm+1=-([image: there is no content]+[image: there is no content])g1(α),j=i-([image: there is no content]g2(α)+[image: there is no content]g0(α)),j=i-1-([image: there is no content]g0(α)+[image: there is no content]g2(α)),j=i+1-[image: there is no content]gi-j+1(α),j<i-1-[image: there is no content]gj-i+1(α),j>i+1



(8)




It is clear that [image: there is no content] for all [image: there is no content]. We further conclude from Equations (4) and (8) that the coefficient matrix I+Δthα[image: there is no content] is a nonsingular, strictly diagonally dominant M-matrix.

Equation (8) implies that the scheme has a dense coefficient matrix, which has a memory requirement of [image: there is no content] and computational work of [image: there is no content] per time step. Thus the non-local nature of the fractional derivatives results in a full coefficient matrix of the system. This is in contrast to numerical methods for second-order diffusion equations which usually generate banded coefficient matrices of [image: there is no content] nonzero entries and can be solved by fast solution methods such as multigrid methods, domain decomposition methods, and wavelet methods. Therefore the development of fast and robust numerical methods with efficient storage for the space-fractional diffusion equation is crucial for the applications of fractional diffusion equations.



3. The Fast Conjugate Gradient Squared Method

Since the stiffness matrix [image: there is no content] is dense, solving Equation (7) using Gaussian elimination requires computational work of [image: there is no content] operations per iteration and memory storage of [image: there is no content] per time step. For example, each time we reduce the size of the spatial mesh by half, the total number of unknowns per time step is doubled. As a result, the required memory increases 4 times, and the computational work increases 8 times. If the time step size is reduced by half too, then we would expect the overall consumed CPU time for solving the finite difference method to increases 16 times. Because of the significantly increased computational work and memory requirement of the numerical schemes for space-fractional diffusion equations, development of fast and reliable numerical methods with efficient storage mechanism has been of recent interest.

The goal of this paper is to develop a fast solution technique for the one-dimensional space-fractional diffusion equation via finite difference method Equation (6). Let us begin by recalling the conjugate gradient squared iterative scheme to solve the system Equation (7): (I+Δthα[image: there is no content])um+1=[image: there is no content]+Δtfm+1 which can be expressed as follows

 

At each time step [image: there is no content], we choose [image: there is no content]

Compute r(0)=[image: there is no content]+Δtfm+1-(u(0)+Δthα[image: there is no content]u(0))

Choose [image: there is no content] (for example, [image: there is no content]=r(0))

for [image: there is no content]

 ρi-1=[image: there is no content]Tr(i-1)

 if [image: there is no content] the method fails

  if [image: there is no content]

   [image: there is no content]

   [image: there is no content]

  else

   [image: there is no content]

   [image: there is no content]

   [image: there is no content]

  end if

  v^=p(i)+Δthα[image: there is no content]p(i)

 

  μi=ρi-1/[image: there is no content]Tv^

  [image: there is no content]

  [image: there is no content]

  q^=(w(i)+q(i))+Δthα[image: there is no content](w(i)+q(i))

  [image: there is no content]

  δ=∥[image: there is no content]+Δtfm+1-(u(i)+Δthα[image: there is no content]u(i))∥

  Check for convergence; continue if necessary

end

[image: there is no content]

Since the finite difference method has a nonsymmetric coefficient matrix in general, we need to use a nonsymmetric conjugate gradient method. Here we take the conjugate gradient squared method to solve the implicit Euler finite difference method Equation (6).

Notice that in the above algorithm, at each time step [image: there is no content], the evaluation of the matrix-vector multiplication [image: there is no content]p(i), [image: there is no content](w(i)+q(i)) and [image: there is no content]u(i) costs [image: there is no content] operations, while all others are already of optimal order computational cost [image: there is no content]. Further, the storage of the stiffness matrix [image: there is no content] requires [image: there is no content] of memory, while all other operations require only [image: there is no content] of memory. Our immediate goal is to develop a fast conjugate gradient squared method for the efficient solution and storage of the system Equation (7).

In light of our goal, the rest of this section addresses the following important issues: (i) an efficient storage of the coefficient matrix [image: there is no content] with memory requirement of [image: there is no content] and (ii) how to perform an efficient matrix-vector multiplication [image: there is no content]u with a general vector u in [image: there is no content] operations.


3.1. An Efficient [image: there is no content] Storage of the Stiffness Matrix

To develop a fast solution method with minimal memory requirement, we carefully explore the structure of the coefficient matrices.


Theorem 1. 
The total memory requirement for storing the coefficient matrix [image: there is no content] is [image: there is no content].




Proof. 
We conclude from Equation (8) that the stiffness matrix [image: there is no content] can be decomposed as follows



[image: there is no content]=-diagd+m+1[image: there is no content]-diagd-m+1[image: there is no content]



(9)




Here [image: there is no content], [image: there is no content], are diagonal matrices of order [image: there is no content] with their ith entries [image: there is no content], [image: there is no content], for [image: there is no content]. The matrices [image: there is no content] and [image: there is no content] are matrices of order [image: there is no content] and are defined by



[image: there is no content]=g1(α)g0(α)0…00g2(α)g1(α)g0(α)⋱⋱0⋮g2(α)g1(α)⋱⋱⋮⋮⋱⋱⋱⋱0gN-2(α)⋱⋱⋱g1(α)g0(α)g[image: there is no content](α)gN-2(α)……g2(α)g1(α)[image: there is no content]=g1(α)g2(α)……gN-2(α)g[image: there is no content](α)g0(α)g1(α)g2(α)…⋱gN-2(α)0g0(α)g1(α)⋱⋱⋮⋮⋱⋱⋱⋱⋮0…0⋱g1(α)g2(α)00…0g0(α)g1(α)



(10)




Thus, instead of storing the full matrix [image: there is no content] which have [image: there is no content] parameters we need only store the [image: there is no content] parameters, [image: there is no content], [image: there is no content], and [image: there is no content]=g0(α),g1(α),…,g[image: there is no content](α)T. In particular, the fractional binomial coefficient vector [image: there is no content] depends only on the size of the spatial partition and the order of the anomalous diffusion but is independent of time or space. So it can be preprocessed and stored in advance. ☐





3.2. Toeplitz and Circulant Matrix

In order to explain the fast algorithm, we define the terms Toeplitz matrix and circulant matrix. A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. Clearly, both matrices [image: there is no content] and [image: there is no content] are Toeplitz matrices. Also, [image: there is no content]=([image: there is no content])T is the transpose of [image: there is no content].

A circulant matrix is a matrix in which each row vector is rotated one element to the right relative to the preceding row vector. It is clear that a circulant matrix is a Toeplitz matrix, but the converse is not true. Note that the Toeplitz matrices [image: there is no content] and [image: there is no content] can be embedded into [image: there is no content] circulant matrices [image: there is no content] and [image: there is no content] as:



[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(11)




where


[image: there is no content]=0g[image: there is no content](α)……g3(α)g2(α)00g[image: there is no content](α)…⋱g3(α)000⋱⋱⋮⋮⋱⋱⋱⋱⋮0…0⋱0g[image: there is no content](α)g0(α)0…000



(12)




and


[image: there is no content]=000…0g0(α)g[image: there is no content](α)00…⋱0gN-2(α)g[image: there is no content](α)0⋱⋱⋮⋮⋱⋱⋱⋱0g3(α)…0⋱00g2(α)g3(α)…0g[image: there is no content](α)0.



(13)




Again, note that [image: there is no content] is the transpose of [image: there is no content].
It is known that a circulant matrix [image: there is no content] can be decomposed as follows [25,26]



[image: there is no content]=Fn-1diag(Fnc)Fn



(14)




where [image: there is no content] is the first column vector of [image: there is no content] and [image: there is no content] is the [image: there is no content] discrete Fourier transform matrix in which the [image: there is no content]-entry [image: there is no content][image: there is no content] of the matrix [image: there is no content] is given by


[image: there is no content][image: there is no content]=1nexp-2π i j ln0≤j,l≤n-1



(15)




where [image: there is no content].
We make use of the above decomposition property of circulant matrices to efficiently execute all matrix-vector multiplications [image: there is no content]p(i), [image: there is no content](w(i)+q(i)) and [image: there is no content]u(i) of the conjugate gradient squared method above.



3.3. A Fast [image: there is no content] Matrix-Vector Multiplication Algorithm

We now shift our focus to the efficient operation of the numerical scheme. To efficiently execute the matrix-vector multiplications [image: there is no content]p(i), [image: there is no content](w(i)+q(i)) and [image: there is no content]u(i) of the conjugate gradient squared method, we use the following [image: there is no content] algorithm, based on the decomposition Equation (9) of the matrix [image: there is no content], the diagonalization Equation (14) of a circulant matrix and the embedding Equation (11).


Theorem 2. 
Let [image: there is no content] be the stiffness matrix as Equation (8). Let u be any N dimensional vector. Then [image: there is no content]u can be performed in [image: there is no content] operations.




Proof. 
We explain the operation count of [image: there is no content] by executing the following steps:


	Introduce two [image: there is no content] matrices and one [image: there is no content] vector



[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content],u[image: there is no content]=u0



(16)




Here [image: there is no content] and [image: there is no content] are defined as in Equation (12) and Equation (13) and [image: there is no content] and [image: there is no content] as in Equation (10) respectively. It is clear that



[image: there is no content]u[image: there is no content]=[image: there is no content]u[image: there is no content]u,[image: there is no content]u[image: there is no content]=[image: there is no content]u[image: there is no content]u



(17)




Thus, the matrix-vector products [image: there is no content]u and [image: there is no content]u can be obtained as the first half of the matrix-vector products [image: there is no content]u[image: there is no content] and [image: there is no content]u[image: there is no content], respectively.


	Evaluate the matrix-vector products w[image: there is no content]=F[image: there is no content]u[image: there is no content] in [image: there is no content] operations. In fact, F[image: there is no content]u[image: there is no content] is the discrete Fourier transform of u[image: there is no content], which can be achieved in [image: there is no content] operations via the fast Fourier transform (FFT).


	Similarly evaluate v2N-2,L=F[image: there is no content][image: there is no content] and v2N-2,R=F[image: there is no content][image: there is no content] in [image: there is no content] operations, where [image: there is no content] and [image: there is no content] are the first column vectors of [image: there is no content] and [image: there is no content], respectively.


	Evaluate the Hadamard products z2N-2,L=w[image: there is no content]·v2N-2,L=[w1v1,L,⋯, w[image: there is no content]v2N-2,L]T and z2N-2,R=w[image: there is no content]·v2N-2,R=[w1v1,R,⋯,w[image: there is no content]v2N-2,R]T in [image: there is no content] operations.


	Evaluate y2N-2,L=F[image: there is no content]-1z2N-2,L and y2N-2,R=F[image: there is no content]-1z2N-2,R in [image: there is no content] operations via inverse FFT. Combining Equation (16) and Equation (17) yields that



y2N-2,L=yLyL′=[image: there is no content]u[image: there is no content]=[image: there is no content]u[image: there is no content]uy2N-2,R=yRyR′=[image: there is no content]u[image: there is no content]=[image: there is no content]u[image: there is no content]u



(18)





	Evaluate the Hadamard products [image: there is no content] and [image: there is no content] in [image: there is no content] operations. Use Equation (9) to evaluate [image: there is no content]u=-uL-uR in [image: there is no content] operations.




☐





4. Numerical Experiments

In this section we carry out numerical experiments to study the performance of the fast conjugate gradient squared finite difference method developed in this paper and to compare its performance with the finite difference methods with full coefficient matrices which were developed in [15,16].

We consider the fractional diffusion equation Equation (1) with an anomalous diffusion of order [image: there is no content] and the left-sided and right-sided diffusion coefficients



d+(x,t)=1.32Γ(1.2)x1.8,d-(x,t)=1.32Γ(1.2)(1-x)1.8



(19)




The spatial domain is [image: there is no content], the time interval is [image: there is no content]. The source term and the initial condition are given by


f(x,t)=-16e1-t[x2(1-x2)+2.64(x2+(1-x)2)-13.2(x3+(1-x)3)+12(x4+(1-x)4)]u0(x)=16ex2(1-x)2



(20)




The true solution to the corresponding fractional diffusion equation Equation (1) is given by [16]


[image: there is no content]



(21)




In the numerical experiments, we solve the problem by both the fast conjugate squared (iterative) finite difference method and the regular finite difference method Equation (6) and denote their solutions by [image: there is no content] and [image: there is no content], respectively. Let [image: there is no content] be the numerical solution [image: there is no content] or [image: there is no content] at time step [image: there is no content] and u(x,[image: there is no content]) be the true solution to problem Equation (1).

In Table 1 we present the errors [image: there is no content] and [image: there is no content] for different spatial mesh sizes and time steps. These results are very encouraging and show that fast conjugate gradient squared finite difference method developed in this paper generates numerical solutions with same accuracy as the regular finite difference method, despite the fact that the former has significantly reduced the storage and computational cost of the latter from [image: there is no content] and [image: there is no content] to [image: there is no content] and [image: there is no content], respectively. We also present a representative plot with [image: there is no content] in Figure 1, which shows that the fast conjugate gradient squared finite difference solution and the regular finite difference solution both sit on the curve of the true solution without stark differences.

Figure 1. The true solution u (marked by “—”), the fast iterative finite difference solution [image: there is no content] (marked by “*”), in §4 at time [image: there is no content] with [image: there is no content] and [image: there is no content].
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Table 1. Comparison of the fast iterative finite difference (FIFD) method with the regular finite difference (FD) method in the simulation of the fractional diffusion problem with a known analytical solution.
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The numerical experiment carried out in this section shows the significant reduction in computational time which coincides with the theoretical analysis. For example, with [image: there is no content] nodes the fast conjugate gradient finite difference scheme developed in this paper has about 280 times of CPU reduction than the standard finite difference scheme solved with Gaussian elimination. This is on top of the significant reduction in storage. This demonstrates the strong potential of the method.







5. Concluding Remarks and Future Work

This paper develops a fast solution method for the implicit finite difference scheme Equation (6) for the one-dimensional space-fractional diffusion equation developed by Meerschaert and Tadjeran in [15,16]. The fast method consists of carefully analyzing the structure of the coefficient matrix resulting from the finite difference method, delicately decomposing the coefficient matrix into a combination of sparse and structured dense matrices and applying an iterative scheme, in this case the conjugate gradient squared method. Over the past decade many numerical methods have been developed for space-fractional diffusion equations, however all of them present major computational obstacles in realistic numerical simulation because of the significant computational cost and memory requirement. The fast conjugate gradient squared method developed in this paper keeps the same accuracy as the finite difference method [15,16] with Guassian elimination but has a memory requirement of only [image: there is no content] per time step and a computational work of [image: there is no content] per iteration.

Numerical computations were carried out using MATLAB. Furthermore, in order to use the fast conjugate gradient squared finite difference method, users need only rewrite a module to replace the matrix-vector multiplication module in traditional conjugate gradient method software. And this fast matrix-vector multiplication is based on FFT, which is readily available in MATLAB. Thus, the fast method virtually does not require any additional coding work to implement.

The idea of fast solution developed in this paper can be applied to other numerical methods. A fast solution method for a second-order Crank-Nicolson finite difference method was developed in [27] for space-fractional diffusion equations in one dimension.

The reader should also note that a large diffusion coefficient could potentially lead to a large condition number of the coefficient matrix. This would in turn increase the number of iterations in the conjugate gradient squared method. Circulant preconditioners [28,29] and multigrid methods [30] have been developed for some model problems which have shown significant improvements, under special conditions. The trade-off in forming and applying a preconditioner also needs to be examined. This can be an avenue for further research for this class of problems.
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