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Abstract: Using torus gauge fixing, Hahn in 2008 wrote down an expression for
a Chern-Simons path integral to compute the Wilson Loop observable, using the
Chern-Simons action SκCS , κ is some parameter. Instead of making sense of the path
integral over the space of g-valued smooth 1-forms on S2 × S1, we use the Segal Bargmann
transform to define the path integral over Bi, the space of g-valued holomorphic functions
over C2 × Ci−1. This approach was first used by us in 2011. The main tool used is
Abstract Wiener measure and applying analytic continuation to the Wiener integral. Using
the above approach, we will show that the Chern-Simons path integral can be written as a
linear functional defined on C(B×

4

1 × B×
2

2 ,C) and this linear functional is similar to the
Chern-Simons linear functional defined by us in 2011, for the Chern-Simons path integral
in the case of R3. We will define the Wilson Loop observable using this linear functional
and explicitly compute it, and the expression is dependent on the parameter κ. The second
half of the article concentrates on taking κ goes to infinity for the Wilson Loop observable,
to obtain link invariants. As an application, we will compute the Wilson Loop observable in
the case of SU(N) and SO(N). In these cases, the Wilson Loop observable reduces to a state
model. We will show that the state models satisfy a Jones type skein relation in the case of
SU(N) and a Conway type skein relation in the case of SO(N). By imposing quantization
condition on the charge of the link L, we will show that the state models are invariant under
the Reidemeister Moves and hence the Wilson Loop observables indeed define a framed
link invariant. This approach follows that used in an article written by us in 2012, for the
case of R3.
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1. Introduction

This is an unplanned sequel to [1,2]. Let M be a 3-manifold and G be a compact connected
semisimple Lie group. Without loss of generality we will assume that G is a Lie subgroup of U(N̄),
N̄ ∈ N. We will identify the Lie algebra g of G with a Lie subalgebra of the Lie algebra u(N̄) of
U(N̄) throughout this article. Suppose we write Tr ≡ TrMat(N̄,C). Then we can define a positive,
non-degenerate bilinear form by 〈A,B〉 = −TrMat(N̄,C)[AB] for A,B ∈ g.

Let v ⊆ g be a subspace. The vector space of all smooth v-valued 1-forms on a manifold Σ (need not
be a 3-manifold) will be denoted by AΣ,v. We will identify the space of connection 1-forms on the trivial
principal fiber bundle P (M,G) with group G and base manifold M with AM,g ≡ A.

Denote the group of all smooth G-valued mappings on M by G, called the gauge group. The gauge
group induces a gauge transformation on A, A× G→ A given by

A · Ω := AΩ = Ω−1dΩ + Ω−1AΩ

for A ∈ A, Ω ∈ G. The orbit of an element A ∈ A under this operation will be denoted by [A] and the
set of all orbits by A/G.

For A ∈ A, the Chern-Simons action is given by

SκCS(A) =
κ

4π

∫
M

TrMat(N̄,C)

[
A ∧ dA+

2

3
A ∧ A ∧ A

]
, κ 6= 0. (1)

Note that κ ∈ Z so that exp(iSκCS([A])) is invariant under gauge transformation even though SκCS([A])

is not.
The interest in Chern-Simons path integrals is the evaluation of Wilson Loop observables, that is we

want to compute

Z(M,κ, q; li, ρi) :=
1

ZCS

∫
[A]∈A/G

n∏
k=1

W (lk; q)([A])eiS
κ
CS([A])D[A], (2)

where
ZCS =

∫
[A]∈A/G

eiS
κ
CS([A])D[A],

is a normalising constant.
Here, L = {lk}nk=1 is a link in M with non-intersecting (closed) curves lk and

W (lk; q)(A) := TrρkT exp

[
q

∫
lk
A

]
(3)

is the Wilson loop associated to lk. And, D[A] is some heuristic Lebesgue measure on A/G, Trρk is the
matrix trace for some representation ρk : g→ u(Nk), Nk ∈ N, and T is the time ordering operator.

Note that W (lk; q)(A) is the holonomy operator of A, computed along the loop lk. The integral in
Equation (2) will be known as the Wilson Loop observable associated to the link L and q will be called
the charge of the link. When L consists of only one curve, the link is termed as a knot.

It was argued in [3] that if one can make sense of the RHS of Equation (2), then one can define a
suitable generalization of the Jones polynomial of the link L in M . The objective of this article is to
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compute the right hand side of Equation (2) for the case of M = S2 × S1 in the non-abelian case.
The case when the manifold is S2 × S1 is also singled out in [3] and is the next simple case to consider
after M = R3.

The main purpose of this article is to define a Chern-Simons path integral in S2 × S1 using torus
gauge fixing and non-abelian gauge group. We will further show how link invariants appear from these
path integrals in the second half of this article.

The case M = R3 was worked out by [1,2] for the abelian and non-abelian gauge group
G respectively. Using axial gauge fixing, it suffices to only consider connections which are zero in
the z-direction.

Unfortunately, in the case of S2 × S1, it is not possible to make the connection disappear in the S1

direction. On our compact Lie group, fix a maximal torus T and let t be the Lie algebra of T . Under
torus gauge fixing, we can choose the connection such that it takes values in t in the S1 direction. This
was accomplished by Hahn in [4] and he wrote down an expression for the Chern-Simons path integral
in Expression 6. We will try to make sense of this expression instead.

Using local coordinates, we will work on R2 × [0, 1), which we will call it the classical space.
The link L is mapped inside R2 × [0, 1), called a truncated link. Now, consider C3, whereby C3 is a
complexification of R3. We will refer C3 as a quantum space. After ‘scaling’ the truncated link and
embed it inside C3, the Wilson Loop observable will then be defined on this quantum space. Details to
be given later.

Over this quantum space, we will explain how to construct two Wiener spaces. The first Wiener space
will be the space of analytic 2-tuple g-valued functions over the quantum space. The second Wiener
space will be space of analytic 4-tuple g-valued functions over the quantum space. The Chern-Simons
path integral is defined as an integral over the product space of these 2 Wiener spaces. For the Wilson
Loop observable, we will explicitly work out this integral for the truncated link embedded inside the
quantum space.

The link invariants that we are interested in will only appear when we take the limit of the Wilson
Loop observable as κ goes to infinity. This limit can be computed easily from a truncated link diagram,
by projecting L on R2. By assigning ±1 to crossings on this link diagram, we can write down a formula
for the Wilson Loop observable directly from this link diagram. Furthermore, we will show that the
Wilson Loop observable is equal to a state model for links when the representation is the same for all
curves in L.

Two diagrams represent the same link up to ambient isotopy if the 2 diagrams can be obtained from
each other by applying Reidemeister moves. It is not true that the state model defines a link invariant.
The state model for links has to satisfy certain algebraic equations to be a link invariant, including the
Yang Baxter Equation (34). This will impose quantization conditions on the charge q of the link.

As an application, we will work out explicitly for the gauge groups SU(N) and SO(N). We will
show that using gauge group SU(N), the Wilson Loop observable will satisfy a Homfly skein relation
Equation (38), with l = e−πiq

2/N and m = 2i sin(πq2). For gauge group SO(N), the Wilson Loop
observable will satisfy a Conway-type skein relation, with z = 2i sin(πq2/2). For both cases, q2 is
quantized to take only a discrete number of values.
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This article is organized as follows. In Section 2, we will explain Hahn’s heuristic expression for
the Chern-Simons path integral using torus gauge fixing. This section will contain mainly definitions.
In Section 3, we will give a heuristic but equivalent definition, whereby the path integral will be defined
on. In Section 4, we will compute some simple functional integrals, which motivates the definition of
the Chern-Simons path integral. This is an extension to the path integral considered in [1]. In Section 5,
we need to introduce some important linear operators which are necessary in defining the Chern-Simons
path integral. In Section 6, we will give our definition of the Chern-Simons path integral. As an
application, we will define the Wilson Loop observable given in Equation (2) and compute it.

The second half of this article concentrates on taking the limit as κ goes to infinity of the Wilson
Loop observable. In Section 7, we will define a link diagram for a framed link L. In Section 8, we will
compute the limit of the Wilson Loop observable. In Section 9, we will obtain framed link invariants in
the case of gauge group SU(N) and SO(N). We will make some ending remarks in Section 10.

We end this section by stating some notations which will be assumed throughout this article.

Notation 1. Suppose we have two Hilbert spaces, H1 and H2. We consider the tensor product H1⊗H2.
The inner product on the tensor product H1 ⊗H2 is given by

〈u1 ⊗ u2, v1 ⊗ v2〉H1⊗H2 = 〈u1, v1〉H1〈u2, v2〉H2 .

This definition of the inner product on the tensor product of Hilbert spaces will be assumed throughout
this article.

Now consider the direct product H1 ×H2. The inner product on H1 ×H2 is defined by

〈(u1, u2), (v1, v2)〉H1×H2 :=
2∑
i=1

〈ui, vi〉Hi .

This definition of the inner product on the direct product of Hilbert spaces will also be assumed
throughout this article.

If H1 = H2 = H , we abbreviate by writing H ×H ≡ H×
2
.

Finally, we always use 〈·, ·〉 to denote an inner product.

2. Some Definitions and Notations

From this point onwards, we only consider the 3-manifold S2 × S1. On S2, fix a north pole n and
let the south pole s sit on the origin of R2. We use the stereographic projection X : S2 → R2 as local
coordinates. Let x = (x+, x−) be local coordinates on R2.

On S1, let iS1 denote the mapping u ∈ [0, 1] 7→ exp(2πiu) ∈ {z ∈ C| |z| = 1} ∼= S1 and we set
t0 := iS1(0) ∈ S1. The restriction of iS1 onto [0, 1), which is a bijective mapping [0, 1) → S1, will also
be denoted by iS1 and its inverse will be denoted by i−1

S1 . The tangent vector of S1 at the point iS1(u),

induced by the curve iS1 , will be denoted by i′S1(u), for u ∈ [0, 1]. Finally,
∂

∂t
will denote the vector

field on S1 given by
∂

∂t
(iS1(t)) = i′S1(t) for t ∈ [0, 1] and dt, the real-valued 1-form on S1 is dual to

∂

∂t
.

For the rest of this article, instead of working in S2 × S1, we work in local coordinates (X, i−1
S1 ).

All the formulas in the sequel will be written using these local coordinates.
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2.1. Quasi-Axial and Torus Gauge Fixing

Let A be the vector space of (smooth) g-valued 1-forms on R2 × [0, 1). We further impose the
condition that it vanishes at infinity. Now, we write A = A⊥ ⊕A||, where

A⊥ :=

{
A ∈ A

∣∣∣ A( ∂

∂t

)
= 0

}
, A|| := {B ⊗ dt | B ∈ C∞(R2 × [0, 1), g)}.

For every A ∈ A, A⊥ and A|| will denote the unique elements of A⊥, respectively A|| such that

A = A⊥ + A|| holds. For a given A ∈ A, we set A0 := A

(
∂

∂t

)
∈ C∞(R2 × [0, 1), g), i.e., A0 is the

element of C∞(R2 × [0, 1), g) given by A|| = A0 ⊗ dt.
Let T be a maximal torus of G and denote the Lie algebra of T by t. An element A ∈ A will be called

“quasi-axial” (respectively “in the T -torus gauge”) if the functions A0((σ, ·)), σ ∈ R2 are constant
(respectively constant and t-valued). We will denote the set of all quasi-axial elements (respectively all
elements in the T -torus gauge) of A by Aqax (respectively Aqax(T )). Thus, we have

Aqax = A⊥ ⊕ {B ⊗ dt | B ∈ C∞(R2, g)}, Aqax(T ) = A⊥ ⊕ {B ⊗ dt | B ∈ C∞(R2, t)}.

The following proposition is Proposition 5.2 taken from [4], the proof is omitted. We present the
proposition using local coordinates X .

Proposition 1. Let A ∈ Aqax and let A⊥ ∈ A⊥ and B ∈ C∞(R2, g) be given by A = A⊥ + B ⊗ dt.
Then we have

SκCS(A) =SκCS(A⊥ +B ⊗ dt)

=− κ

4π

∫ 1

0

dt

[∫
R2

Tr

[
A⊥(t) ∧

(
∂

∂t
+ ad(B)

)
· A⊥(t)

]
− 2

∫
R2

Tr
[
A⊥(t) ∧ dB

]]
.

Definition 1. (Regular elements) Let Greg denote the set of regular elements of G, i.e., the set of all
g ∈ G which are contained in a unique maximal torus of G. Similarly, let greg denote the set of regular
elements of g, i.e., the set of all B ∈ g which are contained in a unique maximal Abelian Lie subalgebra
of g. We set g′reg := exp−1(Greg).

It is not difficult to see that g ∈ Greg (resp. B ∈ greg) if and only if the set of fixed points of Ad(g)

(resp. the kernel of ad(B)) is a maximal Abelian Lie subalgebra of g. Thus, g′reg ⊂ greg.
Hahn in [4] was able to write 2 expressions for Expression 2 on the subspace Aqax and Aqax(T ). Let

L = {lk}nk=1 be a link. Using quasi-axial gauge fixing, we have the following expression taken from
Equation (6.3) in [4], (∼ means up to a constant.)

Z(M,κ, q; li, ρi) =

∫ n∏
k=1

W (lk; q)(A)
1

Z
exp(iSκCS(A))DA

∼
∫
C∞(R2,g′reg)

∫
A⊥

n∏
k=1

W (lk; q)(A⊥ +B ⊗ dt) exp(iSκCS(A⊥ +B ⊗ dt))DA⊥∆̃[B]D̃B

=

∫
C∞(R2,g′reg)

[∫
A⊥

n∏
k=1

W (lk; q)(A⊥ +B ⊗ dt)dµ⊥B(A⊥)

]
∆̃[B]D̃B, (4)
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where DA⊥ is the informal “Lebesgue measure” on A⊥ and

D̃B = det

(
∞∑
n=0

(ad(B))n

(n+ 1)!

)
DB,

DB is the informal Lebesgue measure on C∞(R2, g). For B ∈ C∞(R2, g′reg),

dµ⊥B(A⊥) := exp
(
iSκCS(A⊥ +B ⊗ dt)

)
DA⊥,

and from Proposition 1, we will write

SκCS(A) = SκCS(A⊥ +B ⊗ dt), A ∈ Aqax

=−
∫ 1

0

dt

[
1

2

〈
A⊥(t),

(
∂

∂t
+ ad(B)

)
· A⊥(t)

〉
R2,g

−
〈
A⊥(t), dB

〉
R2,g

]
, (5)

with 〈·, ·〉R2,g denotes the bilinear form on the vector space of smooth g-valued 1-forms on R2, AR2,g,
given by

〈A,A′〉R2,g :=
κ

2π

∫
R2

Tr(A ∧ A′)

for A, A′ ∈ AR2,g ⊂ AR2,Mat(N̄,C). Similar definition for 〈·, ·〉R2,t, with A, A′ ∈ AR2,t. Here, AR2,Mat(N̄,C)

is the vector space of Mat(N̄ ,C)-valued 1-forms on R2. Finally, for A = A⊥+B⊗ dt ∈ Aqax, we have∣∣∣∣det

(
∂

∂t
+ ad(B)

)∣∣∣∣ := ∆̃[B].

Here,
∂

∂t
+ ad(B) is viewed as an operator on C∞(R2 × S1, g).

Definition 2. (Maximal Torus)

1. Let T be a fixed maximal torus of G. The Lie algebra of T will be denoted by t. Moreover, we set
Treg := T ∩Greg and t′reg := t ∩ g′reg. Note that exp−1(Treg) ⊂ t.

2. Let 〈·, ·〉g denote the scalar product (A,B) ∈ g × g 7→ −Tr(AB) ∈ R on g and let t be the Lie
algebra of T . Let g0 be the 〈·, ·〉g orthogonal complement of t in g.

Suppose we write A⊥ = Â⊥ ⊕A⊥c , whereby

Â⊥ :={A⊥ ∈ A⊥ | πAR2,t
(A⊥)(0) = 0},

A⊥c :={A⊥ ∈ A⊥ | A⊥(t) = A⊥(0) ∈ AR2,t, ∀t ∈ [0, 1)} ∼= AR2,t.

Here, πAR2,t
is the projection operator onto the second term in the direct sum AR2,g

∼= AR2,g0 ⊕AR2,t.
And, AR2,t (respectively AR2,g0)denotes the vector space of t-valued (g0-valued) smooth 1-forms on R2.

Let Â⊥ ∈ Â⊥, A⊥c ∈ A⊥c . Note that ad(B) ·A⊥c = 0. For Â⊥+A⊥c +B⊗ dt ∈ Aqax(T ), we have the
following torus gauge analogue of Equation (4), taken from Equation (6.6) in [4],

Z(M,κ, q; li, ρi) =
1

Z

∫
C∞(R2,t′reg)

[∫
A⊥c

[∫
Â⊥

n∏
k=1

W (lk; q)(Â⊥ + A⊥c +B ⊗ dt)dµ⊥B(Â⊥)

]

× exp
(
i〈A⊥c , dB〉R2,g

)
DA⊥c

]
∆̃[B]D̂B, (6)
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where

Z =

∫
C∞(R2,t′reg)

∫
A⊥c

[∫
Â⊥
dµ⊥B(Â⊥)

]
exp

(
i〈A⊥c , dB〉R2,t

)
∆̃[B]DA⊥c D̂B (7)

and L = {lk}nk=1 is a link. In this case, do note that

D̂B = det

(
∞∑
n=0

(ad(B))n

(n+ 1)!

)
det (−ad(B)|g0)DB

= det (idg0 − exp (ad(B)|g0))DB := Y (B)DB,

withDB denoting the “Lebesgue measure" onC∞(R2, t). Now, Treg is dense in T and since exp : t→ T

is a local homeomorphism, we can conclude immediately that t′reg = exp−1(Treg) is dense in the vector
space, t. Thus, we will in the rest of the article, replace C∞(R2, t′reg) with C∞(R2, t) in Equations (6)
and (7).

And with ∼ denoting equality up to a multiplicative constant independent of B,

∆̃[B] =

∣∣∣∣det

(
∂

∂t
+ ad(B)

)∣∣∣∣ ,
where the operator

∂

∂t
+ ad(B) in the numerator is defined on C∞(R2 × [0, 1), g). For B ∈ C∞(R2, t),

dµ⊥B(Â⊥) := exp
(
iSκCS(Â⊥ +B ⊗ dt)

)
DÂ⊥, (8)

whereby a direct calculation using Equation (5) gives

SκCS(A) = SκCS(Â⊥ +B ⊗ dt)

=− 1

2

∫ 1

0

dt

〈
Â⊥(t),

(
∂

∂t
+ ad(B)

)
· Â⊥(t)

〉
R2,g

.

We refer the reader to [4] for the derivation of these expressions as our main focus in this article is to
make sense of Expression 6. For ease of notations, we omit κ on the RHS of Expression Equation (6),
but the reader should note its dependence on κ.

2.2. Infinite Dimensional Determinant

Let us first digress a little and discuss the function Y , which is defined as

Y (B) = det

(
∞∑
n=0

(ad(B))n

(n+ 1)!

)
det (−ad(B)|g0)DB

= det (idg0 − exp (ad(B)|g0)) .

Note that ad(B) is skew symmetric and thus the operator exp[ad(B)] is unitary on C∞(R2) ⊗ g0,
thus it is not a compact operator and hence exp[ad(B)] is not trace class. Therefore we cannot define
det[I − exp[ad(B)]] as a Fredholm determinant.

Alternatively, we can interpret D̂B as a product form, i.e.,

D̂B =

C∞(R2,R)⊗
µt,
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where µt is a suitable measure on t. More precisely, we should have µt(v) = det[I|g0 − exp[ad(v)]|g0 ],
where v ∈ t. This suggests the following heuristic formula

D̂B =
∞∏
k=1

det [I|g0 − exp[ad(bk)]|g0 ]DBk,

whereby {bk}∞k=1 is some orthonormal basis in L2(R2) ⊗ t and DBk is Lebesgue measure on the
subspace spanned by bk. However, the term det [I|g0 − exp[ad(bk)]|g0 ] is still ill-defined and we need to
resolve this.

Note that ad(B) is a skew symmetric operator, i.e., 〈ad(B)X, Y 〉 = −〈X, ad(B)Y 〉. Let N be the
dimension of g and {Ei}Ri=1 be an orthonormal basis in t, and ad(Ei) : g0 7→ g0 is simultaneously
diagonalizable. Suppose that λi1, . . . λ

i
N−R are the complex eigenvalues of ad(Ei)|g0 and let {bk}∞k=1 be

an orthonormal basis in L2(R2). Then we write for B ∈ L2(R2)⊗ t,

det[I|g0 − exp(ad(B))|g0 ]

=
∞∏
k=1

N−R∏
l=1

[
1− exp

[
R∑
j=1

λjl 〈B, bk ⊗ Ej〉 ⊗ Ej

] ∣∣∣
g0

]
, (9)

where 〈B, bk ⊗ Ej〉 = − κ
2π

Tr
∫
R2 bk(x)[B(x)Ej]dx, dx is Lebesgue measure. That is, we interpret the

determinant as an infinite product.
Unfortunately, the infinite product given in Equation (9) converges to 0. Furthermore, if we use

Definition 8, we observe that the normalizing constant in Equation (6) can be shown to be 0. See
Remark 4.

As such, we will drop the term Y (B) in future for reasons cited above. Another reason for dropping
this term is that we really do not need this term to define the link invariants in the second half of
this article.

3. Heuristic Argument

Notation 2. Throughout the rest of this article, we adopt the following notation. For x ∈ R2, we let
φκ(x) = κ2e−κ

2|x|2/2/2π, which is a Gaussian measure with variance 1/κ2. And let ς = (κ/2π)−1/2.
We let pr denote the 2-tuple (m1,m2), m1,m2 ≥ 0 are integers with

∑2
j=1mj = r. And we write

pr! := m1!m2!. For z = (z1, z2) ∈ C2, zpr := zm1
1 zm2

2 . Let Pr denote the set of all such 2-tuples, i.e.,

Pr =

{
(m1,m2)

∣∣∣ 2∑
j=1

mj = r

}
.

Let P =
⋃∞
r=0 Pr.

Consider the Schwartz space Sκ(R2), with the Gaussian function φκ,
√
φκ(x) = κe−κ

2|x|2/4/(2π)1/2.
The inner product 〈·, ·〉 is given by 〈f, g〉 = κ

∫
R2 f · g dλ/2π, λ is Lebesgue measure on R2. Let Sκ(R2)

be the smallest Hilbert space containing Sκ(R2), using this inner product.
The Hermite polynomials {hi}i≥0 form an orthogonal set on L2(R, dµ) with the Gaussian measure

dµ(x0) ≡ e−x
2
0/2dx0/

√
2π. Let Hpr(x) := hi(x+)hj(x−), pr = (i, j) with i + j = r, be a product of

Hermite polynomials and Hκ
pr = Hpr(κ·).
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We have the normalized Hermite polynomials Hpr/
√
pr! with respect to the Gaussian measure

e−(|x+|2+|x−|2)/2dλ/(2π). Then
∞⋃
r=0

{
ςHpr(κx+, κx−)

√
φκ/
√
pr! : pr ∈ Pr

}
is an orthonormal basis for Sκ(R2).

Definition 3. Define a transformation η(t) =
1

8

(
1

1− t
− 1

t

)
, t ∈ (0, 1) and ηκ := κη.

Thus η′(t) =
1

8

(
1

(1− t)2
+

1

t2

)
and η′κ = κη′. Observe that ηκ(1/2) = 0 for any κ and that

η′(1/2) = 1.

For each Hermite polynomial hn, we will define a function h̃n,κ on [0, 1). Define

h̃n,κ(t) = hn (κηκ(t))

√
κ√
2π
e−κ

2ηκ(t)2/4
√
η′κ(t), h̃n,κ(0) := 0.

Note that h̃n,κ approaches 0 as t→ 0+ or t→ 1−.
Now define a real subspace Vκ ⊂ L2([0, 1)), spanned by {h̃i,κ}i≥0. We make Vκ into an inner product

space by defining an inner product,〈
f (κηκ)

√
κ√
2π
e−κ

2η2κ/4
√
η′κ, g (κηκ)

√
κ√
2π
e−κ

2η2κ/4
√
η′κ

〉
:=

∫ 1

0

f (κηκ(t)) g (κηκ(t))
κ√
2π
e−κ

2ηκ(t)2/2η′κ(t) dt =

∫ ∞
−∞

f(κt)g(κt)
κ√
2π
e−κ

2t2/2dt,

whereby f and g are polynomials. Complete the inner product space Vκ into a Hilbert space, denoted by
Sκ([0, 1)). Clearly, {h̃n,κ/

√
n!}n≥0 is an orthonormal basis.

Remark 1. We remark that the constant function 1 is not inside Sκ([0, 1)). Furthermore, it is not
necessary to consider all the L2 functions on [0, 1). To obtain the link invariants later, Sκ([0, 1)) is
good enough for our consideration.

Definition 4. Let Sκ(R2× [0, 1)) be the smallest Hilbert space containing Sκ(R2)⊗Sκ([0, 1)). We define

Â ⊥ =
{
Â⊥ = α⊥+ ⊗ dx+ + α⊥− ⊗ dx− : α⊥± ∈ Sκ(R2 × [0, 1))⊗ g

}
,

A ⊥
c =

{
A⊥c = b+ ⊗ dx+ + b− ⊗ dx− : b± ∈ Sκ(R2)⊗ g

}
,

and
A || :=

{
B ⊗ dt : b ∈ Sκ(R2)⊗ g

}
.

We will write A ⊥ = Â ⊥ ⊕A ⊥
c and A = A ⊥ ⊕A ||. Observe that A ⊥

c
∼= A || ×A ||.

With this definitions, we are going replace Equation (6) with

Z(M,κ, q; li, ρi) =
1

Z

∫
A ||

[∫
A ⊥c

[∫
Â ⊥

n∏
k=1

W (lk; q)(Â⊥ + A⊥c +Bdt)dµ⊥B(Â⊥)

]

× exp
(
i〈A⊥c , dB〉R2,g

)
DA⊥c

]
∆̃[B]Y (B)DB. (10)

Henceforth, we will try to make sense of the RHS of Equation (10).
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Remark 2. Note that we replace A ⊥
c and A || to be g-valued forms instead of t-valued forms.

Let Λq(T ∗R2) be the q exterior power of the cotangent bundle over R2. Let Γq(R2) denote the space of
C∞ sections in Λq(T ∗R2). We use local coordinates X = (x+, x−). To define an L2 space on the space
of q-forms, we have to introduce a metric g on TR2. We pick the standard metric ds2 = dx2

+ + dx2
−.

This metric defines an inner product on Λq(T ∗R2) which we denote by 〈·, ·〉q and we can define a volume
form ω = dx+ ∧ dx−. (See [5] for details.) Therefore, we can define a Hodge star operator ∗ acting on
k-forms, ∗ : Λk(T ∗R2)→ Λ2−k(T ∗R2), such that for u, v ∈ Λk(T ∗R2),

u ∧ ∗v = 〈u, v〉qω.

Note that because dim R2 = 2, we have that ∗∗ v = −v if v ∈ Λ1(T ∗R2); ∗∗ v = v if v ∈ Λ0(T ∗R2).
We define an L2 inner product on sections of real-valued q-forms, Γq(R2) by

〈u, v〉g :=
κ

2π

∫
R2

u ∧ ∗v, u, v ∈ Γq(R2).

By the choice of the metric, note that Sκ(R2) is a sub Hilbert space inside Γ0(R2). Let

Ω1(R2) := {u+ ⊗ dx+ + u− ⊗ dx− : u± ∈ Sκ(R2)}.

Then, Ω1(R2) ∼= Sκ(R2)×
2 is a Hilbert space.

We will also write

〈u, v〉g,g := − κ

2π

∫
R2

Tr[u ∧ ∗v], u, v ∈ Sκ(R2)⊗ g⊕ Ω1(R2)⊗ g. (11)

Now, there are 2 Hilbert spaces H1 and H2 that we need to consider for the Chern-Simons integral,
which we will each make Hi into a direct product H×

2

i , for i = 1, 2.
The first Hilbert space H1 is Sκ(R2) ⊗ Sκ([0, 1)) ⊗ g. Take the direct product H×

2

1
∼= Â ⊥. This is

similar to the construction used in [1].
The second Hilbert space H2 that we need to consider is H2 = A ⊥

c = Ω1(R2)⊗ g ∼= (Sκ(R2)⊗ g)×
2 .

Now we need to take the direct product H×
2

2 , which is isomorphic to the direct product of 4 copies
of Sκ(R2)⊗ g.

3.1. Heuristic Argument

Lemma 1. Now write Â⊥ = Â⊥+ ⊗ dx+ + Â⊥− ⊗ dx− ∈ Â⊥. Then,∫ 1

0

〈
Â⊥(t),

(
∂

∂t
+ ad(B)

)
· Â⊥(t)

〉
R2,g

dt

=
κ

π

∫ 1

0

∫
R2

Tr

[
Â⊥+(t) ·

(
∂

∂t
+ ad(B)

)
Â⊥−(t)

]
dx+dx− dt.
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Proof. Because m(B) := ∂t + ad(B) is an anti-symmetric operator, we have∫ 1

0

〈
Â⊥(t)),m(B) · Â⊥(t)

〉
R2,g

dt

=
κ

2π

∫ 1

0

∫
R2

Tr
[
Â⊥+ ·m(B)Â⊥−dx+ ∧ dx− + Â⊥− ·m(B)Â⊥+dx− ∧ dx+

]
(t) dt

=
κ

2π
Tr

∫ 1

0

∫
R2

[
Â⊥+ ·m(B)Â⊥−

]
dx+ ∧ dx− +

[
Â⊥+ ·m(B)Â⊥−

]
(t) dx+ ∧ dx− dt

=
κ

π

∫ 1

0

∫
R2

Tr

[
Â⊥+ ·

(
∂

∂t
+ ad(B)

)
Â⊥−

]
(t) dx+ ∧ dx− dt.

Thus, from Equation (8), we can write

dµ⊥B(Â⊥) = e−
i
2

∫ 1
0 〈Â

⊥
+,m(B)Â⊥−〉g,g(t)dtDÂ⊥+DÂ

⊥
− ≡ ei〈Â

⊥
+,m(B)Â⊥−〉DÂ⊥+DÂ

⊥
−. (12)

Here and what follows, 〈·, ·〉 will always denote an inner product in a Hilbert space.

Definition 5. (Orthonormal basis {Ei}Ni=1)
The orthonormal basis in g, {Ei}Ni=1 will be fixed throughout this article. Let

∑N
i=1 γi ⊗ Ei ∈ H ⊗ g,∑N

i=1 δi ⊗ Ei ∈ H ⊗ g and
∑N

i=1 ui ⊗ Ei ∈ H ⊗ g. We let 〈·, ·〉[ denote a g-valued inner product, i.e.,〈
N∑
i=1

γi ⊗ Ei,
N∑
j=1

δj ⊗ Ej

〉
[

=
N∑
i=1

〈γi, δi〉Ei.

Refer to Definition 4. We will now give a heuristic argument for Expression 10. Let δ denote the
Dirac delta function and for E,F ∈ g, we write

〈δ(x)⊗ E, f ⊗ F 〉 = f(x)Tr[−EF ], 〈δ(x)⊗ δ(t)⊗ E, g ⊗ F 〉 = g(x, t)Tr[−EF ].

Let xi ∈ R2, ti ∈ [0, 1) and ci±, d
i
±, d

i
0 ∈ R, with di = (di+, d

i
−). Define

αi,± =
N∑
j=1

ci±δxi ⊗ δti ⊗ Ej, βi,± =
N∑
j=1

di±δxi ⊗ Ej, βi,0 =
N∑
j=1

δxi ⊗ Ej.

We will also write βi = βi,+ ⊗ dx+ + βi,− ⊗ dx−. Denote

W1(Â⊥) = exp

(
R∑
i=1

[
〈Â⊥+, αi,+〉+ 〈Â⊥−, αi,−〉

])
,

W2(A⊥c , B) = exp

(
R∑
i=1

〈A⊥c,+, βi,+ ⊗ dx+〉+ 〈A⊥c,−, βi,− ⊗ dx−〉+ 〈B, di0βi,0〉

)

:= exp

(
R∑
i=1

〈A⊥c , βi〉+ 〈B, di0βi,0〉

)
.

For simplicity, we want to make sense of

1

Z

∫
A ||

[∫
A ⊥c

[∫
Â ⊥

W1(Â⊥)W2(A⊥c , B)dµ⊥B(Â⊥) exp
(
i〈A⊥c , dB〉R2,g

)]
DA⊥c

]
∆̃[B] DB, (13)
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with Z is a normalizing constant. Note that dµB(Â⊥) is defined by Equation (12). As discussed in
Subsection 2.2, we drop the term Y in Equation (10).

Write m(B) =
∂

∂t
+ ad(B). Then [m(B)Â⊥−](x, ·) = m(B(x))Â⊥−(x, ·), so

〈Â⊥−, δxi ⊗ δti ⊗ Ej〉 =〈m(B(xi))
−1m(B)Â⊥−, δxi ⊗ δti ⊗ Ej〉

=〈m(B)Â⊥−,−m(B(xi))
−1[δxi ⊗ δti ]⊗ Ej〉.

Note that we make use of the fact that m(B) is a skew symmetric operator, so
〈m(B)·, ·〉 = 〈·,−m(B)·〉.

Now we make the following substitution m(B)Â⊥− 7→ Â⊥−. The Jacobian factor is ∆̃[B]−1 =

det[m(B)]−1, thus Expression 13 becomes,

1

Z̄

∫
A||

[∫
A⊥c

[ ∫
Â⊥

exp

[
R∑
i=1

[〈
Â⊥+, αi,+

〉
+
〈
Â⊥−,−m(B(xi))

−1αi,−

〉]]

× ei〈Â⊥+,Â⊥−〉DÂ⊥+DÂ⊥−
]
W2 exp

(
i〈A⊥c , dB〉

)
DA⊥c

]
DB,

where

Z̄ :=

∫
Â⊥
ei〈Â

⊥
+,Â

⊥
−〉DÂ⊥+DÂ

⊥
− ·
∫
A||

∫
A⊥c

exp
(
i〈A⊥c , dB〉R2,t

)
DA⊥c DB

:=Z̄1 · Z̄2.

Now, B ∈ S(R2) and A⊥c ∈ Ω1(R2). With this new notation, we can write

〈A⊥c , dB〉R2,g =− 〈A⊥c , ∗ ∗ dB〉R2,g = 〈A⊥c , ∗dB〉g,g,

〈ξ, B〉g,g =− κ

2π
Tr

∫
R2

B ∧ dd−1 ∗ ξ

=
κ

2π
Tr

∫
R2

dB ∧ d−1 ∗ ξ = −〈d−1 ∗ ξ, ∗dB〉g,g, (14)

using Stokes’ Theorem and Equation (11). So if we make the substitution Ã⊥c = ∗dB, then

B(xj) =
N∑
i=1

〈B, δxj ⊗ Ei〉Ei =
N∑
i=1

〈Ã⊥c ,−d−1 ∗ δxj ⊗ Ei〉Ei = 〈Ã⊥c ,−d−1 ∗ βj,0〉[,

and

exp

(
R∑
i=1

〈
B,

N∑
j=1

δxi ⊗ Ej

〉
di0

)
exp

(
i〈A⊥c , dB〉R2,g

)
DA⊥c DB

∼ exp

(
−

R∑
i=1

〈Ã⊥c , di0d−1 ∗ βi,0〉

)
exp

(
i〈A⊥c , Ã⊥c 〉g,g

)
DA⊥c DÃ

⊥
c ,

up to some constant.
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Thus, the path integral, up to a constant, can written in the form

1

Z̄

∫
A⊥c ×Ã⊥c

exp

(
R∑
i=1

〈A⊥c , βi〉

)
exp

(
−

R∑
i=1

〈
Ã⊥c , d

i
0 d
−1 ∗ βi,0

〉)
{∫

Â⊥
exp

(
R∑
i=1

[〈
Â⊥+, αi,+

〉
+

〈
Â⊥−,−m

(〈
Ã⊥c ,−d−1 ∗ βi,0

〉
[

)−1

αi,−

〉])

× exp
[
i〈Â⊥+, Â⊥−〉

]
DÂ⊥+DÂ

⊥
−

}
exp

(
i〈A⊥c , Ã⊥c 〉

)
DA⊥c DÃ

⊥
c . (15)

We wish to point out that this integral in Expression 15 is of the form∫
H×

2

2

e〈v+,β〉e〈v−,β̂0〉
∫
H×

2

1

e〈u+,α+〉+〈u−,
∑
i T (〈v−,β̂i,0〉[)αi,−〉ei〈u+,u−〉 Du+Du−e

i〈v+,v−〉 Dv+Dv−, (16)

where T (〈v−, β̂i,0〉[) is a linear operator that maps H1 → H1,

α± =
∑
i

αi,±, β± =
∑
i

βi,±, β0 =
∑
i

di0βi,0, β̂0 =
∑
i

di0β̂i,0,

and β̂i,0 = −d−1 ∗ βi,0, β = β+ ⊗ dx+ + β− ⊗ dx−.
Thus, our goal is to give a sensible definition for Expression 16. From Expression 15, we also need

to define (
∂

∂t
+ ad (λ)

)−1

δy ⊗ δs ⊗ Ej, d−1 ∗ δw, λ ∈ g.

Unfortunately, the Dirac delta function δ is not inside Sκ(R2× [0, 1)). Therefore, the term 〈Â⊥+, δx〉 is

ill defined. Furthermore, the operators
(
∂

∂t
+ λ

)−1

and d−1∗ will be shown later, to be only defined on

a dense subspace of Sκ(R2 × [0, 1)) ⊗ g and Sκ(R2) respectively. Hence these operators do not operate
on the Dirac delta function.

We would like to end this section by saying that to define the path integral, we will need the following
inputs, namely αi,± ∈ H1, βi,+ ⊗ dx+ + βi,− ⊗ dx− ∈ H2 and βi,0 ∈ Sκ(R2) ⊗ g. And β̂i,0 in
Expression refe.x.1 is given by −d−1 ∗ βi,0 ∈ Ω1(R2)⊗ g, which will be defined later.

The reader should think of α ≡ (α+, α−) ∈ H×2

1 , and similarly,(
β

β̂0

)
≡

(
β+ ⊗ dx+ + β− ⊗ dx−

−d−1 ∗ β0

)
∈
(
Ω1(R2)⊗ g

)×2

= H×
2

2 .

The path integral is simply an integral over the product space H×
2

1 × H×
2

2 , which we will define in
the next section.

4. Functional Integral

Consider the real Hilbert space spanned by {zn : z ∈ C}∞n=0, integrable with respect to the Gaussian
measure, equipped with a sesquilinear complex inner product, given by
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〈zr,zr′〉 =
1

π

∫
C
zr · zr′e−|z2| dx dp, z = x+

√
−1p. (17)

Note that zj means complex conjugate. Denote this Hilbert space over R, by H2(C). An orthonormal
basis is given by {

zn√
n!

: n ≥ 0

}
.

Let H2(C3) be the smallest Hilbert space containing H2(C)⊗H2(C)⊗H2(C).
It is well-known that there is no sensible notion of Lebesgue measure on an infinite dimensional space.

Our next strategy will be to define a Gaussian type of measure on H2(C3). Unfortunately, this space is
too small to support a Gaussian measure.

Let x ∈ H2(C3), x =
∑

i1,i2,i3≥0 ci1,i2,i3
zi11 z

i2
2 z

i3
3√

i1!i2!i3!
. Introduce a norm by setting

‖ x ‖= sup
z∈B(0,1/2)

∑
i1,i2,i3≥0

|ci1,i2,i3||zi11 zi22 zi33 |. (18)

Here, B(0, 1/2) is the ball with radius 1/2, center 0 in C3. Note this norm is weaker than the L2 norm
in H2(C3).

Using this weaker norm, complete H2(C3) into a Banach space B. In [1], it was shown that one can
equip B with a Gauss measure µ̃κ, with variance 1/κ. Identify y ∈ B∗ ⊂ H2(C3) ⊂ B and denote the
pairing (x, y)] = y(x).

The space B can be described explicitly. Let H2(C3)C = H2(C3)⊗R C and B∗C = B∗ ⊗R C. In [1],
it was shown that

Proposition 2. 1. The support of µ̃κ in the Banach space B is the space of holomorphic C-valued
functions on C3.

2. Let w ∈ C3 and define an evaluation map, χw : x ∈ B 7→ x(w). Then χw is in B∗C.

Remark 3. Note that χ will play the role of the Dirac delta function discussed earlier. The advantage of
this is that now χ ∈ B∗ ⊂ H2(C3).

Notation 3. We denote the Abstract Wiener space containing H by B, with Gauss measure µ̃θ, variance
1/θ. If H×

2 ⊂ (B ×B, ν̃θ) is an Abstract Wiener space, then ν̃θ = µ̃θ × µ̃θ.

Definition 6. Recall in Section 3, we said that there are 2 Hilbert spaces that need to be considered
for the path integral. Instead of considering the space of Schwartz functions, we will replace it by
considering the Hilbert space H2(C3) and complete it into an Abstract Wiener space, denoted byB(R2×
[0, 1)), with Wiener measure µ̃θ. Consider the Hilbert space H2(C2), which is the smallest Hilbert space
containing H2(C)⊗H2(C). In a similar way, we can construct an Abstract Wiener space containing it,
denoted by B(R2), with Wiener measure ν̃θ. There are two Abstract Wiener spaces that we will consider
in this article, necessary for the definition of the path integral;

1. Consider the tensor product H2(C3) ⊗ g and complete it into an Abstract Wiener space, denoted
by B(R2 × [0, 1)) ⊗ g. The Abstract Wiener measure will be the product measure µ̃θ × · · · × µ̃θ,
N copies in total, N is the dimension of g.
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2. Consider the direct product (H2(C2) ⊗ g)×
2
, and complete it into an Abstract Wiener space,

denoted by (B(R2)⊗g)×
2
. The Abstract Wiener measure will be the product measure ν̃θ×· · ·× ν̃θ,

2N copies in total.

Let H be any Hilbert space and u = (u+, u−), α = (α+, α−) ∈ H×2 . The following expression,

1

Z1

∫
u∈H×2

e〈u,α〉ei〈u+,u−〉Du+Du−, (19)

with

Z1 =

∫
u∈H×2

ei〈u+,u−〉Du+Du−

is the basis whereby the Chern-Simons path integral is build upon. We define Expression 19 as

lim
θ→i

1

Zθ

∫
u∈H×2

e〈u,α〉ei〈u+,u−〉ei|u|
2/2e−θ|u|

2/2Du+Du−,

with
Zθ =

∫
u∈H×2

ei〈u+,u−〉ei|u|
2/2e−θ|u|

2/2Du+Du−.

Suppose B is an Abstract Wiener space containing H . Now, one can show that there exists a complex
measure νθ on B×2 ≡ B × B, such that |νθ| is a probability measure on B×2 and we can define for
α ∈ B×2,∗ ⊂ H×

2 ,∫
u∈H×2

e〈u,α〉ei〈u+,u−〉ei|u|
2/2e−θ|u|

2/2Du+Du− :=

∫
u∈B×2

e(u,α)]dνθ(u).

Furthermore, it can be shown directly that∫
u∈B×2

e(u,α)]dνθ(u) = exp

(
i(|α+|2 + |α−|2 + 2〈α+, α−〉)/2θ2

1− (2i/θ)

)
e

1
2θ

(|α+|2+|α−|2).

Thus, using analytic continuation, we will define

lim
θ→i

∫
u∈H×2

e〈u,α〉ei〈u+,u−〉ei|u|
2/2e−θ|u|

2/2Du+Du−

:= lim
θ→i

exp

(
i(|α+|2 + |α−|2 + 2〈α+, α−〉)/2θ2

1− (2i/θ)

)
e

1
2θ

(|α+|2+|α−|2)

= ei〈α+,α−〉.

The reader may refer to [1] for details.
We can now give a definition to the heuristic Expression 19.

Definition 7. Let α = (α+, α−) ∈ B×2,∗ ⊂ H×
2 ⊂ B×

2
and u = (u+, u−) ∈ H×2

. Then we define

1

Z1

∫
H×2

e〈u,α〉ei〈u+,u−〉Du+Du− := EB×2

[
e(·,α)]

]
= ei〈α+,α−〉.
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We remark that EB×2 is not taking expectation, but rather it should be viewed as a linear functional
acting on functions of the form exp[(·, α⊥)]].

Let β, αj ∈ B∗. One can show that for any polynomials p1, . . . , pm, we have

lim
θ→i

∫
B×2

m∏
i=1

p((u, (0, αi))])e
(u,(β,0))]dνθ(u)

= lim
θ→i

∫
B×2

m∏
i=1

pi(d/dsi)e
(u,(β,

∑m
i=1 siαi))]

∣∣∣
si=0

dνθ(u) =
m∏
j=1

pj(i〈β, αj〉).

Thus, we can extend Definition 7 to include polynomials.
However, given a general (continuous and bounded) function F on one variable, then it is not clear that∫

B×2
F ((u−, α−)])e

(u+,α+)]dνθ(u)

admits an analytic continuation. However, from the above calculations, it is possible to extend
Definition 7 to include F .

Definition 8. Let β = (β+, 0), αj = (0, αj−) with β+, α
j
− ∈ B∗ for j = 1, . . . ,m. Let Fj be continuous

functions on R and Y be continuous on B×
2 ⊗ C, with Y (u) = Y (u−) for any u ∈ B×

2
, such that

Y (0) 6= 0. Then we define

1

Z1

∫
H×2

m∏
j=1

F j(〈u, αj〉)e〈u,β〉ei〈u+,u−〉Y (u−) Du+Du−

:=
1

Y (0)
EB×2

[
m∏
j=1

F j((·, αj)])e(·,β)]Y

]
=
Y (iβ+)

Y (0)

m∏
j=1

F j(i〈β+, α
j
−〉),

if

Z1 :=

∫
H×2

ei〈u+,u−〉Y (u−) Du+Du−.

Remark 4. Recall that Y in Subsection 2.2 is defined as an infinite dimensional determinant. If we use
Definition 8, notice that Y (0) := 0. Hence the normalizing constant is 0. As such, we have to remove
the term Y in order to obtain non trivial results for the path integral.

Notation 4. Let B be an Abstract Wiener space containing the Hilbert space H , equipped with inner
product 〈·, ·〉. We will also write(

N∑
i=1

ui ⊗ Ei,
N∑
j=1

δj ⊗ Ej

)
[

=
N∑
i=1

(ui, δi)]Ei,

for ui ∈ B, δi ∈ B∗ and {Ei}Ni=1 is an orthonormal basis in g.

Let H1, H2 be 2 Hilbert spaces and B1, B2 be Abstract Wiener spaces containing them respectively.
For any λ ∈ g, let T (λ) be a linear operator that maps B∗1 ⊗ g to B∗1 ⊗ g. Recall the path integral we
want to make sense of is given by Expression 16.
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Proposition 3. Refer to Notation 4. Let α+, αi,− ∈ (B1 ⊗ g)∗, β, β̂i,0 ∈ (B2 ⊗ g)×
2,∗. For any

λ ∈ g, let T (λ) : (B1 ⊗ g)∗ → (B1 ⊗ g)∗ be a bounded linear operator. Using Definition 8, we define
Expression 16 as

E(B2⊗g)×2

{
e(∗,(β,β̂0))]E(B1⊗g)×2

[
e(·,(α+,

∑
i T [(∗,(0,β̂i,0))[]αi,−))]

]}
=ei〈β,β̂0〉ei〈α+,

∑
j T (i〈β,β̂j,0〉[)αj,−〉, (20)

with β̂0 =
∑

i δ
i
0β̂i,0, δi0 ∈ R.

Proof. By Definition 8,

E(B1⊗g)×2

[
e(·,(α+,

∑
j T ((∗,(0,β̂j,0))[)αj,−))]

]
= ei〈α+,

∑
j T ((∗,(0,β̂j,0))[)αj,−〉.

Using the definition again, we have

E(B2⊗g)×2

[
e(∗,(β,β̂0))]ei〈α+,

∑
j T ((∗,(0,β̂j,0))[)αj,−〉

]
=ei〈β,β̂0〉ei〈α+,

∑
j T (i〈β,β̂j,0〉[)αj,−〉.

The 2 Abstract Wiener spaces, B1 and B2 we have in mind, are defined as follows:

H1 =H2(C3) ⊂ B1 = B(R2 × [0, 1)),

H2 =H2(C2)×
2 ⊂ B2 = B(R2)×

2

.

5. Linear Operators

Refer back to Expression 15. If we wish to apply Proposition 3, then we have to
define linear operators m(λ)−1 and d−1∗, λ ∈ g. But m(λ)−1 does not map Sκ(R2 × [0, 1)) ⊗ g into
Sκ(R2 × [0, 1)) ⊗ g. And for any γ ∈ Sκ(R2) ⊂ Γ0(R2), d−1 ∗ γ /∈ Sκ(R2). Thus it seems that we are
not able to apply Proposition 3.

However, as long as we can make sense of the RHS of Equation (20), we can define the Chern-Simons
path integral. If one goes back to Expression 15 and compare with Expression 16, what we really need
to define are the terms

〈α+,
∑
j

m(λj)
−1αj,−〉, λj = 〈β, d−1 ∗ βj,0〉[ and 〈β, d−1 ∗ β0〉.

Once we can define these terms, we can proceed to define our Chern-Simons path integral.
Now, we define the path integral as a linear functional, on the direct product of 2 Abstract Wiener

spaces, (B(R2 × [0, 1))⊗ g)×
2 × (B(R2)⊗ g)×

4 . The operators
(
∂

∂t
+ λ

)−1

and d−1∗ act on a dense

subspace in Sκ(R2 × [0, 1)) ⊗ g and Sκ(R2) respectively. We need to transfer these operators to act on
H2(C3)⊗ g and H2(C2). To do this, we need to construct an isometry between these Hilbert spaces.

Fortunately, there is a natural map, the Segal Bargmann transform Ψκ, that sends

Ψκ :
1√
n!
hn(κs)⊗

√
κ

(2π)1/4
e−κ

2|s|2/4 7−→ 1√
n!
zn.

In the sequel, we will extend this definition Ψκ to tensor products or direct products of
hermite polynomials.
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For example, on the tensor product space Sκ(R2) ⊗ Sκ([0, 1)), we have Ψκ : Sκ(R2) ⊗ Sκ([0, 1)) →
H2(C3), by

Ψκ :
( κ

2π

)−1/2

Hpr(κ·)
√
φκ√
pr!
⊗ 1√

n!
h̃n,κ 7−→

zpr
√
pr!
⊗ wn√

n!
, (z, w) ∈ C3.

Similarly,

Ψκ :
( κ

2π

)−1/2

Hpr(κ·)
√
φκ√
pr!
7−→ zpr
√
pr!
, z ∈ C2.

Recall Ω1(R2) ∼= Sκ(R2)×
2 , so we have Ψ−1

κ (β+, β−) = Ψ−1
κ (β+)⊗dx+ +Ψ−1

κ (β−)⊗dx− ∈ Ω1(R2)

for β± ∈ H2(C2).

Definition 9. 1. Let λ ∈ g. We define an operator m(λ)−1 = ∂−1
λ ≡

(
∂

∂t
+ ad(λ)

)
acting on

Sκ(R2 × [0, 1))⊗ g by

(∂−1
λ h)(x, u) :=

1

2

[∫ u

0

−
∫ 1

u

]
e(s−u)ad(λ)h(x, s) ds, u ∈ [0, 1), x ∈ R2.

We leave to the reader to check that(
∂

∂u
+ ad(λ)

)
∂−1
λ h = h.

2. For α ∈ B(R2 × [0, 1))⊗ g, we define an operator m̃(λ)−1 by

m̃(λ)−1α = m(λ)−1Ψ−1
κ α.

3. Recall we have the exterior derivative d and the Hodge star operator acting on Γ0(R2)⊕Γ1(R2)⊕
Γ2(R2). We define a linear operator d−1∗ : Sκ(R2)→ Γ1(R2) by

(d−1∗β0)(x+, x−)

=
1

2

[(∫ x+

−∞
−
∫ ∞
x+

)
β0(τ, x−)dτ

]
⊗ dx− −

1

2

[(∫ x−

−∞
−
∫ ∞
x−

)
β0(x+, τ)dτ

]
⊗ dx+

:=(∂−1
x+
β0)(x+, x−)⊗ dx− − (∂−1

x−β0)(x+, x−)⊗ dx+.

4. For β0 ∈ B(R2)∗, we define an operator d̃−1∗ by

(̃d−1∗)β0 = d−1 ∗Ψ−1
κ β0.

Remark 5.

When λ = 0, then ∂−1
0 =

(
∂

∂t

)−1

≡ ∂−1
t . The operator ∂−1

0 and the operator ∂−1
2 which appeared

in [1] differs by a factor 2, i.e., ∂−1
2 = 2∂−1

t .

By their definitions, it is clear that m̃(λ)−1αj,− /∈ Sκ(R2 × [0, 1))⊗ g and (̃d−1∗)βj,0 /∈ Ω1(R2)⊗ g.
However, to define the path integral in Proposition 3, what we really need to define is

〈α+, m̃(λ)−1αj,−〉 and 〈β, (̃d−1∗)βj,0〉,

where β = (β+, β−).



Mathematics 2015, 3 861

Definition 10. We define for α± ∈ H2(C3)⊗ g and β±, β0 ∈ H2(C2)⊗ g,

〈α+, m̃(λ)−1α−〉 :=− κ

2π

∫ 1

0

dt

∫
R2

Tr
[
(Ψ−1

κ α+) · ∂−1
λ (Ψ−1

κ α−)
]
dx+dx−

〈(β+, β−), (̃d−1∗)β0〉 :=− κ

2π
Tr

∫
R2

[
Ψ−1
κ (β+)⊗ dx+ + Ψ−1

κ (β−)⊗ dx−
]
∧ ∗d−1 ∗Ψ−1

κ (β0).

Remark 6. It is possible that the integrals might not be defined. However, as we will show later, for our
choice of α and β, the integrals are well-defined.

Recall we define the evaluation map χw in Proposition 2. The linear functionals α± =
∑

s αs,±,
β± =

∑
s βs,± and β0 =

∑
s βs,0∆s,0, we have in mind are of the form

αs,± =
∑
j

χas ⊗ χts∆
j
s,± ⊗ Ej,

βs,± =
∑
j

χas∆
j
s,± ⊗ Ej, βs,0 =

∑
j

χas ⊗ Ej,

where ∆j
s,±,∆

j
s,0,∆s,0 ∈ R, as ∈ R2 ⊂ C2 and ts ∈ R ∈ C. Next, we need to know how to compute

Ψ−1
κ (χa ⊗ χt).

Proposition 4. For each (t, s) ∈ R2 × R ⊆ C3,

Ψκ :ς
√
φκ(· − t)eκ

2(t2)/8 ⊗
√
κ

(2π)1/4
e−κ

2(ηκ−s)2/4eκ
2s2/8

√
η′κ

7−→
∞∑
n=0

∞∑
r=0

∑
pr

zprwn
κrtpr

2r · pr!
κnsn

2n · n!
= χκ(t,s)/2 ∈ B(R2 × [0, 1))∗.

Proof. We will leave to the reader to check that

χκ(t,s)/2(z, w) =
∞∑
n=0

∑
r

∑
pr

(κt/2)pr√
pr!

(κs/2)n√
n!

zpr√
pr!

wn√
n!
, z ∈ C2, w ∈ C.

Now Ψ−1
κ maps χκ(t,s)/2 to

ς
√
φκ(x)

∞∑
r=0

∑
pr

Hpr(κx)
(κt/2)pr

pr!
⊗
∞∑
n=0

(κs/2)n

n!
h̃n,κ(t)

= ς
√
φκ(x)eκ

2(2x·t−|t|2)/4eκ
2|t|2/8 ⊗ eκ2(2sηκ(t)−s2)/4

√
κ

(2π)1/4
e−κ

2ηκ(t)2/4eκ
2s2/8

√
η′κ(t),

for t, s real, which upon simplification gives

ς
√
φκ(· − t)eκ

2|t|2/8 ⊗
√
κ

(2π)1/4
e−κ

2(ηκ(t)−s)2/4eκ
2s2/8

√
η′κ(t).

Here, x · t is the usual scalar product in R2.
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Notation 5. Define for s ∈ [0, 1),

q̃sκ(t) =

√
κ

(2π)1/4
e−κ

2(ηκ(t)−s)2/4
√
η′κ(t). (21)

Note that ηκ(0) = −∞ and lims→1− ηκ(s) = 0, so we define q̃0
κ(t) = 0 = lims→1− q̃

s
κ(t). We will

also write
paκ =

ςκ√
2π
e−κ

2|·−a|2/4, ς = (κ/2π)−1/2.

Finally, for x ∈ R2, y ∈ R, define

ψ(x) = e−|x|
2/2, ψ̂(y) = e−y

2/2.

Corollary 1. Under the isometry Ψκ,

Ψκ : pxκ ⊗ q̃sκ 7−→ ψ(κx/2)χκx/2 ⊗ ψ̂(κs/2)χκs/2,

and
Ψκ : pxκ 7−→ ψ(κx/2)χκx/2,

whereby x ∈ R2 and s ∈ [0, 1).

Lemma 2. Suppose

α̂⊥± =
∑
i

χκa±/2ψ(κa±/2)⊗ χκt±/2ψ̂(κt±/2)∆i
± ⊗ Ei ∈ (B(R2 × [0, 1))⊗ g)∗,

whereby a± ∈ R2 ⊂ C2, t± ∈ [0, 1) ⊂ C and ∆i
± ∈ R. For λ ∈ g, we have

〈
α̂⊥+, m̃(λ)−1α̂⊥−

〉
=

N∑
i,j=1

〈pa+
κ , pa−κ 〉

〈
q̃t+κ ⊗ Ei, ∂−1

λ q̃t−κ ⊗ Ej
〉

∆i
+∆j
−. (22)

Proof. Using Definition 10 and Corollary 1,〈
α̂⊥+, m̃(λ)−1α̂⊥−

〉
=− 1

2
Tr
∑
i,j

∫ 1

0

[〈∫ τ

0

ds pa+
κ ⊗ q̃t+κ (s)∆i

+ ⊗ Ei, e(s−τ)ad(λ)pa−κ ⊗ q̃t−κ ((τ))∆j
− ⊗ Ej

〉

−
〈∫ 1

τ

ds pa+
κ ⊗ q̃t+κ (s)∆i

+ ⊗ Ei, e(s−τ)ad(λ)pa−κ q̃t−κ (τ)∆j
− ⊗ Ej

〉]
dτ

=− 1

2
Tr

N∑
i,j=1

〈pa+
κ , pa−κ 〉

∫ 1

0

∫ τ

0

q̃t+κ (s)⊗ Ei · e(s−τ)ad(λ)q̃t−κ (τ)⊗ Ej dsdτ · ∆i
+∆j
−

+
1

2
Tr

N∑
i,j=1

〈pa+
κ , pa−κ 〉

∫ 1

0

∫ 1

τ

q̃t+κ (s)⊗ Ei · e(s−τ)ad(λ)q̃t−κ (τ)⊗ Ej dsdτ · ∆i
+∆j
−

:=
N∑

i,j=1

〈pa+
κ , pa−κ 〉

〈
q̃t+κ ⊗ Ei, ∂−1

λ q̃t−κ ⊗ Ej
〉

∆i
+∆j
−.
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Lemma 3. Suppose for r = ±, 0,

βr =
∑
i

χκar/2ψ(κar/2)∆i
r ⊗ Ei ∈ (B(R2)⊗ g)∗,

whereby a± ∈ R2 ⊂ C2 and ∆i
r ∈ R. Then, we have for β = (β+, β−),

〈
β, (̃d−1∗)β0

〉
=

N∑
i=1

〈
pa+
κ ∆i

+ ⊗ dx+ + pa−κ ∆i
− ⊗ dx−, d−1 ∗ pa0

κ ∆i
0

〉
. (23)

Remark 7. We also have〈
β, (̃d−1∗)

∑
i

χκa0/2ψ(κa0/2)⊗ Ei

〉
[

=
N∑
i=1

〈
pa+
κ ∆i

+ ⊗ dx+ + pa−κ ∆i
− ⊗ dx−, d−1 ∗ pa0

κ

〉
Ei.

Proof. Using Definition 10 and Corollary 1,〈
β, (̃d−1∗)β0

〉
=
∑
i,j

〈(
χκa+/2ψ(κa+/2)∆i

+, χκa−/2ψ(κa−/2)∆i
−
)
⊗ Ei, (̃d−1∗)χκa0/2ψ(κa0/2)⊗ Ej∆j

0

〉
=
∑
i

〈
pa+
κ ∆i

+ ⊗ dx+ + pa−κ ∆i
− ⊗ dx−, d−1 ∗ pa0

κ ∆i
0

〉
:=
∑
i

κ

2π

∫
R2

[
pa+
κ ∆i

+ ⊗ dx+ + pa−κ ∆i
− ⊗ dx−

]
∧ ∗d−1 ∗ pa0

κ ∆i
0.

6. Definition of the Chern-Simons Path Integral

Consider

W1(Â⊥) = exp
[
〈Â⊥+,Ψ−1

κ α+〉+ 〈Â⊥−,Ψ−1
κ α−〉

]
,

W2(A⊥c , B) = exp
[
〈A⊥c ,Ψ−1

κ β〉+ 〈B,Ψ−1
κ β0〉

]
.

Here, we have α± =
∑

s αs,±, β± =
∑

s βs,±, β0 =
∑

s βs,0∆s,0, where

αs,± =
∑
i

χκas,±/2ψ(κas,±/2)⊗ χκts,±/2ψ̂(κts,±/2)∆i
s,± ⊗ Ei,

βs,± =
∑
i

χκas,±/2ψ(κas,±/2)∆i
s,± ⊗ Ei, βs,0 =

∑
i

χκas,0/2ψ(κas,0/2)⊗ Ei,

for as,±, as,0 ∈ R2, ts,± ∈ [0, 1). We want to give a definition for Expression 13, with W1 and W2

defined above. In Subsection 3.1, we also showed that Expression 13 can be written heuristically as
Expression 15. By replacing the Dirac delta function δx by χ(κx/2)ψ(κx/2) in Expression 15 and
applying Proposition 3, we have the following definition.
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Definition 11. (Chern-Simons Path Integral)
Refer to Definition 10. Write β = (β+, β−). Applying Proposition 3 to Expression 15, we define
Expression 13, with W1 and W2 defined as above, as

EκCS [exp [(·, α)] + (·, β)] + (·, β0)]]]

:= exp

[
−i

(〈
α+,

∑
r

m
(
i
〈
β,−(̃d−1∗)βr,0

〉
[

)−1

αr,−

〉
+
〈
β, (̃d−1∗)β0

〉)]
.

Using Lemmas 2 and 3, the exponent can be explicitly computed as

−i
∑
s,r

N∑
i,l=1

〈pas,+κ , par,−κ 〉
〈
q̃ts,+κ ⊗ Ei, ∂−1

λr
q̃tr,−κ ⊗ El

〉
∆i
s,+∆l

r,−

− i
∑
s,r

N∑
i=1

〈
pas,+κ ∆i

s,+ ⊗ dx+ + pas,−κ ∆i
s,− ⊗ dx−, d−1 ∗ par,0κ ∆r,0

〉
,

with

λr = i
〈
β,−(̃d−1∗)βr,0

〉
[

=− i
∑
s

N∑
i=1

〈
pas,+κ ∆i

r,+ ⊗ dx+ + pas,−κ ∆i
r,− ⊗ dx−, d−1 ∗ par,0κ

〉
Ei.

Definition 12. (Time ordering operator)
For any permutation σ ∈ Sr,

T(A(sσ(1)) · · ·A(sσ(r))) = A(s1) · · ·A(sr), s1 > s2 > . . . > sr.

Suppose now our matrices Ak(s) are indexed by the curves k and time s. Extend the definition of the
time ordering operator, first ordering in decreasing values of k, followed by the time s.

Definition 13. (T̃r)
Define a linear functional T̃r as follows. Suppose a matrix A is index by time s and representation ρ(i),
i = 1, . . . , r. In other words, A ≡ A(ρ(i), s). Let {A(π1, s1), . . . , A(πn, sn)} be a finite set of matrices.
Let Si = {j ∈ {1, . . . , n} : πj = ρ(i)} and write mi := |Si|. For any n ≥ 1, define a linear operator,

T̃r :A(π1, s1)⊗ · · · ⊗ A(πn, sn)

7→Trρ(1)[A(ρ(1), sβ1(1)) · · · ⊗ A(ρ(1), sβ1(m1))] · · ·Trρ(r)[A(ρ(r), sβr(1)) · · ·A(ρ(r), sβr(mr))],

such that for each i = 1, . . . , r, sβi(1) > sβi(2) > . . . > sβi(mi) and βi(j) ∈ Si for j = 1, . . . ,mi.

Let us apply Definition 11 to the Wilson Loop observable, given by Equation (2).

Notation 6. Suppose L = {lk}nk=1 is a link in S2 × S1 such that the projected link on S2 does not pass
through n. Using local coordinates Y ≡ (X, i−1

S1 ), we map L into R2× [0, 1). Let yk : [0, 1]→ R2× [0, 1)

be a parametrization for (X, i−1
S1 )◦lk ≡ l̃k, such that |yj,′| 6= 0, hence giving an orientation to each curve.

In components with respect to the local coordinates (x+, x−, t), we have yk = (yk+, y
k
−, y

k
0) ≡ (yk, yk0).
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We will also write yks = (yk+,s, y
k
−,s, y

k
0,s) = (yk+(s), yk−(s), yk0(s)). Without loss of generality, we also

assume that yj0(s) = 0 for only finite number of points s in [0, 1].
Next, we map R2 × [0, 1) inside C3, by

(x, s) 7−→ κ

2
(x, s) ∈ R3 ⊂ C3.

As a result of this scaling, we represent our original link L ⊂ S2 × S1 as a set of (possibly open
ended) curves.

For each curve lk, let ρk be a representation for g.

Remark 8. The scaling of the curves by } := κ/2 was carried out in [1].

We will now define the Wilson Loop observable on the set of curves {l̃k}nk=1, in C3. We will scale the
integrand by ψ/(8π)1/4, which was also carried out in the case of R3 and hence interpret the line integral
in Equation (3) as (See also Subsection 10.1.)

n∑
k=1

∫
κŷk/2

ψ

(8π)1/4

[
κψ̂Â⊥+ ⊗ dx+ + κψ̂Â⊥− ⊗ dx− + A⊥c,+ ⊗ dx+ + A⊥c,− ⊗ dx− +B ⊗ dt

]
=

~
(8π)1/4

∑
k

∫ 1

0

ds ψ(~yks )ψ̂(~yk0,s)
[
Â⊥+(~yks , ~yk0,s)y

k,′
+,s + Â⊥−(~yks , ~yk0,s)y

k,′
−,s

]
+ ψ(~yks )

[
A⊥c,+(~yks )y

k,′
+,s + A⊥c,−(~yks )y

k,′
−,s +B(~yks )y

k,′
0,s

]
=

(
Â⊥,

κ~
(8π)1/4

n∑
k=1

∫ 1

0

ds α̂⊥k,s

)
[

+

(
A⊥c ,

~
(8π)1/4

n∑
k=1

∫ 1

0

ds β⊥k,s

)
[

+

(
B,

~
(8π)1/4

n∑
k=1

∫ 1

0

ds βk,s,0y
k,′
0,s

)
[

,

whereby α̂⊥k,s = (α̂⊥k,s,+, α̂
⊥
k,s,−), β⊥k,s = (β⊥k,s,+, β

⊥
k,s,−), and

α̂⊥k,s,± =
∑
i

χ~yksψ(~yks )⊗ χ~yk0,sψ̂(~yk0,s)y
k,′
±,s ⊗ ρk(Es

i ),

β⊥k,s,± =
∑
i

χ~yksψ(~yks )y
k,′
±,s ⊗ ρk(Es

i ), βk,s,0 =
∑
i

χ~yksψ(~yks )⊗ ρk(Es
i ).

Note that k tracks the representation used and s tracks the ordering of ρk(Es
i ).

Corollary 2. Refer to Notation 6. Consider the 3 manifoldM = S2×S1. Let In = {1, 2, . . . , n}× [0, 1],
I2
n = ({1, 2, . . . , n} × [0, 1])×

2
and denote∫

I2n

≡
n∑

j,k=1

∫∫
[0,1]2

.

Also denote

yj,′±,s = yj,′± (s), yj,′0,s = yj,′0 (s).
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Apply Definition 11, the Wilson Loop observable, with a charge q, is defined as

Z(M,κ, q; li, ρi)

:=EκCS

[
T̃r exp

[
q

(8π)1/4

n∑
k=1

∫
κŷk/2

ψ
[
κψ̂Â⊥+ ⊗ dx+ + κψ̂Â⊥− ⊗ dx− + A⊥c,+ ⊗ dx+ + A⊥c,− ⊗ dx− +B ⊗ dt

]]]

=T̃r

[
exp

(
−iq

2κ2

4

κ2

√
8π

∫
I2n

N∑
i,l=1

〈
py

j
s
κ q̃

yj0,s
κ ⊗ Ei, py

k
t
κ ∂

−1
λk,t
q̃
yk0,t
κ ⊗ El

〉
yj,′+,sy

k,′
−,tdsdt⊗ ρj(Es

i )⊗ ρk(Et
l )

)
⊗

exp

(
− iq

2κ2

4
√

8π

N∑
i=1

∫
I2n

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ y

k,′
0,t

〉
dsdt⊗ ρj(Es

i )⊗ ρk(Et
i )

)]
.

(24)

where

λk,t = −i
N∑
i=1

n∑
j=1

∫ 1

0

κ

2(8π)1/4

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ

〉
ds⊗ Ei. (25)

Note that λk,t is dependent on κ, but we omit κ to ease the notation.

Proof. Observe that we can commute EκCS and T̃r because the time ordering only acts on the matrices
ρj(E

s
i ) and ρj(F s

i ). Note that the time ordering operator T arranges the matrices according to j, followed
by s. Now apply Definition 11, by replacing the finite sum in the definition by an integral, using a
Riemannian sum type of argument. See [1] for such an argument. To obtain the RHS of Equation (24),
we apply Lemmas 2 and 3. For more details, we refer the reader to [2].

Equation (24) will not give us the link invariants we desire, as the path integral depends on the
parametrization used. And the path integral depends on the parameter κ as we used the parameter κ
in constructing the isometry Ψκ.

To obtain the link invariants, the rest of this article will focus on computing the limit as κ goes to
infinity, of the RHS of Equation (24). It is only by taking the limit as κ goes to infinity that we will
obtain the desired link invariants, independent of the parametrization used.

7. Planar Diagrams

Definition 14. (Framed link)
Let L = {lk}nk=1 be a link in S2 × S1. Define a continuous normal vector vk along each closed curve lk

such that vk is nowhere tangent to lk. Let l̂k be a new closed curve obtained by shifting lk in the direction
εvk, ε > 0 is some small number. Now, lk ∪ l̂k forms a closed thin band or ribbon, whereby a finite
number of twists can be added. We will write (L, v) to denote a framed link, v ≡ {vj}nj=1.

The Wilson Loop observable can be computed from a link diagram in R2. Up to isotopy, we insist
that the truncated link, Y(L) is embedded “nicely” inside R2 × [0, 1) and thus projected “nicely” onto
R2, so that we get a nice planar diagram . The following definition makes this ‘nice’ embedding and
projection more precise.
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Definition 15. (Planar Diagrams)
Assume that a link L = {l1, l2, . . . ln} ∈ S2 × S1 is made up of individual closed curves that do not
intersect one another, i.e., lj ∩ lk = ∅ for any j, k and when projected onto S2, the curve does not
pass through the north pole n. Using local coordinates Y = (X, i−1

S1 ), we map the link into R2 × [0, 1),
denoted by Y(L). We will refer it as a truncated link. Project the truncated link Y(L) onto the R2 plane
using the projection map P0 : R2 × [0, 1)→ R2.

Parametrise each curve Y(lj) by yj = (yj+, y
j
−, y

j
0) : [0, 1] → R2 × [0, 1) such that |yj,′| 6= 0, hence

giving an orientation to each curve. Without loss of generality, we also assume that yj0(s) = 0 for only
finite number of points s in [0, 1].

Note that in the following definitions, it applies if L is just a knot, i.e., n = 1. We define a truncated
link diagram for {yj}nj=1 on the plane R2 if the following conditions are met.

1. Define a standard projection of the truncated link Y(L) onto R2 if the following conditions
are satisfied:

a for any p ∈ R2, P−1
0 (p) intersects at most 2 distinct arcs in L. We say p is called a crossing

if P−1
a (p) intersects exactly 2 distinct arcs in Y(L)a.

b at each crossing p = P0(yj(s0)) = P0(yk(t0)), there exists an ε > 0 such that for all
|s − s0| < ε and |t − t0| < ε, the tangent vectors (P0(yj))′(s) and P0(yk)′(t) are linearly
independent at p. Furthermore, we also assume that 0 < yj0(s) < 1 and 0 < yk0(t) < 1 in a
small neighborhood containing s0 and t0 respectively.

Denote the set of crossings between curves yj and yk by DP(yj, yk). And DP(yj) ≡ DP(yj, yj)

will denote the set of crossings in yj . We will write DP(L) to denote the set of crossings of the
standard projection of the truncated link Y(L) onto R2.

2. For each curve yj , write the interval [0, 1) as a union of intervals
⋃n(yj)
i=1 A(yj)i, where

in each interval A(yj)i, s ∈ A(yj)i 7→ (yj+(s), yj−(s)) is a bijection. Write C(yj)i :=

(yj+(A(yj)i), yj−(A(yj)i)) ∈ R2 be the image of the interval A(yj)i under yj . Without loss of
generality, further assume the image C(yj)i contains at most one crossing which is an interior
point in C(yj)i.

3. Given 2 arcs C(yj)i, C(yk)î which intersect at p, define sgn(J(C(yj)i, C(yk)î)) to be the sign of
the determinant of the Jacobian J(C(yj)i, C(yk)î) = yj,′+ (s)yk,′− (t) − yk,′+ (s)yj,′− (t) at the crossing
p = (yj+(s), yj−(s)) = (yk+(t), yk−(t)). Otherwise, define it to be zero if the 2 arcs do not intersect
at all. We will also write sgn(p; yj : yk) ≡ sgn(J(C(yj)i, C(yk)î)), p = C(yj)i ∩ C(yk)î and call
this the orientation of p.

4. Using the same notation as the previous item, for each crossing p ∈ C(yj)i ∩ C(yk)î, define

sgn(C(yj)i : C(yk)î) =

{
1, yj0 > yk0 ;
−1, yj0 < yk0 .

If the 2 arcs do not intersect, set it to be 0. We will also write sgn(p; yj0 : yk0) ≡ sgn(C(yj)i :

C(yk)î) and call this the height of p.
5. For each crossing p ∈ DP(yj, yk), the algebraic crossing number is defined by

ε(p) =sgn(J(C(yj)i, C(yk)î)) · sgn(C(yj)i : C(yk)î) ∈ {±1}.



Mathematics 2015, 3 868

This is actually well defined on an oriented truncated link diagram, independent of the
parametrization used.

Remark 9. The sets DP(L) and QP(L) only make sense for a truncated link diagram in R2. Different
link diagrams on R2 will give different sets of crossings.

We can also represent a truncated link diagram with a graph, which would be more convenient to use
in computing the Wilson Loop observables in the next section. The vertices will represent crossings on
a link diagram.

Definition 16. (Edges.)
Let L = {lk}nk=1 be a link in S2 × S1. Let {yk}nk=1 be a parametrization for (X, i−1

S1 ) ◦ lk ⊂ R2 × [0, 1)

and project it down onto R2, forming a planar graph. Refer to Definition 15.

1. The vertex set V (L) will be the set of crossings in DP(L). The terms vertices and crossings are
used interchangeably. The set of edges E(L) is simply the set of lines in the planar diagram of L
joining each vertex. Each edge e : [ε1, ε2]→ R2, 0 ≤ ε1 < ε2 ≤ 1. The end points e(ε1), e(ε2) will
be a vertex or crossing in DP(L). Each vertex has 4 edges incident onto it.

2. Fix a j. For each crossing p in DP(yj, yk), k 6= j, let Vj(yk) be the set of all such points p.
3. Suppose p ∈ DP(lj). Let Vj(yj) be the set of all such p’s on a planar diagram of yj .
4. Define V (yj) =

⋃
k Vj(y

k), which defines the vertex set of the graph yj . The set of edges E(yj),
is a subset of E(Y(L)), joining only vertices in V (yj). Note that E(Y(L)) =

⋃
k E(yk).

5. Suppose e and ê belong to E(yj). We say that an edge e : [ε1, ε2] → R2 precedes another edge
ê : [ε̂1, ε̂2]→ R2 if ε2 ≤ ε̂1.

6. Each crossing p ∈ DP(Y(L)) is denoted by 4 edges, labeled by (e+(p), e−(p), ē+(p), ē−(p)),
whereby e+ and e− are edges belonging to E(Cj) with the bigger index j and e−(ē−) is the edge
that precedes e+(ē+) at the vertex p. When all 4 edges belong to the same curve, then ē+ and ē−

are the edges that precede e+ and e−.
7. Now suppose we define a frame on Y(L) and project the framed oriented truncated link onto

R2. The crossings in the planar diagram will define the set of vertices as in the case of an
oriented link. A half twist q will be represented by a vertex with only 2 edges incident onto it,
labeled (e+(q), e−(q)). Thus, a full twist, given by 2 consecutive half twists, twisted in the same
direction, will be represented in the planar graph of the curve yj by 2 vertices, joined together by
a common edge.

Remark 10. For a half twist q, we can define an algebraic number ε(q) associated to it. A positive half
twist is given an algebraic number +1; a negative half twist is given an algebraic number –1. We refer
the reader to [2], whereby there is a discussion on how to define the algebraic number of a half twist in
a framed link.

In the next section, we will show how to calculate the Wilson Loop observable using the graph of a
framed truncated link diagram.
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8. Wilson Loop Observables

Let L be a link in S2×S1 and using local coordinates, we represent each component of the link L by
yj ≡ (yj, yj0) : [0, 1]→ R2 × [0, 1).

Recall from Corollary 2, we have the double sum in the exponent,

N∑
i,l=1

〈
py

j
s
κ q̃

yj0,s
κ ⊗ Ei, py

k
t
κ ∂

−1
λk,t
q̃
yk0,t
κ ⊗ El

〉
=

N∑
i,l=1

〈
py

j
s
κ , p

ykt
κ

〉〈
q̃
yj0,s
κ ⊗ Ei, ∂−1

λk,t
q̃
yk0,t
κ ⊗ El

〉
,

where λk,t was defined in Equation (25).

Lemma 4. We have λk,t → 0 as κ→∞. Furthermore,

κ2

N∑
i,l=1

〈
q̃tsκ ⊗ Ei, ∂−1

λk,t
q̃trκ ⊗ El

〉
− κ2

N∑
i=1

〈
q̃tsκ ⊗ Ei, ∂−1

0 q̃trκ ⊗ Ei
〉
−→ 0.

Proof. Using Item 2 from Lemma 5,

Γκ(t) :=
N∑
i=1

n∑
j=1

∫ 1

0

κ

2

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ

〉
ds⊗ Ei

=
N∑
i=1

n∑
j=1

κ

2

∫ 1

0

〈
py

j
s
κ , ∂

−1
x+
py

k
t
κ

〉
yj,′−,s ⊗ Ei −

〈
py

j
s
κ , ∂

−1
x−p

ykt
κ

〉
yj,′+,s ⊗ Ei ds

−→ 0

as κ→∞. From Definition 9,

N∑
i,l=1

〈
q̃tsκ ⊗ Ei, ∂−1

0 q̃trκ ⊗ El
〉

=
N∑
i=1

〈
q̃tsκ ⊗ Ei, ∂−1

0 q̃trκ ⊗ Ei
〉
.

By Item 1 of Lemma 5, we have

κ2

N∑
i,l=1

〈
q̃tsκ ⊗ Ei,

(
∂−1

Γκ(r)q̃
tr
κ

)
⊗ El −

(
∂−1

0 q̃trκ
)
⊗ El

〉
= κ2

N∑
i,l=1

1

2

〈
q̃tsκ ⊗ Ei,

∫ ·
0

e(u−·)Γk(r)q̃trκ (u)⊗ Eldu−
∫ 1

·
e(u−·)Γk(r)q̃trκ (u)⊗ Eldu− 2

(
∂−1

0 q̃trκ (s)
)
⊗ El

〉

= κ2

N∑
i,l=1

1

2

〈
q̃tsκ ⊗ Ei,

∫ ·
0

(e(u−·)Γk(r) − 1)q̃trκ (u)⊗ Eldu−
∫ 1

·
(e(u−·)Γk(r) − 1)q̃trκ (u)⊗ Eldu

〉
−→ 0

as κ→∞ and this completes the proof.

As a result of Lemma 4, the limit of the RHS of Equation (24) is equivalent to compute the limit of

T̃r

[
exp

(
−iq

2κ2

4

κ2

√
8π

∫
I2n

N∑
i=1

〈
py

j
s
κ q̃

yj0,s
κ , py

k
t
κ ∂

−1
0 q̃

yk0,t
κ

〉
yj,′+,sy

k,′
−,tdsdt⊗ ρj(Es

i )⊗ ρk(Et
i )

)
⊗

exp

(
− iq

2κ2

4
√

8π

N∑
i=1

∫
I2n

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ y

k,′
0,t

〉
dsdt⊗ ρj(Es

i )⊗ ρk(Et
i )

)]
.
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Notation 7. For x = (x+, x−, x0), y = (y+, y−, y0) ∈ R3, let × denote the cross product x × y and let
[x× y]a denote the a-th component of [x× y], a = ±, 0.

Using the fact that ∂−1
0 , ∂−1

xa are skew symmetric operators, it is straightforward to show that

κ2

4

κ2

√
8π

∫
I2n

〈py
j
s
κ , p

ykt
κ 〉 · 〈q̃

yj0,s
κ , ∂−1

0 q̃
yk0,t
κ 〉yj,′+,sy

k,′
−,tdsdt

=
κ2

4

κ2

√
8π

∑
j≥k

∫
[0,1]2

δkj 〈py
j
s
κ q̃

yj0,s
κ , py

k
t
κ q̃

yk0,t
κ 〉0

[
yjs × ykt

]
0
dsdt, (26)

and

κ2

4
√

8π

∫
I2n

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ yk,′0,t

〉
dsdt

=
∑
a=±

∑
j≥k

κ2

4
√

8π

∫
[0,1]2

δkj 〈py
j
s
κ , ∂

−1
xa p

ykt
κ 〉
[
yj,′s × y

k,′
t

]
a
dsdt (27)

whereby δkj = δjk := 1− δjk/2, δjk is the Kronecker delta function.
Our next task is to compute the limit of Equations (26) and (27), as κ goes to infinity. We break up

the computations into 2 simple lemmas.

Lemma 5. We have

1.

lim
κ→∞

κ2

√
2π
〈q̃sκ, ∂−1

0 q̃tκ〉 =

{
1, s > t;
−1, s < t.

2. Let s = (s+, s−), t = (t+, t−) ∈ R2. Then,

κ2

4
〈psκ, ∂−1

x±p
t
κ〉 =

κ
√

2π

4
e−κ

2|s∓−t∓|2/8
〈

κ√
2π
e−κ

2|·−s±|2/4, ∂−1
x±

κ√
2π
e−κ

2|·−t±|2/4
〉

and

lim
κ→∞

〈
κ√
2π
e−κ

2|·−s±|2/4, ∂−1
x±

κ√
2π
e−κ

2|·−t±|2/4
〉

=

{
1, s± > t±;
−1, s± < t±.

3.
〈q̃sκ, q̃tκ〉 = e−κ

2(s−t)2/8.

4.
〈pyκ, pzκ〉 = e−κ

2|y−z|2/8.

Proof. We will prove (1) first. Make a substitution

y =ηκ(r)− s ⇒ r = η−1
κ (y + s) ≡ ζκ(y),

z =ηκ(r)− t ⇒ r = η−1
κ (z + t) ≡ θκ(z).

Note that for any y ∈ R,
η−1
κ (y)→ 1/2
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as κ→∞. By definition of q̃sκ in Equation (21),

κ

(2π)1/4

∫ 1

0

√
κ

(2π)1/4
e−κ

2(ηκ(r)−s)2/4
√
η′κ(r) dr =

κ√
2π

∫ ∞
−∞

e−κ
2y2/4 1√

η′(ζκ(y))
dy

−→
√

2√
η′(1/2)

=
√

2.

And by definition of ∂−1
0 in Definition 9,

κ2

√
2π
〈q̃sκ, ∂−1

0 q̃tκ〉

=
κ

2

∫ 1

0

κ√
2π
e−κ

2(ηκ(r)−s)2/4
√
η′κ(r) ·

∫ r

0

κ√
2π
e−κ

2(ηκ(τ)−t)2/4
√
η′κ(τ) dτ dr

− κ

2

∫ 1

0

κ√
2π
e−κ

2(ηκ(r)−s)2/4
√
η′κ(r) ·

∫ 1

r

κ√
2π
e−κ

2(ηκ(τ)−t)2/4
√
η′κ(τ) dτ dr

=
1

2

∫ ∞
−∞

κ√
2π
e−κ

2y2/4 1√
η′(ζκ(y))

·
∫ y+s−t

−∞

κ√
2π
e−κ

2z2/4 1√
η′(θκ(z))

dz dy

− 1

2

∫ ∞
−∞

κ√
2π
e−κ

2y2/4 1√
η′(ζκ(y))

·
∫ ∞
y+s−t

κ√
2π
e−κ

2z2/4 1√
η′(θκ(z))

dz dy

−→

{
1, s > t;
−1, s < t.

.

The last step requires the following explanation. Note that 1/
√
η′ is bounded and there exists a small

neighborhood |z| < δ, δ small enough, such that for all κ > 1,∣∣∣∣∣ 1√
η′(θκ(z))

−
√

2

∣∣∣∣∣ < ε

for any given ε.
Using Notation 5, we have psκ = ς κ√

2π
e−κ

2|·−s|2/4. We will only prove (2) for +, the other case is
similar. Note that

κ2

4
〈psκ, ∂−1

x+
ptκ〉

=
κ2

4

∫
x∈R2

κ√
2π
e−κ

2|x+−s+|2/4e−κ
2|x−−s−|2/4 · κ√

2π
e−κ

2|x−−t−|2/4
[
∂−1
x+
e−κ

2|·−t+|2/4
]
dx+dx−

=
κ2

4

〈
e−κ

2|·−s−|2/4, e−κ
2|·−t−|2/4

〉 〈 κ√
2π
e−κ

2|·−s+|2/4, ∂−1
x+

κ√
2π
e−κ

2|·−t+|2/4
〉
.

A direct computation will give

κ2

4

〈
e−κ

2|·−s−|2/4, e−κ
2|·−t−|2/4

〉
=
κ
√

2π

4
e−κ

2|s−−t−|2/8
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and〈
κ√
2π
e−κ

2|·−s+|2/4, ∂−1
x+

κ√
2π
e−κ

2|·−t+|2/4
〉

=
1

2

∫
R

κ√
2π
e−κ

2|x+−s+|2/4
[∫ x+

−∞

κ√
2π
e−κ

2|y+−t+|2/4 dy+ −
∫ ∞
x+

κ√
2π
e−κ

2|y+−t+|2/4 dy+

]
dx+

−→

{
1, s+ > t+;
−1, s+ < t+.

To prove (3) and (4), a direct computation gives

〈q̃sκ, q̃tκ〉 =

∫ 1

0

κ√
2π
e−κ

2(ηκ(r)−s)2/4e−κ
2(ηκ(r)−t)2/4 · η′κ(r)dr

=

∫ ∞
−∞

κ√
2π
e−κ

2(y−s)2/4e−κ
2(y−t)2/4dy

=e−κ
2(s−t)2/8,

and

〈pyκ, pzκ〉 =
κ2

2π

∫
R2

e−κ
2|x−y|2/4e−κ

2|x−z|2/4dx = e−κ
2|y−z|2/8.

The following lemma is is similar to Lemma 4.5 found in [1]. Note that there should not be a negative
sign in Lemma 4.5.

Lemma 6. Refer to Definition 15. For j 6= k,

lim
κ→∞

κ2

√
8π

κ2

4

∫
A(yj)i

ds

∫
A(yk)î

dt 〈py
j
s
κ q̃

yj0,s
κ , py

k
t
κ ∂

−1
0 q̃

yk0,t
κ 〉

[
yj,′s × y

k,′
t

]
0
dsdt

=π · sgn(J(C(yj)i, C(yk)î)) · sgn(C(yj)i : C(yk)î).

The proof is similar to the proof for Lemma 4.5 in [2], so the proof is omitted.
When j = k, we have a problem with the following expression, i.e.,

lim
κ→∞

∫
[0,1]2
〈py

j
s
κ q̃

yj0,s
κ , py

j
t
κ q̃

yj0,t
κ 〉a

[
yj,′s × y

j,′
t

]
a
dsdt (28)

do not exist.
The solution as explained in [3], would be to consider a framing vj whereby vj(·) ∈ R3 is a normal

vector field along the curve yj that is nowhere tangent to yj . Define zj,ε := yj + εvj , ε is some
small number, i.e., zj,ε is a parametrization of the shifted curve yj,ε in the direction vj . The limit in
Expression 28 is now defined as

lim
ε→0

lim
κ→∞

κ2

4

κ2

√
8π

∫
[0,1]2
〈py

j
s
κ q̃

yj0,s
κ , pz

j,ε
t
κ q̃

zj,ε0,t
κ 〉a

[
yj,′s × z

j,ε,′
t

]
0
dsdt. (29)
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The framing on the curve yj will give rise to half twists. Using Lemma 6, one can show that the limit
of Expression 29 can be written as a sum of the algebraic numbers of crossings and half twists, which
form on the curve yj . We refer the reader to [2] for the details.

We now focus on Expression 27. Unfortunately, the limit

κ2

4
√

8π

∫
I2n

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ y

k,′
0,t

〉
dsdt

is not well-defined as κ goes to infinity. The limit, if it exists, will depend on the ambient isotopy of the
link. This is similar to the self-linking problem.

Definition 17. We define

lim
κ→∞

κ2

4
√

8π

∫
I2n

〈
py

j
s
κ y

j,′
+,s ⊗ dx+ + py

j
s
κ y

j,′
−,s ⊗ dx−, d−1 ∗ pyktκ y

k,′
0,t

〉
dsdt

= lim
κ→∞

∑
a=±

∑
j≥k

κ2

4
√

8π

∫
[0,1]2

δkj 〈py
j
s
κ , ∂

−1
xa p

ykt
κ 〉
[
yj,′s × y

k,′
t

]
a
dsdt

:= lim
κ→∞

∑
a=±

∑
j≥k

κ2

4
√

8π

∫
[0,1]2

δkj 〈py
j
s
κ , ∂

−1
xa p

ykt
κ 〉
[
yj,′s × y

k,′
t

]
a
· 〈q̃y

j
0,s
κ , q̃

yk0,t
κ 〉 dsdt.

Using Lemma 5, it is straightforward to show that this limit is equal to 0. Thus, the Expression 27 is
defined as 0.

Definition 18. Given L = {lk}nk=1, an oriented framed link in S2 × S1, map it into R2 × [0, 1) using Y.
Let yk : [0, 1] → R2 × [0, 1) be any parametrization of Y(lk), whose image is then projected down onto
the plane R2 to define a graph as in Definition 16. And let nk be the dimension of each representation ρk
and n̂ be the maximum of all the nk’s.

1. Let N , Ñ be any positive integers. Define Fac ∈MN(C) with [Fac]ij := δiaδjc, F̃ac ∈MÑ(C) with
[F̃ac]ij := δiaδjc. For A ∈ MN(C) ⊗MÑ(C), the components are given by [A]abcd with respect to
the basis {Fac ⊗ F̃bd}a,b,c,d of MN(C)⊗MÑ(C).

2. Denote a map g : E(L)→ {1, 2, . . . , n̂} such that for each k,

g|E(yk) : E(yk)→ {1, 2, . . . , nk}.

Let S(L) denote all such mappings.

We are now ready to state our formula for the Wilson Loop observable in Equation (24), in the limit
as κ goes to infinity.

Theorem 1. Let L = {lk}nk=1 be an oriented link in S2 × S1 which when projected down on S2, does
not pass through n. Choose a framing for L. Map it into R2 × [0, 1) using Y = (X, i−1

S1 ) and project it
onto R2.

Suppose for each curve lj , we assign a representation ρj : g→ End(V j) to it. Refer to Definitions 5,
15, 16 and 18. For A,B ∈Mm(C), µ(A⊗B) = A ·B, the usual matrix multiplication.
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Given any gauge groupG with its complex Lie algebra g, the Wilson Loop observable in Equation (2),
as κ goes to infinity, is given by

lim
κ→∞

Z(S2 × S1, κ, q; li, ρi)

=
∑
g∈S(L)

∏
p∈DP(L)

R(p)
g(e+(p)),g(ē+(p))

g(e−(p)),g(ē−(p))

∏
p∈TDP(L)

T (p)
g(e+(p))

g(e−(p)). (30)

If p ≡ (e+, e−, ē+, ē−), with {e+, e−} ⊆ E(yj) and {ē+, ē−} ⊆ E(yk), then

R(p) := exp

[
−ε(p)πiq2

N∑
i=1

ρj(Ei)⊗ ρk(Ei)

]
∈ End(V j)⊗ End(V k).

If p ∈ TDP(L), with p ≡ (e+, e−) ⊆ E(yj), then

T (p) := exp

[
−ε(p)πiq

2

2

N∑
i=1

µ (ρj(Ei)⊗ ρj(Ei))

]
∈ End(V j).

Note that ε is the algebraic crossing number and was defined in Definition 15. See also Remark 10.

Notation 8. Suppose for all l, ρl = ρ for some representation. Denote

R± ≡ R±ρ := exp

[
∓πiq2

N∑
i=1

ρ(Ei)⊗ ρ(Ei)

]
,

T± ≡ T±ρ := exp

[
∓πiq2

2

N∑
i=1

µ(ρ(Ei)⊗ ρ(Ei))

]
.

When the representation is clear, we will drop the subscript ρ.

Proof. Because of Lemma 4 and because Expression 27 is defined as 0, it suffices to compute the limit of

exp

(
−iq

2κ2

4

κ2

√
8π

∫
I2n

〈py
j
s
κ q̃

yj0,s
κ , py

k
t
κ ∂

−1
0 q̃

yk0,t
κ 〉yj,′+,sy

k,′
−,tdsdt⊗ ρj(Es

i )⊗ ρk(Et
i )

)
. (31)

To compute Expression 31, we note that it suffices to consider a framed truncated link diagram which
is projected on R2 plane. Using Lemma 6, the exponent will be given by a sum of terms, each involving
a crossing or half-twists. We also note that we will have a problem when j = k, whereby we have to
consider Expressions 29 instead.

The rest of the proof now follows similarly to the argument used in Section 2.1 in [2].

9. Σ-Model

Equation (30) defines a C-valued map on a framed link diagram Γ(L). From the definition of R(p),
it is clear that it is invariant under ambient isotopies.

Notation 9. Let λ = q2 ≥ 0. Fix a N . Recall that given A ⊗ B ∈ MN(C) ⊗MN(C), the components
[A⊗B]abcd = Aac ⊗Bb

d ≡ Aac ⊗Bbd. The upper indices a and b refer to the rows, the lower indices c and
d refer to the columns.
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Definition 19. (State model for framed truncated links.)
Fix a natural numberN . A state model of type (N,C) is given by R ≡ (R±, T±), withR± ∈

⊗2MN(C),
T± ∈ MN(C). For every state model (R±, T±) of type (N,C), there is a unique C-valued mapping ΣR

on the set of framed truncated link diagrams {Γ(L)} in R2 × [0, 1) for every framed link L in S2 × S1,
such that

ΣR(Γ(L))

:=
∑
g∈S(L)

∏
p∈DP(L)

[Rε(p)]
g(e+(p)),g(ē+(p))

g(e−(p)),g(ē−(p))

∏
p∈TDP(L)

[T ε(p)]
g(e+(p))

g(e−(p))

holds.

When ρl ≡ ρ for some representation ρ, Theorem 1 says that the Wilson Loop observable defines a
state model on the set of framed link diagrams.

Two framed truncated link diagrams in R2 are equivalent if they can be obtained from the other by
the Reidemeister Moves. Fortunately, there are algebraic conditions on R± and T± which tells us when
ΣR is invariant under the 3 Reidemeister moves.

Proposition 5. (Reidemeister Move I’.)
ΣR is invariant under Reidemeister Move I ′ if∑

b

[T+]ab [T
−]bc =

∑
b

[T−]ab [T
+]bc = δac (32)

for all a, c.

Proposition 6. (Reidemeister Move II.)
ΣR is invariant under Reidemeister Move II if∑

i,j

[R+]abij [R−]ijcd = δac δ
b
d, (33)

for all a, b, c, d. There are 2 Reidemeister Moves II, the other obtained by reversing the orientation
of one strand, keeping the orientation of the other fixed. In this case, the equation becomes∑

i,j[R
−]abij [R+]ijcd = δac δ

b
d.

Proposition 7. (Reidemeister Move III.)
ΣR is invariant under Reidemeister Move III if∑

p,q,y

[A]pqij [B]lypk[C]nmqy =
∑
p,q,y

[A]lnpq[B]pmiy [C]qyjk, A,B,C = R± (34)

for all i, j, k, l, m, n.

Finally, ΣR satisfies the skein relation with parameters α, β and γ,

αΣR(Γ(L+)) + βΣR(Γ(L−)) = γΣR(Γ(L0)) (35)

for all L+, L− and L0 as in [6] if
α[R+]abcd + β[R−]abcd = γδadδ

b
c (36)

for all a, b, c, d. Note that this is a correction to Equation 14 in [2].
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Definition 20. (Special elements in
⊗2MN(C).) Define I , J , K in

⊗2MN(C),

Iabcd = δac δ
b
d, J

ab
cd := δadδ

b
c, K

ab
cd = δab δ

c
d. (37)

K commutes with J . Note that if I is the identity matrix in MN(C), then I = I ⊗ I. Furthermore,
J · J = I , K ·K = NK and K · J = K = J ·K.

We will now present the corrected version of 2 examples taken from [2].

Example 1 (SU(N))
Suppose our Lie group is G = SU(N). Considering its standard representation, one shows that∑

iEi ⊗ Ei = 1
N
I − J . Hence,

R± = exp
(
∓πiq2/N

) (
cos(q2π)I ± i sin(q2π)J

)
, T± = exp

(
∓πi(1−N2)q2/2N

)
.

Let λ = q2, thus R± satisfy the Reidemeister Equations (33) and T± satisfy Reidemeister
Equation (32) for any values of λ. It will satisfy Equation (34) if λ is an integer or half integer.

If we solve Equation (36), we get

β = −α exp(−2πiλ/N), 2iα exp(−πiλ/N) sin(πλ) = γ

and hence

ΣR(Γ(L+))− exp(−2πiλ/N)ΣR(Γ(L−)) = 2i exp(−πiλ/N) sin(πλ)ΣR(Γ(L+)).

Therefore, ΣR satisfy a Homfly polynomial skein relation

l−1ΣR(Γ(L+))− lΣR(Γ(L−))−mΣR(Γ(L0)) = 0, (38)

with parameters l = exp(−πiλ/N) and m = 2i sin(πλ) = (l−N − lN). Compare with the Jones
polynomial skein relation, given by

l−1ΣR(Γ(L+))− lΣR(Γ(L−))− (l1/2 − l−1/2)ΣR(Γ(L0)) = 0.

Let us summarize the result as a theorem.

Theorem 2. Consider the standard representation of SU(N) and let q be the charge of the link. Then
the Wilson Loop observable in Equation (30) can be written as a state model ΣR of a framed link. If q2

is an integer or half integer, then ΣR defines a framed link invariant. Furthermore, ΣR satisfy a skein
relation Equation (38).

Example 2 (SO(N))
Now consider G = SO(N). Considering its standard representation, then

∑
iEi ⊗ Ei = (K − J)/2.

Hence,

R± = exp(±πiq2(J −K)/2) = cos(πq2/2)I ± i sin(πq2/2)J + exp(±πq2i/2)
exp(∓πiq2N/2)− 1

N
K,

T± = exp(±πiq2(N − 1)/4).
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Write λ = q2. Note that R± satisfy the Reidemeister Equation (33) and T± satisfy Reidemeister
Equation (32) for any values of λ . Equation (34) will be satisfied in any of the following 3 cases:

λ ≡ 0 (mod 4), N is odd;
λ ≡ 0 (mod 2), N/2 is odd;
λ ∈ N ∪ {0}, N/2 is even.

Now, solve Equation (36), we get

β = −α, 2iα sin(πλ/2) = γ.

Then,
ΣR(Γ(L+))− ΣR(Γ(L−)) = 2i sin(πλ/2)ΣR(Γ(L0)).

Compare this with the skein relation for the Conway polynomial,

ΣR(Γ(L+))− ΣR(Γ(L−)) = zΣR(Γ(L0)). (39)

The only interesting case would be when N is a multiple of 4 and q2 is an odd integer. Then the state
model ΣR would satisfy the skein relation Equation (39) for the Conway polynomial, with z = 2i.

10. Final Comments

We would like to end this article with a few comments.

10.1. Normalizing Constants

In the definition of the line integral in the Wilson Loop observable, we scale Â⊥± by κψψ̂/(8π)1/4 and
A⊥c,±, B with ψ/(8π)1/4. The factor ψ is required to obtain non trivial results when we take the limit as
κ goes to infinity and this scaling was also done in [1]. But in that article, we notice that the constant
was
√
κ/(32π)1/4.

Now, the factor κ is put there for technical reasons. The thing we want to address is the discrepancy
in the constants 8π and 32π. In fact, there is no discrepancy as the operator ∂−1

2 used in [1] is actually
twice of the operator ∂−1

0 defined in this article. If we had used the operator ∂−1
2 instead in this article,

then we would use the normalizing constant κ/(32π)1/4, instead of κ/(8π)1/4.
Finally, we would like to point out that the normalizing constants were specially chosen so that the

R-matrices obtained in Theorem 1 will be consistent with the R-matrices obtained in [2].

10.2. The Solid Torus

Consider the solid torus T ∼= D2 × S1, where D2 is the open disc of radius 1 in R2. Given any
link embedded inside T or on the surface of a torus, we may as well assume that it is embedded inside
D2 × S1. Now the open disc is homeomorphic to R2, so we can map the link into R2 × [0, 1).

However, we wish to point out that quasi axial gauge or torus gauge fixing may not apply to D2×S1.
We will not address this issue here. Instead we will use the RHS of Equation (10) as the heuristic
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expression for the Wilson Loop observable, for a manifold of the form Σ × S1, where Σ is any simply
connected Riemann surface.

Hence we can apply the results in this article, define and compute the Wilson Loop observable and
obtain link invariants for a link embedded inside Σ× S1. In particular, we can define the link invariants
for a link embedded inside the solid torus T .

10.3. The W Polynomial

The Wilson Loop observable in the case of SU(N), was meant to give us the Jones Polynomial
of a link. However, the Wilson Loop observable gives us a number. So how does one even obtain a
polynomial invariant out of it?

Firstly, we have shown that the Wilson Loop observable is an invariant for a framed link. Secondly,
the Wilson Loop observable yields Nn for the unlink with n number of components.

Let us go back to our SU(N) example. Now, when q2 is an integer,

R± = e∓πiq
2/N cos(q2π)I,

and thus the state model just yield us

ΣR(Γ(L)) = [(−1)q
2

l](1−N
2)t(L)/2lc(L)N, l = (−1)q

2

e−πiq
2/N .

Here, c(L) is the sum of the algebraic numbers of all the crossings, and t(L) is the sum of the algebraic
numbers of all the half twists in L.

The more interesting case is when q2 is a half integer. In this case,

R± = ±ie∓πiq2/N sin(q2π)J,

and the state model will yield a polynomial WN,L(l, l−1), whereby

ΣR(Γ(L)) = WN,L(l, l−1), l = (−1)q
2−1/2ie−πiq

2/N .

Thus, the Wilson Loop observable defines a polynomial WN,L(l, l−1) for a framed link L.
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