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Abstract: Recently, non-standard Lagrangians have gained a growing importance in 

theoretical physics and in the theory of non-linear differential equations. However, their 

formulations and implications in general relativity are still in their infancies despite some 

advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though 

non-standard Lagrangians may be defined by a multitude form, in this paper, we considered 

the exponential type. One basic feature of exponential non-standard Lagrangians concerns 

the modified Euler-Lagrange equation obtained from the standard variational analysis. 

Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified 

geodesic equations. However, when taking into account the time-like paths parameterization 

constraint, remarkably, it was observed that mutually discrete gravity and discrete 

spacetime emerge in the theory. Two different independent cases were obtained: A 

geometrical manifold with new spacetime coordinates augmented by a metric signature 

change and a geometrical manifold characterized by a discretized spacetime metric. Both 

cases give raise to Einstein’s field equations yet the gravity is discretized and originated 

from “spacetime discreteness”. A number of mathematical and physical implications of 

these results were discussed though this paper and perspectives are given accordingly. 
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1. Introduction 

The theory of non-natural or non-standard Lagrangians (NSL) which are characterized by a 

deformed Lagrangian or deformed kinetic and potential energy terms have recently gained an 

increasing importance due to their wide applications in applied mathematics [1–22] and theoretical 

physics [23–29]. However, this topic has not been treated in all science branches due to the difficult 

apparent meaning of physical quantities, e.g. non-natural kinetic energy. However, in the progress of 

time, it was realized that the topic deserves careful and serious consideration. Although a number of 

applications of NSL are well established, their implications in geometrical field theories are still not 

done in details and further analysis is still required. This will be the main aim of the present work. 

NSL may take, in applied mathematics and physical sciences, a large number of forms depending 

on the problem under study. Well-known examples of NSL are Dirac-Born-Infeld field Lagrangians 

and p-adic string for tachyon field in theoretical cosmology [30–33], NSL which arise in dissipative 

dynamical systems with variable coefficients [4,5], NSL which arise in fractional dynamics [7],  

power-law and exponential Lagrangians introduced in [10] and so on. In this paper, we choose the 

exponential NSL (ENSL) and we will discuss some of their implications in differential geometry and 

general relativity (GR). It is well-known that differential geometry concerns the tensor calculus on 

manifolds and is the mathematical framework of GR. In this paper, a number of properties on 

differential manifolds will be derived and their implications in GR will be addressed and discussed 

consequently. In fact, this work will try to answer the following questions: How we can use ENSL for 

generating solutions in general relativity? What are the effects of ENSL on the particle motion of a 

particle in a gravitational field? What supplementary advances are possible? 

The paper is organized as follows: In Section 2, we setup some basic concepts of ENSL on 

differential manifolds and we derive the modified geodesic equation on the manifold and the 

corresponding field equations and we discuss some of their main consequences; in Section 3, we argue 

about the implications of the modified result on linearized general relativity theory, quantum gravity 

and Hawking’s radiation theory; and finally conclusions are given in Section 4. 

2. Exponential Non-Standard Lagrangians in Differential Geometry and General Relativity: 

Some Basic Consequences 

The central concepts in this work are the notion of manifolds and tensors which are the basic 

mathematical tools in GR. We work in a manifold   where vectors and tensors are well-defined. For 

a more methodical presentation, we refer the reader to textbooks in differential geometry and in GR. 

Through this work, the Einstein summations are used and we work in units 1c  . Besides, the  

4-vector (t, x, y, z) → (x0, x1, x2, x3) convention is used, the Roman letters run from one to three and the 

Greek letters run from zero to three. A subscripted comma denotes the partial derivative with respect to 

the coordinate associated with the index that follows the comma. 

We start by introducing the following definition: 
Definition 2.1. [10]: Let 2( ( ), ( ), ) ([ , ] ; )n nx t x t t C a b     L  be an admissible smooth 

Lagrangian function with ( ( ), ( ), ) ( ( ), ( ), )x t x t t x t x t t  L L  assumed to be a C2 function with respect 

to all its arguments, i.e., twice continuously differentiable with respect to all of its arguments. The action 
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functional holding the ENSL is defined by 
b

a
S e dt  L  where ξ is a free parameter and :[ , ] nx a b    

are the generalized coordinate with x dx dt  being the temporal derivative assumed to exist and 

continuous on [a, b]. 
It should be stressed that in order to obtain a physical and realistic dimension of the ENSL, we must 

introduce a parameter   in the theory, i.e., 
b

a
S e dt  L  with energy dimension [E] = [ML−2T−2] so 

that we successfully recover the dimensional problem. M = mass, L = length and T = time. However in 

our approach we set this parameter equal to one for mathematical simplicity. Besides, the NSL in our 
approach is NSL e LL  and not L . Accordingly, we expect a modification of the Euler-Lagrange 

equation and any Lagrangian that depart the Euler-Lagrange equation from its standard form is referred 

to a NSL. 

Theorem 2.1. [10] (Modified Euler-Lagrange equations): The function x = x(t) that extremizes the 

functional 
b

a
S e dt  L  necessarily satisfies the following modified Euler-Lagrange equation (MELE)  

on [a, b]: 

d
x x

x dt x x t x x

                       
 

  
L L L L L L

 (1)

Amazingly, a 2nd-order derivative term appears in the MELE yet the Lagrangian holds only a 

derivative of the 1st-order. In order to rewrite Equation (1) on a manifold   assumed of dimension 
n, we consider a curve :[ , ]a b   parameterized with an assigned parameter [ , ]a b  such that 

the path through the spacetime is specified by writing spacetime coordinates as function of some 

parameter, i.e., xµ(λ) with a tangent vector dxμ/dλ. More explicitly, for an arbitrary differential function 

Φ(x1,…,xn), the directional derivative is given by 

, 1,...,
i

i

d dx
i n

d x d


 

  
Φ Φ

 (2)

and since Φ is arbitrary, the directional derivative operator is ( ) ( )i id d dx d x      where 

( )idx d  are the components of the tangent vector. We consider now a path xµ(λ) parameterized by λ 

where at present ( , , )x dx d
NSL e   LL . Therefore, Equation (1) keeps its general form with t → λ, i.e., 

x dx d   and 2 2x d x d  . Equation (1) may be as well extended to any number of phase-space 

coordinates, i.e., x → xμ. We let gμv be the covariant spacetime metric tensor where for the case of a 

flat Minkowski spacetime gμv → ημv = (−1, +1, +1, +1). It is noteworthy that in Euclidian space and 

Minkowski spacetime the metric is diagonal and constant [34]. We can now derive the modified 

geodesic equation which corresponds to the extremum of the length between two distinct points A and 

B. The Lagrangian is given by 2g x x 
  L  and the corresponding NSL is 2g x xe

 
  

. 

Lemma 2.1. (Modified Geodesic equations (MGE)): The function xμ = xµ(λ) that extremizes  

the functional 

2

g x x
b

a

S e d
  

 
 

 (3)

necessarily satisfies the following MGE on [a, b]: 
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2 2

2 2

1
0

2

dgd x dx d x dx dx dx dx
g

d d d d d d d d

      
 

 

 
              

 (4)


  are the Christoffel connections coefficients of the metric gαβ defined by [34]: 

 , , ,

1

2
g g g g 

           (5)

,g g x
      and so on. 

The proof is classical and the calculation is straightforward: In fact, from 1
2L g x x 

   , we get 

L x g x 
    and hence from the modified geodesic equation we find: 

1
, ,2 0g x g x x g x x    

            Using the chain rule, we calculate , ( )dg d g dx d
     , then by 

averaging over the interchange of ρ, ν and using the facts that ν g g 
   , we obtain Equation (4). In 

Euclidian space and Minkowski spacetime, the derivative of the metric is zero and hence the 
Christoffel symbol vanishes. Therefore, Equation (4) is reduced to (1 ) 0x g x x  

      which gives 

two independent solutions: 0x   which corresponds for a straight line or 1g x x 
     which gives 

1x x 
     which is the modified normalized four-velocity vector. 

Remark 2.1. For the case of a constant tensor metric, e.g., gμσ = k, its derivative vanishes and so do 

all the Christoffel symbols. In that case Equation (4) is reduced to: 

2

2
1 0

d x dx dx
k

d d d

   
      

 

Accordingly, we have two possible solutions: d2xμ/dλ2 = 0 or (dxσ/dλ)(dxμ/dλ) = −1/ξk. The first 

solution gives a straight line and, therefore, the geodesic is the straight line in this case whereas the 

second solution gives 1x k C       , C is an integration constant and the geodesic is again a 

straight line. It is notable that real solutions correspond for ξ < 0 and k > 0 or ξ > 0 and k < 0. In the 

static case, any free test particle follows a geodesic line in agreement with the Newton law, yet two 

different velocities are possible in our agreement. 

Remark 2.2. We can always rewrite Equation (4) as: 

 , , ,

1
0

2 2
m j m m j m nm i jim

mj in j nj i ij n

dg
x x x x g x x x g g g g x x

d


      


          

It is notable that, in the standard approach, the geodesics equations for a given manifold are known 

as they can be calculated using the standard geodesic equation, e.g., on a given plane, the  

shortest-length path between two points is the line segment which connects the points and on a given 

sphere the shortest-length path between two points is the shortest great-circle arc which connects the 

points. Besides, some mathematical theorems state that “there is only one unique set of geodesics for 

any given manifold”. Therefore, it is natural to ask—“What kinds of geodesics are predicted by the 

MGE and what these geodesics represent when compared to the standard geodesics?” In order to 

check rapidly, let us consider the unit sphere centered at the origin in three dimensions, a manifold of 

two dimensions and let A be a point of the sphere such that a parameterization is given by 
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1 2 1 2 1 2 2( , ) (cos sin ,sin sin ,cos )A x x x x x x x  such that 1 [0, 2 )x    and 2 [0, ]x    [35]. The 

corresponding metric tensor and the Christoffel symbols of the 2nd kind are respectively: 

2
2sin 0

0 1
ij

x
g

 
  
 

 

21

2

0 cot

cot 0ij

x

x

 
   

 
 

2 21 sin cos 0

0 0ij

x x 
   

 
 

and accordingly the modified geodesic equations are: 

2 22 2
21 1 1 2 1 1 2 1 2

2 2 22 2
sin sin 2cot 0

d x d x dx dx dx dx dx dx dx
x x x

d d d d d d d d d
                       

 (6)

and 

2 22 2
2 2 2 1

2 22 2
sin cos 0

d x dx d x dx
x x

d d d d
               

 (7)

Equation (6) is satisfied for x1 = k where k constant and hence Equation (7) is reduced to  

the 2nd—order nonlinear differential equation: 

22
2 2
2

1 0
d x dx

d d

          
 (8)

As stated in Remark 2.1, two possible solutions exist: d2xμ/dλ2 = 0 or 2 1dx d     . Both 

solutions yield a straight line geodesic in the real plane mainly for ξ < 0. The first solution gives 

2 [ , ]x      whereas the second physical solution gives 2 1x     assuming x2 (λ = 0) = 0. The 

solution x1 = k defines a plane through the origin of space intersecting the unit sphere in a great circle. 

The 1st solution x2 = λ corresponds for a motion around the great circle with unit speed whereas the 

2nd solution 2 1x     corresponds for a motion around the great circle with a velocity 1  . 

Equation (7) is satisfied for x2 = π/2 and therefore Equation (6) is reduced to the 2nd—order nonlinear 

differential equation: 

2 2
1 1
2 2

1 0
d x d x

d d

 
     

 (9)

Two possible solutions exist: d2x1/dλ2 = 0 or 1 1dx d      (ξ < 0). The first solution gives 

1 [0,2 ]x     whereas the second physical solution gives 1 1x     assuming x1  

(λ = 0) = 0. The solution x2 = π/2 defines a plane through the origin of space intersecting the unit 

sphere in a great circle. The 1st solution x1 = λ corresponds for a motion around the great circle with 

unit speed whereas the 2nd solution 1 1x     corresponds for a motion around the great circle with 

a velocity 1  . This may suggest that the geodesic dynamics in the ENSL approach are not 

characterized just by a universal speed, but possibly by other universal velocities, which are 
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proportional to 1  . A number of studies were proposed in literature to resolve various celestial 

anomalies that consider some anomalous acceleration and anomalous velocities in order to modify the 

law of inertia [36,37]. It should be stressed that modified geodesics equations in general relativity were 

found in literature through different aspects and frameworks, mainly within the framework of quantum 

gravity effects which lead to violation of the equivalence principle [38]. One therefore expects that the 

modified geodesics equations obtained in the ENSL approach will be motivating to use in quantum 

gravity effects since these later modify the geodesic motion of a particle. Besides, in Newtonian 

physics any violation in the equivalence principle is manifested by the modification of the geodesic 

equation [39]. In addition, modified geodesic equations are discussed with the Modified  

Newtonian Dynamics (MOND) [40–42] as a possible explanation of the galactic rotation curves. It was 

also discussed at the relativistic level within the linearized gravity limits [43], in dark energy  

length scale [44], in gravitons fractional physics [45] and fractional actionlike dark energy  

cosmology [46,47]. 

Remark 2.3. A path moving from A to B through a spacetime is specified by giving the four 

spacetime coordinates as a function of some parameter xμ(λ). For timelike paths, we can use the proper 

time τ which we can calculate along an arbitrary timelike path by 
b

a
e d    . Here λ(A) = a, λ(B) = b 

and 1 2( ( )( ))g dx d dx d 
   . Therefore we have 

1 2( ( )( ))g dx d dx dd e d e d
 

          [34]. 

In such a case, the modified Euler-Lagrange equation is written as: 

d d
x x

x d x x x x x d
 

     

                          
 

   
      

 (10)

However, one can always choose the scalar parameter of motion λ = τ such that 1e  , 
i.e., 2 , 0,i n n       and then we find: 

2
2

2 24
g dx dx d

n
 




 


 (11)

One can select ξ = ±πi which gives gμνdxμdxν = −n2dτ2 and therefore the interval between two closed 
points is 2 2 2ds g dx dx n d 

    , a result which can be interpreted in two different ways as stated in 

the following lemma: 

Lemma 2.2. In the set   of integers, in order to preserve the regular form of the first integral of the 
standard geodesic equation, we can either introduce new spacetime coordinates X x n   and 

changing metric signature g g     so that 2ds dX dX 
  or define the discretized 

spacetime metric 2g n g  with negative sign which yields a new discretized interval between 

two closed points 2d dx dx 
s g . 

Lemma 2.3. For ξ = ±2πi, the action functional 
b

a
S e dt  L  is complexified and the modified 

geodesic Equation (4) or (6) is reduced to its standard form. 

Lemma 2.4. For ξ = ±2πi, the usual spacetime ds2 = gμνdxμdxν changes its signature and all its 
spacetime metric components are discretized and take one of the follows forms: 2d dx dx 

s g  or 
2d dX dX 

  . 
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In reality, complexification in general relativity was discussed in literature through different  

contexts [48–52]. Spacetime complexification has many advantages in general relativity (see [50] and 

references therein). Besides, the signature change in general relativity is discussed in literature and has 

many interesting cosmological and astrophysical consequences (see [53] and references therein). 
Remark 2.4. If we choose ξ = ±2π then we find 2 2 2ds g dx dx n d 

    and accordingly in the set 

 , in order to preserve the regular form of the first integral of the standard geodesic equation, we can 
either introduce new spacetime coordinates X x n   without changing metric signature which gives 

ds2 = gμνdxμdxν or define the discretized spacetime metric 2g n g with positive sign which yields 

a new discretized interval between two closed points 2d dx dx 
s g . 

We discuss accordingly both cases: 

2.1. New Spacetime Coordinates with a Metric Signature Change (NSTC + MC) 

In fact, working in the new coordinates system X x n   result on the modification of many 

differential operators like the gradient , the Laplacian ∆ and the d’Alembertian □. More explicitly,  

we have: 

1 1

x n X n 

 
     

 
▼  (12)

2 2
2 2

1 1

x x n X X n
 

   

   
           

   
▲ ▼  (13)

2 2

1 1

x x n X X n
 

   

   
       

   
□ ■ □  (14)

δαβ is the Kronecker symbol and ▼, ▲ and ■ are respectively the gradient, Laplacian and 

d’Alembertian operators in the new complexified coordinates system. The components 
0( , ) ( , , , ), 1, 2,3ix x x x y z i  

   are now complexified and the complexified coordinates system is 
0( , ) ( , , , )iX X X X Y Z x n 

  τ . According to Einstein postulates, the geometry should manifest 

itself as spacetime curvature through Einstein’s field equations (EFE): Rαβ − gαβ R/2 = kTαβ and in an 

empty spacetime the field equations are Rαβ = 0. Here Rαβ is the Ricci tensor, R = gαβ Rαβ is the scalar 

curvature, Tαβ is the energy-momentum tensor and k is a constant to be determined [54]. In the new 
system of coordinates, Christoffel symbols Equation (5) are n 

  Γ . The Riemann tensor is 

written directly in terms of the new spacetime metric: 

 , , , ,2 2

1 1
R

n n
             
                           R Γ Γ Γ Γ Γ Γ  (15)

and therefore 

 , , , ,

1

2
   

                  R Γ Γ Γ Γ       (16)

 , , , ,2 2

1 1 1

2
g g g g g g R

n n
   

              
          
 

Γ Γ Γ Γ  (17)
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It is then obvious that in the new system 2R n 
  R  and 2R n   R . The Ricci tensor is 

obtained from the Riemann tensor by simply contracting over two of the indices which gives 
2 2 2R g R n g n n     

       R R R . It is easy to check that the EFE is now 
22 k n   R R  ,   being the stress energy-momentum tensor in the new system. To find k, 

we follow the standard arguments and we consider a weak gravitational flat and static spacetime field, 
e.g., the solar system and we perturb the metric   around the new Minkowski metric   H  as 

, 1      H . We suppose now that we have a particle moving freely with a slow velocity 

with respect to the celerity of light and moving along a geodesic. Since then, the velocity product is too 

small, the only terms contributing at this level are those with subscripts 00 with Γ0 
00 = 0 since it contains 

only time derivatives which are assumed to vanish. The time component is therefore not interesting 

and we are left with spatial components, which are 2 2
00 0id X d  


τ . As we have slow motion, we 

can replace τ by t nt and then 2 2
00 0i id x dt   . We evaluate Γi 

00 and we find 00 00 2i   and 

therefore the geodesic equation become 2 2
00 2 0id x dt    and finally we get 

2 2 (1 )( ) 0d X d n X   
 
τ , Φ = ε00/2 being the potential field. We can introduce the new discretized 

potential field nφ  in order to recover the standard form of the Poisson equation 
2 2 0d X d X   
 

τ φ . In the weak field approximation, and in particular for the 00-component, we 

find 00   ▲R  which gives 2 2 2
00 (1 )n X   φR . For the case of a dust with a density ρ and 

pressure-free (Newtonian case), Tαβ = ρuαuβ where (1, )u  u  is a unit timelike vector tangent to the 

worldlines of the dust particles. In the new system X x n  , we have U u n   and then the 

discrete stress energy-momentum tensor for the case of a dust is now nU U    . After substituting 

in the field equations 22 k n   R R   we obtain in the Newtonian limit 
2( 2)k U U k n 

    R  . Accordingly, 2
00 2k n R  and using 2 2 2

00 (1 )n X   φR  we 

find 2 2 2 22 4X k n G n       φ  which gives k = −8πGn4 since the Poisson equation in our 

framework is 2 2 24X G n       and the EFE are now written as 22 8 Gn     R R  . 

Nevertheless, we can introduce a discrete gravitational field 2GnG so that both the Poisson equation 

and the EFE are recovered normally. For n = 1 all the previous arguments are reduced to their standard 

forms. These results hold for ξ = ±2π. However, for ξ = ±2π, then the EFE is 
22 8g Gn     R R   where 2 2R g R n g n   

   R Rand 2GnG .  

2.2. A Discretized Spacetime Metric (DSTM) 

If we choose the discrete metric 2g n g then the gradient   and the Laplacian   operators 

keep their standard forms whereas the d’Alembertian operator is □ ■ . The perturbation of the weak 
gravitational flat and static spacetime field is now , 1    ηg h h  where 2n η and 

2h n h . It should be pointed out that in that case that we require that  
  g g , Christoffel 

symbols are not affected, since raising and then lowering the same index are inverse operations. The 

Riemann tensor written directly in terms of the spacetime metric: 
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 , , , ,

1

2
R g g g g g g   
                         (18)

is now written in terms of 2g n g as: 

 2
, , , ,

1

2
n    

              
            
 

 g g g g g g  (19)

and therefore 2n
    . The Ricci tensor is accordingly 2n

        and the 

resulting Ricci scalar is 
 g . From Bianchi identities ; ; ; 0           we find 

; ; 2 
  g  and hence the Einstein tensor is 2  g . The new EFE is 

2 k     g  where u u 
    in the vacuum. Then, in the Newtonian limit we have 

2k u u k 
     g  which gives 2

00 2k n   and using 2 2
00 x     we find 

2 2 22 4x k n G          which gives k = −8πGn2 since the Poisson equation is 2 2 4x G      . 

Accordingly, the Einstein field equations are 22 8 Gn       g . One can introduce a 

discrete gravitational field 2GnG so that the standard form of the EFE is recovered, i.e., 
2 8       Gg . These results hold once more for ξ = ±2πi. However, for ξ = ±2π, then the 

EFE is 22 8g Gn     R R   and again we have 2 2R g R n g n   
      and 2GnG . 

Remark 2.5.: General covariance which is defined as “the ability to change system coordinates 

while not affecting the validity of the field equations” is an indispensable property in Einstein’s 

general relativity as well in any modern field theory. It is notable that in Einstein’s general relativity, 

the spacetime is considered semi-Riemannian, the gravity is represented by the spacetime curvature 

and the metric tensor governed the EFE [55]. Besides, general relativity is characterized by its 

invariance under active diffeomorphisms and background independence [56]. However, that theory is 

non-discrete, whereas in our approach, either we have new spacetime coordinates with a metric 

signature change or the spacetime metric is discretized. The question then arises is the covariance 

principle as well as the underlying diffeomorphism structure are affected in the ENSL approach. In 

fact, if the condition 1e   does not hold for λ = τ then the problem seems to be complicated due to 

the presence of the RHS term in Equation (10). One expects accordingly that the covariance principle 

is violated due to the presence of time-dependent terms in the geodesic equation. However, there are 

many arguments which states that the violation of the general covariance may serve for the existence 

of the dark matter of the gravitational origin [57,58]. Breaking diffeomorphism invariance was also 

discussed in emergent gravity theory [59] and in quantum gravity [60]. Whatever is the case, we argue 
that the constraint 1e 

, which yields to discreteness, may be relevant for more general theories in 

which Einstein’s general relativity is an emergent theory from a more fundamental theory that requires 

a primary version of diffeomorphism invariance and general covariance. This is an open problem that 

deserves a careful analysis. It should be stressed at the end that the in general changing coordinates 

may lead to new interesting results in relativistic astrophysics and cosmology. Nevertheless, in our 

approach, we have a passage from continuous to discrete coordinates. Though the simplicity of such a 

transition, it may be helpful to explore in a future work if such a passage may lead to a more 

fundamental symmetry principle and to a generalized covariance principle in nature which in their turns 

lead to a generalization of relativity theory. There are some arguments which state that a number of 
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present cosmological problem are raised since the Einstein’s theory of gravitation is not a perfect 

theory [61]. One hopes that our discrete approach will be able to solve some of these tricky 

contemporary problems. There still seems to be interest in discussing discrete static and  

Reissner-Nordstrom rotating black holes based on our discrete approach in a future work. One expects 

that important consequences in particular when dealing with black-holes quantum gravity fluctuations, 

their discrete energy spectrum [62] and with quantum micro-black holes [63] which are predicted in 

extra-spatial dimensions theories. At the end, let us add that in the NSTC + MC case, the scalar 

curvature is given by 2R n  R . Using this result in de-Sitter space with the standard metric 
2 2 2

0 1

N

ii
ds dx dx


    defined as a submanifold of a Minkowski space of one higher-dimension [64] 

and which is characterized by the scalar curvature 2 ( 2)R N N   ,   being the cosmological 

constant, we find that for ξ = ±2πi, 22 ( 2)N n N   R . One then can define a quantized 

cosmological constant 2n Λ  with 0R  or 2n Λ  with 0R  which in our opinion can have 

extreme consequences on the physics of the early universe [65] and in quantum geometry [66]. 
However, for ξ = ±2π, the quantized or discretized cosmological constant is defined by 2n Λ  

yet 0R . 

As a simple illustration, we consider a particle moving under the effect of the gravitational field 

merely. In the presence of a spherically symmetric massive body, the flat spacetime metric is modified 

and according to the Birkhoff’s theorem, the Schwarzschild solution is the unique spherically 

symmetric vacuum solution to general relativity [54]. For the Case 2.1., using Einstein’s field 

equations 0 R  in the vacuum and merely in the new system 0( , ) ( , , , )iX X X X Y Z x n 
  τ , it 

can be seen that the solution with 2GnG , r n r , t n t is: 

1

2 2 2 2 2 4 2 2
3 3

2 2
1 1

M M
d n d n d n d

n n


          
   

G G
s t r r Ω

r r
 (20)

1

2 2 2 2
2 2

2 2
1 1

M M
dt dr r d

rn rn


           
   

G G
 (21)

where ( , , )t r Ω  are the Schwarzschild coordinates in the new system. Here dΩ is the line element in 

the unit sphere. However, in the case of a discretized metric 2g n g , it is easy to check that the 

Schwarzschild metric takes the form: 
1

2 2 2 2 2 4 2 2
2 2

2 2
1 1

M M
ds n dt n dr n r d

rn rn


           
   

G G
 (22)

It is easy now to revisit the gravitational time dilatation and the gravitational redshift for both cases. 

First, let us consider two observers placed in a stationary gravitational field approximated by the 

Newton potential, which are supposed static with respect to the center of mass [67]. Suppose a light 

ray passes by the two observers. For the Case 2.1, it is well-known that the time lapses between two 
subsequent light crests 1 t  and 2 t  measured by both observers are related by 

1 00 1 2 00 2( ) ( )g g  t r t r which in a weak gravitational field reduces to: 
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1 1
3 2

2 2 1 2 1 2

1 1 1 1
1 1

t M M

t n n r r

    
              

t G G

t r r
 (23)

For an observer located on the surface of the Sun and another one located on the surface of the 
Earth, we find 6 22.12 10Earth Sun Sunt t n t       . In other words, for n = 1, the time lapse between the 

two crests measured on the Sun is larger than what would be measured on the surface of the Earth. 
Similarly, one finds 6 32.12 10Sun Earth Eartht t n t        (gravitational time contraction). Similarly, for 

the gravitational redshift of light, we find in our approach: 

1 2 23 2
1 2 1 2

1 1 1 1
1 1

M M

n n r r

      
                       

G G

r r
 (24)

where ν denotes the frequency of the photon. In addition, in the Schwarzschild metric Equation (21) 
two singularities appear: one at the origin and another one at 22r M n G  which is discrete and hence 

for very large discrete value of n, the metric Equation (21) is reduced to the discrete Minkowski 

spacetime. It is notable that for very large discrete value of n, the gravity in the new system is larger 
than the one in the old frame, i.e., 2Gn G G . Then, the singularity radius 22 0r M n G  for 

very large positive discrete value of n. For the Case 2.1, we find similar results.  
These results hold once more for ξ = ±2πi. On the other hand, for ξ = ±2π, X x n   and the 

metric signature is not altered yet the previous results are not altered. 

We summarize our results in Tables 1–3: 

Table 1. Main differences between standard general relativity (GR) and GR arising from 

exponential non-standard Lagrangians (ENSL). 

Details Standard General Relativity Discrete General Relativity from ENSL 

Geodesic 

equation (GE) 

2

2
0

d x dx dx

d d d

  

  

  
 

2 2

2 2

1
0

2

dgd x dx d x dx dx dx dx
g

d d d d d d d d

      
 

 

 
              

Parameterization 

(Para) 

1

0
d     

1 2( ( )( ))g dx d dx d 
  

1

0
e d     1 2( ( )( ))g dx d dx d 

    

GE after Para 0
d

x d x 

       
 

 
d d

x d x x d  

            
   

 

Condition for 

 1 2

1dx dx
d d

g
 

     1   real action 
2

, 0,
i n

n


    


  complexified action 

Discrete solutions Do not exist Exist in two different forms (Table 2) 
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Table 2. Main differences between the two independent discrete solutions obtained for  

ξ = ±2πi. 

Details 
New Spacetime Coordinates x

n
X

    with a Metric 

Signature Change g g     

A Discretized Spacetime Metric 

2

g

n


 g  

EFE 8
2    
R

R  G  8
2     G


 g  

Scalar curvature 
2R g R n 

   R 2R g R n 
     

Discrete gravity 
2G n G  2G n G  

The above results suggest that gravity originates from “spacetime discreteness” if the standard 
action is replaced by the ENSL. If we set by 2

n GnG , there are infinite numbers of quanta of gravity, 

i.e., gravity can take on only discrete values and then it is quantized. It is interesting to obtain discrete 

scalar curvature in all previous cases and may have important consequences in Riemann  

geometry [68,69] and it is an open problem. 

Table 3. Main differences between the two independent discrete solutions obtained for  

ξ = ±2π. 

Details 
New Spacetime Coordinates x

nX
   Free from a 

Metric Signature Change 

A Discretized Spacetime Metric 

2

g

n


 g  

EFE 8
2

g    
R

R G  8
2     G


 g  

Scalar curvature 
2R g R n 

  R  2R g R n 
     

Discrete gravity 
2G n G  2G n G  

3. Some Applications of Discrete Gravity, Discrete Metric and New Spacetime Coordinates 

The aim of this section is to give some implications of NSTC + MC and DSTM in theoretical 

physics, yet their details will be addressed carefully in future works. 

3.1. The Linearized Theory 

We start by the “mathematics of the linearized theory” in discrete gravity approach. In the standard 
linearized theory, the spacetime is almost flat and takes the form 2 ( ), 1)ds h h     . If we adopt 

the trace-reversed metric perturbation 2h h h
      and the Lorentz gauge , 0h 

  , then the 

Einstein field equations are reduced to a set of decoupled wave equations written as 16h GT  □ [70]. 

The solution of the equations is given by 2 k xh A e


  and describes gravitational waves 

propagating at the celerity of light with null wave vector kα kα = 0. Outside a sphere surrounding the 

source, we have A0β = 0, i.e., transverse wave since Aikkj = 0 and Aj
j = 0, i.e., traceless wave amplitude. 

Therefore, for the so-called transverse-traceless gauge, 0h □ . This is the wave equation for 

massless gravitons. For the case of massive gravitons, it was observed in [71] that the gravitational 

waves may be absorbed by a background cosmic fluid with density ρ characterized by a negative 
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pressure p = −ρ, and described by an energy–momentum density tensor of the form Tαβ = −pgαβ. In a 

conformally flat spacetime described by the metric tensor gαβ = eψ ηαβ with ψ being a some function of 

the spacetime coordinates, the gravitational waves are described by the massive wave equation 
2
gm S    □  where m2 

g  = 64πGρ/3 and S = 32πGρ/3 [72]. 

For the case of NSTC + MC, the massless graviton wave equation is not modified, whereas for the 
massive graviton wave equation we find 2

g    m S□  where 2 2 2
g gm nm  and 2S nS  are 

respectively the discrete graviton mass and the discrete gravitational source. For the case of DSTM, we 
find as well 2

g    m S□ . This also implies that the scalar curvature R  or   which is 

proportional to the energy density (and hence to m2 
g ) by means of the EFE is also discrete, i.e., 

2 2
gm nR  and 2 2

gm n . Therefore we conclude that in our approach we can obtain discrete 

graviton spectrum and the graviton boson may possess a discrete mass which tends to zero for very 

large discrete values of n. It is notable that there are many arguments which state that the square of the 
graviton mass is closely related to the cosmological constant  , i.e., 2

g m  [73]. If it is the true case, 

then we can associate for the cosmological constant discrete values 2n ∧ . For large values of n, 

the discrete cosmological constant tends to zero. This may have important cosmological consequences 

that will be discussed in a future research work. 

3.2. The Gravitational Bohr Atom 

Let us look to the problem of the gravitational Bohr atom. In fact we assume a small mass m 

orbiting a mass M >> m with a velocity ν in a 1/r potential. The kinetic energy is mv2/2 and the 
quantized gravitational potential in our approach will be 2mM r mMGn r  G  and accordingly the 

total energy is given by mv2/2 − mMGn2/r. However, one can define the quantized radius 2r nr  and 

subsequently the angular momentum is 2 2mv mvr n L n  r = . However, the centripetal 

acceleration of the planet is given by 2 2mv mMGr r  which gives 2v MG r . In normal units 

where , 1c  , we can write ( )m MG n  h r  where h  is the effective Planck’s constant. Then 
2 2 2 4 2 2n m MG n m M   Gh hr . This result coincides with [74,75] but from a completely different 

approach. The total energy is then given by 2 3 2 2 2 22 2 2E GmM mM n m M G n      Gr r . 

However, if we make the substitution 0, , 1 4m e M e G    , then we recover the Bohr’s 

quantum results [76]. In the new system, we have 4 2 2n m M  Ghr  and 22E mM n G r . If we 

introduce the discrete Planck’s constant n h , the discretized masses 2m nw  and 2M n , we 

find 2 2 2n  Gh wr  and 22E n Gw r . Hence, we recover the general form of the quantized 

radius in the gravitational Bohr atom problem. Notice that the microscopic discrete mass (mdm) is 
2m nw  whereas the macroscopic discrete mass (Mdm) is 2Mn . For very large values of the 

integer n, mdm become smaller whereas Mdm become larger yet the product kw  where k is a 

constant. Therefore, mdm times Mdm is a universal constant. We expect that discrete masses and 

discrete Planck’s constant have motivating consequences in quantum mechanics and quantum gravity. 
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3.3. Black Hole Hawking's Radiation 

As a 3rd illustration, we discuss the implication of the discrete gravitational constant on Hawking’s 

radiation emitted by a black hole. This fact represents one of the most amazing predictions in 

theoretical physics. According to Hawking, a black hole emits continuous thermal radiation whose 

temperature is given in units 1c   by T = 1/8πGM [77]. Here, M is the mass of the Schwarzschild 
black hole. In our framework, this temperature must be discrete and replaced by 2 8T n M G  which 

gives a discrete temperature given by 2n T . Now, from the discrete black hole temperature, we can 
calculate the discrete entropy 2 2d dQ dQ n T dS n     where dQ is the quantity of heat added. 

Accordingly, we find 2S n  and since in Hawking’s radiation theory S = A/4 with A being the 

surface area of the black hole, then 24 4A n    where 2A n  is the discrete surface area. We 

therefore conclude that, in NSTC + MC and DSTM approaches, a Schwarzschild black hole has 

discrete entropy/discrete surface area. In the particular case of a Schwarzschild hole, the area of such a 
black hole with mass M is A = 16πG2M2 and therefore 2 2 216 G M n  . As a result, we conjecture 

that the eigenvalues of the black hole event horizon area are of the form 2 2
PA n L  where LP is the 

Planck’s length. This result modifies the Bekenstein’s black hole discrete spectrum arguments where 
2
PA nL  [78]. The angular frequencies of the quanta of the Hawking radiation are then given by 
2

0 32n GM    [79]. Hence, for large values of n, ω0 in NSTC + MC and DSTM approaches is 

much larger than the value obtained by Bekenstein. 

4. Conclusions 

In this paper, we have discussed some implications of NSL, in particular ENSL, in general 

relativity. A number of attractive features are obtained which confirm that NSL deserves careful 

attention and serious consideration. On a given geometrical manifold  , ENSL are characterized by 

modified geodesic equations where some of their physical properties were discussed. It was observed 

that the geodesic dynamics in the ENSL approach is not characterized merely by a universal speed, but 
probably by additional general velocities that are proportional to 1  . When taking into account the 

timelike paths parameterization constraint, it was observed that discrete gravity and discrete spacetime 
emerge surprisingly in the theory. For 2 i    and in the set  , two different independent cases were 

obtained in order to preserve the regular form of the first integral of the standard geodesic equation: a 

geometrical manifold with new spacetime coordinates augmented by a metric signature change and a 

geometrical manifold characterized by a negative discretized spacetime metric. Both cases give raise to 

Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. 

Besides the gradient , the Laplacian  and the d’Alembertian □ operators are as well modified and 

took discrete shapes. However, for ξ = ±2π, then in the set  , in order to preserve the regular form of 

the first integral of the standard geodesic equation, one can either define a new discrete spacetime 
coordinates  X x n   without changing metric signature or define a positive discretized spacetime 

metric which yields a new discretized interval between two closed points. Both cases ξ = ±2πi and  

ξ = ±2π result on a discretized gravity whereas discretized scalar curvature is negative for the 1st case 

and is positive for the 2nd case. We have discussed three different implications of discrete gravity: 
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first, in the linearized theory of general relativity, it was observed that graviton holds a discrete 

spectrum with a discrete mass as well; second, in the theory of gravitational Bohr atom, the Planck’s 

constant is discretized and besides a balance equation between the macroscopic mass and the 

microscopic mass is obtained; third, in the Hawking’s black holes radiation theory, the entropy and the 

surface area of the black are discretized, and we conjectured that the eigenvalues of the black hole 
event horizon area are of the form 2 2

PA n L where LP is the Planck’s length and that the angular 

frequencies of the quanta of the Hawking radiation in NSTC + MC and DSTM approaches are much 

larger than values obtained by Bekenstein. It was also observed that by considering a de-Sitter space 

and dealing with the NSTC + MC case, the cosmological constant may be quantized or discretized 

which may have drastic consequences on the physics of the early universe and quantum geometry. 

Besides, the scalar curvature is negative for a positive cosmological constant and is positive for a 

negative cosmological constant. It is noteworthy that, in general relativity, a symmetric vacuum 

solution with a negative cosmological constant and a negative scalar curvature is known as the  

anti-de-Sitter space (AdS). Therefore, we have a deviation from the standard geometrical result. 

However, for ξ = ±2π, the de Sitter space is characterized by a quantized cosmological constant and a 

positive scalar curvature. All these results require more analysis; nevertheless, they prove that ENSL 

may reveal many interesting properties which could not be derived from the standard Lagrangians 

approach. It will be of interest to reformulate the geometrical ENSL approach for the case of time-

dependent metric tensor [80], the energy problem in the present theory of gravity, and some of their 

cosmological implications in the early universe. A number of details and applications are in progress. 
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