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Abstract:

 We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.
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1. Introduction

A symposium in honor of A. Selberg, which commemorated his 70th birthday, was held in Oslo, Norway, during July of 1987. From that event, the volume [1], consisting of 30 invited lectures evolved, included a lecture by S. Patterson in which the construction of Selberg’s classic zeta function [2] was extended to cover certain discrete groups (Kleinian groups) Γ acting on real hyperbolic space [image: there is no content] whose fundamental domains, however, were of infinite hyperbolic volume. We denote this Patterson–Selberg (P-S) zeta function for a Kleinian group by [image: there is no content].

For the special case with [image: there is no content] and with Γ generated by a loxodromic element, it was noticed first by the author (in the 2003 paper [3]) that [image: there is no content] had some relevant connections to the Euclidean BTZ black hole [4]. For example, we were able to express BTZ effective action directly in terms of log[image: there is no content]. Moreover, the zeros of [image: there is no content] were shown to correspond to BTZ scattering resonances, in a follow up joint work with P. Perry [5], and black hole entropy connections were described in terms of a “deformation” of [image: there is no content] [6,7,8,9,10]. Application of the BTZ scattering in [5] appears in the work of R. Aros and D. Diaz [11,12], for example, where a holographic formula is derived: a formula that relates the determinant of a scattering operator on a space asymptotically anti-de Sitter (AdS) to a “relative” determinant of a Laplacian in the bulk, a result that one can regard as an entry in the AdS/CFTdictionary.

In some later work, A. Bytsenko and M. Guimar[image: there is no content]es [13,14] (and the author [15], independently) discovered a formula that expresses the one-loop AdS gravity partition function in terms of a quotient of products involving [image: there is no content]; see Formula Equation (27) of Section 3. It has also been shown in [16] that modular invariant partition functions for an extreme conformal field theory with central charge divisible by eight have an expression in terms of [image: there is no content]. These preliminary remarks (where, again, we have focused only on hyperbolic three-space and the case of a single loxodromic generator of Γ) illustrate the natural appearances of the P-S zeta function [image: there is no content] in the physics literature and its growing applications, of which further details are presented, for example, in the review article [10].

By way of private communication with R. Gopakumar, the author received (among other notes) three pages of “Notes on the heat kernel for [image: there is no content]”, by J. David, M. Gaberdiel and R. Gopakumar, in which these authors find a product formula for the one-loop partition function for a massive spin field on thermal [image: there is no content]. They assert that their product “probably has an interpretation as a Selberg zeta function” [17]. We show in this paper (in Section 3, Formula (36)) that this indeed is the case. We use, in fact, the central result of these authors in the extended work [18] (Equation (6.9) there) to express, more generally, various one-loop spin partition functions on thermal [image: there is no content] in terms of the P-S zeta function [image: there is no content]. This includes, in particular, the partition function for the gravitino (the super partner of the graviton) in [image: there is no content] supergravity and the more general case of higher spin fermionic (and bosonic) particles.

We also establish a Gangolli–Patterson-type formula (Formula (49) in Section 4) that relates a certain transform of the heat kernel trace to the logarithmic derivative of [image: there is no content]. The formula offers an interesting contrast to the result known in the spin zero case.

The author extends special thanks to Miss Zijing Zhang for her valued assistance in the preparation of this paper.



2. The Action of [image: there is no content] on [image: there is no content], Thermal [image: there is no content], and the Patterson–Selberg Zeta Function

[image: there is no content] will denote the field of real, complex numbers, respectively. [image: there is no content]=def{(x,y,z)∈R3|z>0} denotes real hyperbolic three-space, and [image: there is no content] denotes the ring of quaternions where the bar “−” denotes complex conjugation. There are natural embeddings [image: there is no content], [image: there is no content]→H˜ given by:



[image: there is no content]



(1)




respectively, for a∈C,w∈[image: there is no content],i2=−1. Using these embeddings, one can define a standard linear fractional action of the complex special linear group [image: there is no content] on [image: there is no content] as follows. For [image: there is no content], w=(x,y,z)∈[image: there is no content], g·w∈[image: there is no content] is defined by:


[image: there is no content]



(2)




One computes that [image: there is no content] is given explicitly by:



[image: there is no content]



(3)




for:


[image: there is no content]



(4)






[image: there is no content]








Elements of R3,[image: there is no content] can also be written as column vectors. In particular, for:



[image: there is no content]



(5)




the equations in Equation (4) reduce to:


[image: there is no content]



(6)




We have interest in the case [image: there is no content]. For [image: there is no content] the ring of integers, let:



[image: there is no content]



(7)




denote the subgroup of G generated by [image: there is no content]. If [image: there is no content] is in the upper 1/2-plane [image: there is no content], for example (i.e., [image: there is no content]), then [image: there is no content] for [image: there is no content], and we can form the (Euclidean) thermal [image: there is no content] quotient Xτ=def[image: there is no content]∖[image: there is no content] for [image: there is no content]. Here, the action of [image: there is no content] on [image: there is no content] is given by Equation (6). Equivalently, this action is given by Equation (4): [image: there is no content] for:


[image: there is no content]



(8)




which is of the form given in [19,20,21], for example, with Z identified with [image: there is no content] by way of the group isomorphism [image: there is no content] (by Equation (5)) for [image: there is no content].
The Patterson–Selberg (P-S) zeta function corresponding to [image: there is no content] in Equation (7) is defined as the Euler product:



Z[image: there is no content](z)=def∏0≤k1,k2∈Z[1−(e2bi)k1(e−2bi)k2e−(k1+k2+z)2a],



(9)




which is an entire function of [image: there is no content]. Again, a more general definition is given in [1], for a discrete group Γ acting on [image: there is no content]. There is a function L defined on the 1/2-plane [image: there is no content], such that Z[image: there is no content](z)=eL(z). This function, which we denote by logZ[image: there is no content], is given by:


logZ[image: there is no content](z)=−∑n=1∞e−2an(z−1)4n[sin2bn+sinh2an]



(10)




for [image: there is no content]. Note that [image: there is no content], which by Equation (10) gives:


logZ[image: there is no content](z±iπ/2a)=−∑n=1∞(−1)ne−2an(z−1)4n[sin2bn+sinh2an].



(11)




We shall also need the logarithmic derivative:



Z[image: there is no content]′(z)/Z[image: there is no content](z)=a2∑n=1∞e−2an(z−1)sin2nb+sinh2na,



(12)




for [image: there is no content]. Similar to Equation (11), we have:


Z[image: there is no content]′(z±iπ2a)/Z[image: there is no content](z±iπ2a)=a2∑n=1∞(−1)ne−2an(z−1)sin2nb+sinh2na



(13)




for [image: there is no content].


3. The Main Result and Some Examples

The central result of [18] is a formula for the heat kernel trace [image: there is no content] for the spin Laplacian [image: there is no content], with spin s, on thermal [image: there is no content]. This is Formula (6.9) there. A slightly modified version of it is the following, which takes into account the anti-periodicity of half-integral spin particles (like fermions, with [image: there is no content] or [image: there is no content], for example):



[image: there is no content]



(14)




[image: there is no content] is zero for [image: there is no content] and one for [image: there is no content]. τ=τ1+iτ2∈[image: there is no content] ([image: there is no content], as before) is the modulus of the boundary torus [image: there is no content] of [image: there is no content]. The notation [image: there is no content] in Equation (8) of Section 2, which is that of [19,21], differs from the notation [image: there is no content] in [18]: the τ in [18] is [image: there is no content] in [19,21]. Thus, we take here [image: there is no content]=Γ∖[image: there is no content] as thermal [image: there is no content], where [image: there is no content] is the subgroup generated by the element:


[image: there is no content]



(15)




In Formula (14), the infrared divergent term due to the infinite hyperbolic volume of [image: there is no content] is, by convention, neglected. [image: there is no content] correspond respectively to the angular potential θ and inverse temperature β. The heat kernel on [image: there is no content] is obtained, of course, by averaging over Γ the heat kernel on [image: there is no content] (the method of images), and one obtains the trace [image: there is no content] by integration (over [image: there is no content]) along the diagonal. In the spin zero case ([image: there is no content]), a proof of Formula Equation (14) is given in [23], for example; also, see [24,25,26,27], for example.

We apply Formula Equation (14) in this section to set up a general formula (once and for all) that expresses the effective energy −log(−[image: there is no content]+M) in terms of the P-S zeta function. See Theorem 1, which we use to show that various zeta function expressions of one-loop partition functions can be derived, uniformly, by varying the spin and mass parameters [image: there is no content].

Start with the standard formula:



∫0∞t−[image: there is no content]e−A/4te−Btdt=2πAe−AB,A>0,B≥0,



(16)




to compute:


−logdet(−[image: there is no content]+M)=def∫0∞K(s)(τ,τ¯;t)e−Mtdtt.



(17)




Plug in Formula Equation (14) and commute the integration with the summation, as one would usually do. In the present case (for the choices [image: there is no content], with [image: there is no content]), Formula Equation (16) gives:



−logdet(−[image: there is no content]+M)=(2−δ(s,0))2∑n=1∞(−1)n2se−nτ2s+1+Mcos(snτ1)n[sin2nτ12+sinh2nτ22]



(18)




for [image: there is no content] (since [image: there is no content] by definition of τ). Thus, the main point is to express the sum in Equation (18) in terms of [image: there is no content], for a suitable choice of Γ.
For this, define [image: there is no content] and write [image: there is no content]:



[image: there is no content]



(19)




which permits Equation (18) to be written as:


−logdet(−[image: there is no content]+M)=(2−δ(s,0))2∑n=1∞(−1)n2s[e−2nτ22(z−iτ1s/τ2−1)+e−2nτ22(z+iτ1s/τ2−1)]2n[sin2nτ12+sinh2nτ22].



(20)




We separate out the integral and half-integral spin cases. If [image: there is no content], then for [image: there is no content] in Equation (20), and if [image: there is no content], then [image: there is no content]. In the latter case, the sum in Equation (20) is the sum:



[image: there is no content]



(21)




by Equation (11). In the former case [image: there is no content], we have by Equation (10) a similar sum of logs, but without the term [image: there is no content]. Going back to the definition of z and definition Equation (17), we have established:

Theorem 1. 
Let [image: there is no content](possibly [image: there is no content]) with [image: there is no content]. The following formula holds:



logdet(−[image: there is no content]+M)=2[logZ[image: there is no content](1+s+1+M+iτ1s/τ2)+logZ[image: there is no content](1+s+1+M−iτ1s/τ2)]



(22)




for integral spin [image: there is no content], or:


2[logZ[image: there is no content](1+s+1+M+iτ1s/τ2+iπ/τ2)+logZ[image: there is no content](1+s+1+M−iτ1s/τ2−iπ/τ2)],



(23)




for half-integral spin s=12,[image: there is no content],52,72,⋯, where the Patterson–Selberg zeta function Z[image: there is no content]is given by definition Equation (9) for the choice [image: there is no content]there. That is [image: there is no content]=Γ(τ2/2,τ1/2)=def{γτn|n∈Z}is the subgroup of [image: there is no content]generated by the element:


[image: there is no content]



(24)




as in Equation (5) and Equation (7). Consequently, we also have (since [image: there is no content](z)¯=[image: there is no content](z¯)):


det(−[image: there is no content]+M)=Z[image: there is no content](1+s+1+M+iτ1s/τ2+iπ/τ2)2Z[image: there is no content](1+s+1+M−iτ1s/τ2−iπ/τ2)2=|Z[image: there is no content](1+s+1+M+iτ1s/τ2+iπ/τ2)|4



(25)




for s=12,[image: there is no content],52,72,⋯, where the term [image: there is no content]is neglected for [image: there is no content]


Note that the [image: there is no content] here differs from the [image: there is no content] in Section 2, which is not an issue. We have focused on the case [image: there is no content] for the applications we have in mind.

Since various one-loop partition functions are given in terms of det(−[image: there is no content]+M), for suitable [image: there is no content], we can use the preceding formula to express these functions in terms of Z[image: there is no content]. In what follows are some examples (that draw freely from the results and notation in the literature) where, for convenience, we shall write Γ for [image: there is no content]=Γ(τ2/2,τ1/2).

From (7.7) of [18], for example,



[image: there is no content]



(26)




Thus, by Equation (25):



Z1−loopgraviton=[image: there is no content](3+iτ1τ2)2/[image: there is no content](2+2iτ1τ2)2=[image: there is no content](3+iτ1τ2)[image: there is no content](3−iτ1τ2)[image: there is no content](2+2iτ1τ2)[image: there is no content](2−2iτ1τ2),



(27)




where, again, we use that [image: there is no content](z)¯=[image: there is no content](z¯). As indicated in the Introduction, Formula Equation (27) was found by A. Bytsenko and M. Guimarães [13], as well as (independently) by the author; see Theorem 3.26 on page 337 of [15]. Equation (27) corrects the slight error in the version given on page 337 in [13].
For the Majorana gravitino of [image: there is no content] supergravity, one has by (7.27) of [18], for example,



[image: there is no content]



(28)




which, by Equation (25), can be expressed as:


[image: there is no content]=[image: there is no content]([image: there is no content]+i[image: there is no content]τ1τ2+iπτ2)2[image: there is no content](52+i2τ1τ2+iπτ2)2=[image: there is no content]([image: there is no content]+i[image: there is no content]τ1τ2+iπτ2)[image: there is no content]([image: there is no content]−i[image: there is no content]τ1τ2−iπτ2)[image: there is no content](52+i2τ1τ2+iπτ2)[image: there is no content](52−i2τ1τ2−iπτ2).



(29)




Furthermore, compare Formula (3.11) of [14].

[image: there is no content] is also computed “from scratch” in [28].

Regarding some remarks in the Introduction, we show, affirmatively, in the next example that the one-loop partition function [image: there is no content] on [image: there is no content] computed in [17] for a spin s field of mass [image: there is no content] indeed has an interpretation in terms of a suitable Selberg-type zeta function, as these authors suspected. Their Formula (14) is:



[image: there is no content]=∏k,l≥0∞(1−qhs+kq¯h¯s+l)−1(1−qh¯s+kq¯hs+l)−1



(30)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] for [image: there is no content]. We show therefore that the product in Equation (30) is expressible in terms of the P-S zeta function [image: there is no content] in Equation (9) for Γ=[image: there is no content], where in fact, we take [image: there is no content]. Then:


qhs+kq¯h¯s+l=eiτ(hs+k)e−iτ(h¯s+l)=defeiτ2(z+s+2k)e−iτ¯2(z−s+l)=ei(b+ia)(z+s+2k)e−i(b−ia)(z−s+2l),



(31)




which simplifies to:


[image: there is no content]



(32)




Similarly:



[image: there is no content]



(33)




By definition Equation (9) (for any [image: there is no content]):



Z[image: there is no content](z±ibas)=∏0≤k,l∈Z1−(e2bi)k(e−2bi)le−(k+l+z)2ae∓2bsi,



(34)




which, by Equation (32) and Equation (33), gives for Γ=[image: there is no content]:


[image: there is no content](z+ibas)=∏k,l1−qh¯s+kq¯hs+l,[image: there is no content](z−ibas)=∏k,l1−qhs+kq¯h¯s+l=[image: there is no content](z+ibas)¯.



(35)




Therefore, by definition of [image: there is no content], we can express Formula Equation (30), for [image: there is no content], as:



[image: there is no content]=[image: there is no content](1+(s−1)2+m02+isτ1/τ2)−2=[image: there is no content](1+(s−1)2+m02+isτ1/τ2)−1[image: there is no content](1+(s−1)2+m02−isτ1/τ2)−1.



(36)




Formula Equation (29), which involves fermions of spin [image: there is no content], can be completely generalized, which we now show. In their study of M. Vasiliev’s higher spin supergravity on [image: there is no content], T. Creutzig, Y. Hikida and P. Rϕnne [29] obtain in their Equation (3.7) one of their main results: the computation of the one-loop determinant [image: there is no content] (in their notation) for higher spin fermionic particles:



[image: there is no content]=det12−Δ+(s+12)(s−52)TT(s+12)det12−Δ+(s−12)(s+12)TT(s−12)=∏n=s∞|1+qn+1/2|2



(37)




for [image: there is no content] In this notation, which we shall translate to our earlier notation, it is emphasized that the Laplacian Δ on [image: there is no content] is restricted to act on transverse, traceless components of spin [image: there is no content] gauge fields.
For our purpose, and for consistency with earlier notation, we start with an arbitrary half-integral spin [image: there is no content], [image: there is no content] Then, for us, the determinant quotient in Equation (37), which we shall also denote by [image: there is no content], means:



[image: there is no content]=[image: there is no content]=det(−Δ(m+12)+(m+12)(m−52))det(−Δ(m−12)+(m−12)(m+12))12.



(38)




Thus, for [image: there is no content], for example, [image: there is no content] is exactly the one-loop partition function for the gravitino given in Equation (28) and Equation (29). We generalize Equation (29) by expressing [image: there is no content], similarly, in terms of the P-S zeta function [image: there is no content], again for Γ=[image: there is no content]. Note first that for [image: there is no content], respectively, [image: there is no content], [image: there is no content], respectively. Therefore, [image: there is no content], respectively, so that Theorem 1 gives:


[image: there is no content]=Z[image: there is no content]((1+2m)/2+i(m+12)τ1/τ2+iπ/τ2)2Z[image: there is no content]((3+2m)/2+i(m−12)τ1/τ2+iπ/τ2)2=Z[image: there is no content](s+isτ1/τ2+iπ/τ2)2Z[image: there is no content](s+1+i(s−1)τ1/τ2+iπ/τ2)2=Z[image: there is no content](s+isτ1/τ2+iπ/τ2)Z[image: there is no content](s−isτ1/τ2−iπ/τ2)Z[image: there is no content](s+1+i(s−1)τ1/τ2+iπ/τ2)Z[image: there is no content](s+1−i(s−1)τ1/τ2−iπ/τ2)



(39)




for [image: there is no content], which is the desired generalization of Formula Equation (29) and which covers the higher spin fermionic particles considered in [29].
Similarly, M. Gaberdiel, R. Gopakumar and A. Saha in [30] compute the one-loop partition function [image: there is no content] (B for bosons) for quadratic fluctuations of fields about a thermal [image: there is no content] background:



[image: there is no content]=det(−Δ(s−1)+s(s−1))det(−[image: there is no content]+s(s−3))12=∏n=s∞1|1−qn|2



(40)




for [image: there is no content]. Noting that [image: there is no content], respectively, we obtain from Theorem 1:


[image: there is no content]=|Z[image: there is no content](1+s+i(s−1)τ1/τ2)|2|Z[image: there is no content](s+isτ1/τ2)|2=Z[image: there is no content](1+s+i(s−1)τ1/τ2)Z[image: there is no content](1+s−i(s−1)τ1/τ2)Z[image: there is no content](s+isτ1/τ2)Z[image: there is no content](s−isτ1/τ2).



(41)




Thus, in the pure gravity case, with [image: there is no content] in particular, Formula (41) reduces to Formula Equation (27) for the one-loop partition function of the graviton.



4. A Gangolli–Patterson-Type Formula in the Presence of Spin

In this section, we present a new formula (in Theorem 2) that directly relates a particular integral transform of the heat kernel trace [image: there is no content] in Equation (14) to the logarithmic derivative of Z[image: there is no content]. In the spin zero case, the formula reduces to Equation (50) and Equation (51) below, which is that of [9,23], for example. Furthermore, the formula is, in fact, an exact analogue of R. Gangolli’s Formula (2.39) in [22] for the case of the generalized Selberg zeta function attached to a space form [image: there is no content] of a rank one symmetric space [image: there is no content], where [image: there is no content] is a maximal compact subgroup of a non-compact semisimple Lie group [image: there is no content] and where Γ0⊂[image: there is no content] is a discrete subgroup, such that Γ0/[image: there is no content] is compact. Here, we note that for [image: there is no content]=SL(2,C), [image: there is no content]=SU(2), [image: there is no content]=(i)[image: there is no content]/[image: there is no content] is indeed a rank one symmetric space, but for Γ0=[image: there is no content],Γ0/[image: there is no content], however, is not compact. A proof of the quotient structure (i) relies on the action of [image: there is no content] on [image: there is no content] discussed in Section 1 and can be found in Appendix A2 of [9], for example.

The first step is to apply the Laplace transform formula:



∫0∞e−αtt−1/2e−β/4tdt=παe−αβ,Reα>0,Reβ≥0



(42)




with the choices [image: there is no content] for [image: there is no content]. Thus, we assume that [image: there is no content]:


∫0∞e−z(z−2)te−n2τ22/4te−(s+1)tt−1/2dt=π(z−1)2+se−nτ2(z−1)2+s.



(43)




Again, commute the integration with the summation in Equation (14), assuming (ii). Equation (43) gives:



∫0∞e−z(z−2)tK(s)(τ,τ¯;t)dt=(2−[image: there is no content])τ24(z−1)2+s∑n=1∞(−1)2ns(cos(snτ1))e−nτ2(z−1)2+ssin2nτ12+sinh2nτ22.



(44)




The second step, which is the main step (as in the argument to establish Theorem 1), is to relate the sum in Equation (44) to Z[image: there is no content], i.e., specifically to the logarithmic derivative of Z[image: there is no content]. For this, let:



[image: there is no content]



(45)




Then, for [image: there is no content], Equation (13) gives:



ZΓ′([image: there is no content]±iπτ2)/[image: there is no content]([image: there is no content]±iπτ2)=τ24∑n=1∞(−1)ne−nτ2(z−1)2+s±isτ1τ2sin2nτ12+sinh2nτ22.



(46)




In other words, we see that by Equation (46):



ZΓ′(w+±iπτ2)/[image: there is no content](w+±iπτ2)+ZΓ′(w−±iπτ2)/[image: there is no content](w−±iπτ2)=τ24∑n=1∞(−1)ne−nτ2(z−1)2+s2cosnsτ1sin2nτ12+sinh2nτ22=(z−1)2+s∫0∞e−z(z−2)tK(s)(τ,τ¯;t)dt



(47)




for s=12,[image: there is no content],52,72,⋯. In the integral case [image: there is no content], use Equation (11) (instead of Equation (13)) to conclude, similarly, that:


ZΓ′(w+)/[image: there is no content](w+)+ZΓ′(w−)/[image: there is no content](w−)=τ24∑n=1∞e−nτ2(z−1)2+s2cosnsτ1sin2nτ12+sinh2nτ22=2(z−1)2+s2−[image: there is no content]∫0∞e−z(z−2)tK(s)(τ,τ¯;t)dt,



(48)




again by Equation (44). All of this gives:

Theorem 2. 
For [image: there is no content]with [image: there is no content], for [image: there is no content], as in Theorem 1, and for the heat kernel trace [image: there is no content]in Equation (14), one has that:



∫0∞e−z(z−2)tK(s)(τ,τ¯;t)dt=1(z−1)2+sZΓ′(1+(z−1)2+s+isτ1τ2+iπτ2)[image: there is no content](1+(z−1)2+s+isτ1τ2+iπτ2)+ZΓ′(1+(z−1)2+s−isτ1τ2+iπτ2)[image: there is no content](1+(z−1)2+s−isτ1τ2+iπτ2)



(49)




for s=12,[image: there is no content],52,72,⋯. The term [image: there is no content]could be replaced by [image: there is no content]. For [image: there is no content], the formula in Equation (49) holds if we neglect the term [image: there is no content]and multiply the right-hand side there by (2−[image: there is no content])/2, which is one for [image: there is no content]and is [image: there is no content]for [image: there is no content]. Thus, for integral spin [image: there is no content], Equation (49) is replaced by Formula Equation (48), again with [image: there is no content]defined in Equation (45).


In Theorem 2, we are mainly interested in the case [image: there is no content]. In particular, the hypothesis [image: there is no content] holds if [image: there is no content]. For [image: there is no content], the latter condition is [image: there is no content], the graph of this inequality being the set of points [image: there is no content] in the two shaded areas below (including the boundaries [image: there is no content]):



 [image: Mathematics 03 00653 i001]








In case [image: there is no content], we can use that for the branch of the square root with [image: there is no content], and one has [image: there is no content] for [image: there is no content] for [image: there is no content]. We also assume [image: there is no content] (for [image: there is no content]). Both of these conditions hold for z in the right side of the shaded area above (with the boundaries [image: there is no content] not included):



∫0∞e−z(z−2)tK(0)(τ,τ¯;t)dt=1(z−1)ZΓ′(z)/[image: there is no content](z).



(50)




Here, by Equation (14),



[image: there is no content]



(51)




and as we have indicated earlier, with references given, Formula Equation (50) was already known for [image: there is no content]. In [9], for example, [image: there is no content] is denoted by [image: there is no content], and Formula Equation (50) is proven for [image: there is no content] (a domain of z larger than the right side of the shaded area above). Moreover, in that reference (again, where the notation [image: there is no content] here and there corresponds to [image: there is no content], respectively), we show that the transform of [image: there is no content] in Equation (50) coincides with the trace of the resolvent kernel [image: there is no content] (or Green’s function) of the Laplacian [image: there is no content]:


∫0∞e−z(z−2)tK(0)(τ,τ¯;t)dt=∫∫∫Γ/[image: there is no content][image: there is no content](p,p;z)dv(p)



(52)




for [image: there is no content], where dv=dxdydz/z3 is the hyperbolic volume element. This means that one can think of Formula Equation (49) as a type of “spin version” of Patterson’s formula: Proposition 3.3 in [1]; our normalization of [image: there is no content] differs from his by a factor of two. A version of Patterson’s formula is also developed in [9] for the BTZ black hole with a conical singularity [4,6].
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Errata

The review article [10] was referenced in the Introduction. We take this opportunity to correct some minor errors therein.


	The statement [image: there is no content] in Equation (40) should read [image: there is no content].


	In Equation (58), a parenthesis should be added: [image: there is no content] should read [image: there is no content].


	In the third sentence following Equation (63), the phrase “extended to deformation (14)” should read “extended to the deformation (14)”. Thus, in the article, “the” should be added.


	In the sentence that concludes Section 4, the phrase “single zero [image: there is no content] of z” should read “single non-trivial zero [image: there is no content] of z”, since clearly, the gamma function used in Definition (72) has trivial zeros at s=−12,−[image: there is no content],−52,⋯.


	The phrase “By the second Formula in (46)” that precede Equation (82) should read (simply) “By Formula (47)”.


	The phrase “Fourier transform of [image: there is no content]” that follows Equation (86) should read “Fourier transform of [image: there is no content]”.


	In Equation (89), we should have parentheses: [image: there is no content] should read [image: there is no content].


	In Equation (50), we need another parenthesis: [image: there is no content] should read [image: there is no content].
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