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1. Introduction

In 1950–1951, Laurent Schwartz published a two volumes work Théorie des Distributions [1,2],
where he provided a convenient formalism for the theory of distributions. The purpose of this paper
is to present a self-contained account of the main ideas, results, techniques, and proofs that underlie the
approach to distribution theory that is central to aspects of quantum mechanics and infinite dimensional
analysis. This approach develops the structure of the space of Schwartz test functions by utilizing
the operator

T = − d2

dx2
+
x2

4
+

1

2
. (1)

This operator arose in quantum mechanics as the Hamiltonian for a harmonic oscillator and, in that
context as well as in white noise analysis, the operator N = T − 1 is called the number operator.
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The physical context provides additional useful mathematical tools such as creation and annihilation
operators, which we examine in detail.

In this paper we include under one roof all the essential necessary notions of this approach to the test
function space S(Rn). The relevant notions concerning topological vector spaces are presented so that
the reader need not wade through the many voluminous available works on this subject. We also describe
in brief the origins of the relevant notions in quantum mechanics.

We present

• the essential notions and results concerning topological vector spaces;
• a detailed analysis of the creation operator C, the annihilation operator A, the number operator N

and the harmonic oscillator Hamiltonian T ;
• a detailed account of the Schwartz space S(Rd), and its topology, as a decreasing intersection of

subspaces Sp(Rd), for p ∈ {0, 1, 2, ...}:

S(Rd) =
⋂
p≥0

Sp(Rd) ⊂ · · · ⊂ S2(Rd) ⊂ S1(Rd) ⊂ L2(Rd)

• an exact characterization of the functions in the space Sp(R);
• summary of notions from spectral theory and quantum mechanics;

Our exposition of the properties of T and of S(R) follows Simon’s paper [3], but we provide
more detail and our notational conventions are along the lines now standard in infinite-dimensional
distribution theory.

The classic work on spaces of smooth functions and their duals is that of Schwartz [1,2]. Our purpose
is to present a concise and coherent account of the essential ideas and results of the theory. Of the
results that we discuss, many can be found in other works such as [1–6], which is not meant to be a
comprehensive list. We have presented portions of this material previously in [7], but also provide it
here for convenience. The approach we take has a direct counterpart in the theory of distributions over
infinite dimensional spaces [8,9].

2. Basic Notions and Framework

In this section we summarize the basic notions, notation, and results that we discuss in more detail in
later sections. Here, and later in this paper, we work mainly with the case of functions of one variable
and then describe the generalization to the multi-dimensional case.

We use the letter W to denote the set of all non-negative integers:

W = {0, 1, 2, 3, ...}. (2)

2.1. The Schwartz Space

The Schwartz space S(R) is the linear space of all functions f : R → C which have derivatives of
all orders and which satisfy the condition

pa,b(f)
def
= sup

x∈R
|xaf b(x)| <∞
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for all a, b ∈ W = {0, 1, 2, ...}. The finiteness condition for all a ≥ 1 and b ∈ W , implies that
xaf b(x) actually goes to 0 as |x| → ∞, for all a, b ∈ W , and so functions of this type are said to be
rapidly decreasing.

2.2. The Schwartz Topology

The functions pa,b are semi-norms on the vector space S(R), in the sense that

pa,b(f + g) ≤ pa,b(f) + pa,b(g)

and
pa,b(zf) = |z|pa,b(f)

for all f, g ∈ S(R), and z ∈ C. For this semi-norm, an open ball of radius r centered at some f ∈ S(R)

is given by
Bpa,b(f ; r) = {g ∈ S(R) : pa,b(g − f) < r}. (3)

Thus each pa,b specifies a topology τa,b on S(R). A set is open according to τa,b if it is a union of
open balls.

One way to generate the standard Schwartz topology τ on S(R) is to "combine" all the topologies
τa,b. We will demonstrate how to generate a "smallest" topology containing all the sets of τa,b for all
a, b ∈ W . However, there is a different approach to the topology on S(R) that is very useful, which we
describe in detail below.

2.3. The Operator T

The operator

T = − d2

dx2
+
x2

4
+

1

2
(4)

plays a very useful role in working with the Schwartz space. As we shall see, there is an orthonormal
basis {φn}n∈W of L2(R, dx), consisting of eigenfunctions φn of T :

Tφn = (n+ 1)φn. (5)

The functions φn, called the Hermite functions are actually in the Schwartz space S(R).
Let B be the bounded linear operator on L2(R) given on each f ∈ L2(R) by

Bf =
∑
n∈W

(n+ 1)−1〈f, φn〉φn. (6)

It is readily checked that the right side does converge and, in fact,

‖Bf‖2L2 =
∑
n∈W

(n+ 1)−2|〈f, φn〉|2L2 ≤
∑
n∈W

|〈f, φn〉|2L2 = ‖f‖2L2 . (7)

Note that B and T are inverses of each other on the linear span of the vectors φn:

TBf = f and BTf = f for all f ∈ L, (8)

where
L = linear span of the vectors φn, for n ∈ W. (9)
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2.4. The L2 Approach

For any p ≥ 0, the image of Bp consists of all f ∈ L2(R) for which∑
n∈W

(n+ 1)2p|〈f, φn〉|2 <∞.

Let
Sp(R) = Bp

(
L2(R)

)
. (10)

This is a subspace of L2(R), and on Sp(R) there is an inner-product 〈·, ·〉p given by

〈f, g〉p
def
=
∑
n∈W

(n+ 1)2p〈f, φn〉〈φn, g〉 = 〈B−pf,B−pg〉L2 (11)

which makes it a Hilbert space, having L, and hence also S(R), a dense subspace. We will see later that
functions in Sp(R) are p-times differentiable.

We will prove that the intersection ∩p∈WSp(R) is exactly equal to S(R). In fact,

S(R) =
⋂
p∈W

Sp(R) ⊂ · · · S2(R) ⊂ S1(R) ⊂ S0(R) = L2(R). (12)

We will also prove that the topology on S(R) generated by the norms ||·||p coincides with the standard
topology. Furthermore, the elements (n+ 1)−pφn ∈ Sp(R) form an orthonormal basis of Sp(R), and∑

n∈W

||(n+ 1)−(p+1)φn||2p =
∑
n≥1

n2p

n2(p+1)
<∞,

showing that the inclusion map Sp+1(R)→ Sp(R) is Hilbert-Schmidt.
The topological vector space S(R) has topology generated by a complete metric [10], and has a

countable dense subset given by all finite linear combinations of the vectors φn with rational coefficients.

2.5. Coordinatization as a Sequence Space.

All of the results described above follow readily from the identification of S(R) with a space of
sequences. Let {φn}n∈W be the orthonormal basis of L2(R) mentioned above, where W = {0, 1, 2, ...}.
Then we have the set CW; an element a ∈ CW is a map W → C : n 7→ an. So we shall often write such
an element a as (an)n∈W .

We have then the coordinatizing map

I : L2(R)→ CW : f 7→ (〈f, φn〉)n∈W . (13)

For each p ∈ W let Ep be the subset of CW consisting of all (an)n∈W such that∑
n∈W

(n+ 1)2p|an|2 <∞.

On Ep define the inner-product 〈·, ·〉p by

〈a, b〉p =
∑
n∈W

(n+ 1)2panbn. (14)
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This makes Ep a Hilbert space, essentially the Hilbert space L2(W,µp), where µp is the measure on
W given by µp({n}) = (n+ 1)2p for all n ∈ W .

The definition, Equation (10), for Sp(R) shows that it is the set of all f ∈ L2(R) for which I(f)

belongs to Ep.
We will prove in Theorem 16 that I maps S(R) exactly onto

E
def
=
⋂
p∈W

Ep. (15)

This will establish essentially all of the facts mentioned above concerning the spaces Sp(R).
Note the chain of inclusions:

E =
⋂
p∈W

Ep ⊂ · · · ⊂ E2 ⊂ E1 ⊂ E0 = L2(W,µ0). (16)

2.6. The Multi-Dimensional Setting

In the multidimensional setting, the Schwartz space S(Rd) consists of all infinitely differentiable
functions f on Rd for which

sup
x∈Rd

∣∣∣xk11 ...xkdd ∂m1+···+mkf(x)

∂xm1
1 ...∂xmdd

∣∣∣ <∞,
for all (k1, ..., kd) ∈ W d and m = (m1, ...,md) ∈ W d. For this setting, it is best to use some
standard notation:

|k| = k1 + · · ·+ kd for k = (k1, ..., kd) ∈ W d (17)

xk = xk1 ...xkd (18)

Dm =
∂|m|

∂xm1
1 ...∂xmdd

. (19)

For the multi-dimensional case, we use the indexing set W d whose elements are d–tuples
j = (j1, ..., jd), with j1, ..., jd ∈ W , and counting measure µ0 on W d. The sequence space is replaced by
CW d; a typical element a ∈ CW d , is a map

a : W d → C : j = (j1, ..., jd) 7→ aj = aj1...jd . (20)

The orthonormal basis (φn)n∈W of L2(R) yields an orthonormal basis of L2(Rd) consisting of
the vectors

φj = φj1 ⊗ · · · ⊗ φjd : (x1, ..., xd) 7→ φj1(x1)...φjd(xd). (21)

The coordinatizing map I is replaced by the map

Id : L2(Rd)→ CW d

(22)

where
Id(f)j = 〈f, φj〉L2(Rd). (23)
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Replace the operator T by

Td
def
= T⊗d =

(
− ∂2

∂x2d
+
x2d
4

+ 1

)
· · ·
(
− ∂2

∂x21
+
x21
4

+ 1

)
. (24)

Then
Tdφj = (j1 + 1)...(jd + 1)φj

for all j ∈ W d.
In place of B, we now have the bounded operator Bd on L2(Rd) given by

Bdf =
∑
j∈W d

[(j1 + 1)...(jd + 1)]−1〈f, φj〉φj (25)

Again, Td and Bd are inverses of each other on the linear subspace Ld of L2(Rd) spanned by the
vectors φj .

The space Ep is now the subset of CW d consisting of all a ∈ CW d for which

||a||2p
def
=
∑
j∈W d

[(j1 + 1)...(jd + 1)]2p|aj|2 <∞. (26)

Thus,
Ep

def
= {a ∈ CW d

: ‖a‖2p <∞} (27)

This is a Hilbert space with inner-product

〈a, b〉p =
∑
j∈W d

[(j1 + 1)...(jd + 1)]2pajbj. (28)

Again we have the chain of spaces

E
def
= ∩p∈WEp ⊂ · · ·E2 ⊂ E1 ⊂ E0 = L2(W d, µ0), (29)

with the inclusion Ep+1 → Ep being Hilbert-Schmidt.
To go back to functions on Rd, define Sp(Rd) to be the range of Bd. Thus Sp(Rd) is the set of all

f ∈ L2(Rd) for which ∑
j∈W d

[(j1 + 1)...(jd + 1)]2p|〈f, φj〉|2 <∞.

The inner-product 〈·, ·〉p comes back to an inner-product, also denoted 〈·, ·〉p, on Sp(Rd) and is given by

〈f, g〉p = 〈B−pd f,B−pd g〉L2(Rd). (30)

The intersection ∩p∈WSp(Rd) equals S(Rd). Moreover, the topology on S(Rd) is the smallest one
generated by the inner-products obtained from 〈·, ·〉p, with p running over W .
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3. Topological Vector Spaces

The Schwartz space is a topological vector space, i.e., it is a vector space equipped with a Hausdorff
topology with respect to which the vector space operations (addition, and multiplication by scalar) are
continuous. In this section we shall go through a few of the basic notions and results for topological
vector spaces.

Let V be a real vector space. A vector topology τ on V is a topology such that addition V ×V → V :

(x, y) 7→ x + y and scalar multiplication R × V → V : (t, x) 7→ tx are continuous. If V is a complex
vector space we require that C× V → V : (α, x) 7→ αx be continuous.

It is useful to observe that when V is equipped with a vector topology, the translation maps

tx : V → V : y 7→ y + x

are continuous, for every x ∈ V , and are hence also homeomorphisms since t−1x = t−x.
A topological vector space is a vector space equipped with a Hausdorff vector topology. A local base

of a vector topology τ is a family of open sets {Uα}α∈I containing 0 such that if W is any open set
containing 0 then W contains some Uα. If U is any open set and x any point in U then U − x is an open
neighborhood of 0 and hence contains some Uα, and so U itself contains a neighborhood x+ Uα of x:

If U is open and x ∈ U then x+ Uα ⊂ U , for some α ∈ I . (31)

Doing this for each point x of U , we see that each open set is the union of translates of the local base
sets Uα.

3.1. Local Convexity and the Minkowski Functional.

A vector topology τ on V is locally convex if for any neighborhood W of 0 there is a convex open
set B with 0 ∈ B ⊂ W . Thus, local convexity means that there is a local base of the topology τ

consisting of convex sets. The principal consequence of having a convex local base is the Hahn-Banach
theorem which guarantees that continuous linear functionals on subspaces of V extend to continuous
linear functionals on all of V . In particular, if V 6= {0} is locally convex then there exist non-zero
continuous linear functionals on V .

Let B be a convex open neighborhood of 0. Continuity of R× V → V : (s, x) 7→ sx at s = 0 shows
that for each x the multiple sx lies in B if s is small enough, and so t−1x lies in B if t is large enough.
The smallest value of t for which t−1x is just outside B is clearly a measure of how large x is relative to
B. The Minkowski functional µB is the function on V given by

µB(x) = inf{t > 0 : t−1x ∈ B}.

Note that 0 ≤ µB(x) < ∞. The definition of µB shows that µB(kx) = kµB(x) for any k ≥ 0.
Convexity of B can be used to show that

µB(x+ y) ≤ µB(x) + µB(y).

If B is symmetric, i.e., B = −B, then µB(kx) = |k|µB(x) for all real k. If V is a complex vector
space and B is balanced in the sense that αB = B for all complex numbers α with |α| = 1, then
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µB(kx) = |k|µB(x) for all complex k. Note that in general it could be possible that µB(x) is 0 without
x being 0; this would happen if B contains the entire ray {tx : t ≥ 0}.

3.2. Semi-Norms

A typical vector topology on V is specified by a semi-norm on V , i.e., a function µ : V → R such that

µ(x+ y) ≤ µ(x) + µ(y), µ(tx) = |t|µ(x) (32)

for all x, y ∈ V and t ∈ R (complex t if V is a complex vector space). Note that then, using t = 0, we
have µ(0) = 0 and, using −x for y, we have µ(x) ≥ 0. For such a semi-norm, an open ball around x is
the set

Bµ(x; r) = {y ∈ V : µ(y − x) < r}, (33)

and the topology τµ consists of all sets which can be expressed as unions of open balls. These balls are
convex and so the topology τµ is locally convex. If µ is actually a norm, i.e., µ(x) is 0 only if x is 0, then
τµ is Hausdorff.

A consequence of the triangle inequality Equation (32) is that a semi-norm µ is uniformly continuous
with respect to the topology it generates. This follows from the inequality

|µ(x)− µ(y)| ≤ µ(x− y), (34)

which implies that µ, as a function on V , is continuous with respect to the topology τµ it
generates. Now suppose µ is continuous with respect to a vector topology τ . Then the open balls
{y ∈ V : µ(y − x) < r} are open in the topology τ and so τµ ⊂ τ .

3.3. Topologies Generated by Families of Topologies

Let {τα}α∈I be a collection of topologies on a space. It is natural and useful to consider the the least
upper bound topology τ , i.e., the smallest topology containing all sets of ∪α∈Iτα. In our setting, we work
with each τα a vector topology on a vector space V .

Theorem 1. The least upper bound topology τ of a collection {τα}α∈I of vector topologies is again a
vector topology. If {Wα,i}i∈Iα is a local base for τα then a local base for τ is obtained by taking all finite
intersections of the form Wα1,i1 ∩ · · · ∩Wαn,in .

Proof. Let B be the collection of all sets which are of the form Wα1,i1 ∩ · · · ∩Wαn,in .
Let τ ′ be the collection of all sets which are unions of translates of sets in B (including the empty

union). Our first objective is to show that τ ′ is a topology on V . It is clear that τ ′ is closed under unions
and contains the empty set. We have to show that the intersection of two sets in τ ′ is in τ ′. To this end, it
will suffice to prove the following:

If C1 and C2 are sets in B, and x is a point in

the intersection of the translates a+ C1 and b+ C2, (35)

then x+ C ⊂ (a+ C1) ∩ (b+ C2) for some C in B.
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Clearly, it suffices to consider finitely many topologies τα. Thus, consider vector topologies τ1, ..., τn
on V .

Let Bn be the collection of all sets of the form B1 ∩ · · · ∩ Bn with Bi in a local base for τi, for each
i ∈ {1, ..., n}. We can check that if D,D′ ∈ Bn then there is an E ∈ Bn with E ⊂ D ∩D′.

Working withBi drawn from a given local base for τi, let z be a point in the intersectionB1∩· · ·∩Bn.
Then there exist sets B′i, with each B′i being in the local base for τi, such that z + B′i ⊂ Bi (this follows
from our earlier observation Equation (31)). Consequently,

z +
n⋂
i=1

B′i ⊂
n⋂
i=1

Bi.

Now consider sets C1 an C2, both in Bn. Consider a, b ∈ V and suppose x ∈ (a + C1) ∩ (b + C2).
Then since x− a ∈ C1 there is a set C ′1 ∈ Bn with x− a+ C ′1 ⊂ C1; similarly, there is a C ′2 ∈ Bn with
x− b+ C ′2 ⊂ C2. So x+ C ′1 ⊂ a+ C1 and x+ C ′2 ⊂ b+ C2. So

x+ C ⊂ (a+ C1) ∩ (b+ C2),

where C ∈ Bn satisfies C ⊂ C1 ∩ C2. This establishes Equation (35), and shows that the intersection of
two sets in τ ′ is in τ ′.

Thus τ ′ is a topology. The definition of τ ′ makes it clear that τ ′ contains each τα. Furthermore, if any
topology σ contains each τα then all the sets of τ ′ are also open relative to σ. Thus τ ′ = τ, the topology
generated by the topologies τα.

Observe that we have shown that if W ∈ τ contains 0 then W ⊃ B for some B ∈ B.
Next we have to show that τ is a vector topology. The definition of τ shows that τ is translation

invariant, i.e., translations are homeomorphisms. So, for addition, it will suffice to show that addition
V × V 7→ V : (x, y) 7→ x+ y is continuous at (0, 0). Let W ∈ τ contain 0. Then there is a B ∈ B with
0 ∈ B ⊂ W . Suppose B = B1 ∩ · · · ∩ Bn, where each Bi is in the given local base for τi. Since τi is
a vector topology, there are open sets Di, D

′
i ∈ τi, both containing 0, with Di + D′i ⊂ Bi. Then choose

Ci, C
′
i in the local base for τi withCi ⊂ Di andC ′i ⊂ D′i. ThenCi+C ′i ⊂ Bi. Now letC = C1∩· · ·∩Cn,

and C ′ = C ′1 ∩ · · · ∩ C ′n. Then C,C ′ ∈ B and C + C ′ ⊂ B. Thus, addition is continuous at (0, 0).
Now consider the multiplication map R× V → V : (t, x) 7→ tx. Let (s, y), (t, x) ∈ R× V . Then

sy − tx = (s− t)x+ t(y − x) + (s− t)(y − x).

Suppose F ∈ τ contains tx. Then
F ⊃ tx+W ′,

for some W ′ ∈ B. Using continuity of the addition map

V × V × V → V : (a, b, c) 7→ a+ b+ c

at (0, 0, 0), we can choose W1,W2,W3 ∈ B with W1 + W2 + W3 ⊂ W ′. Then we can choose W ∈ B,
such that

W ⊂ W1 ∩W2 ∩W3.
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Then W ∈ B and
W +W +W ⊂ W ′.

Suppose W = B1 ∩ · · · ∩ Bn, where each Bi is in the given local base for the vector topology τi.
Then for s close enough to t, we have (s − t)x ∈ Bi for each i, and hence (s − t)x ∈ W . Similarly, if
y is τ–close enough to x then t(y − x) ∈ W . Lastly, if s− t is close enough to 0 and y is close enough
to x then (s − t)(y − x) ∈ W . So sy − tx ∈ W ′, and so sy ∈ F , when s is close enough to t and y is
τ–close enough to x.

The above result makes it clear that if each τα has a convex local base then so is τ . Note also that if at
least one τα is Hausdorff then so is τ .

A family of topologies {τα}α∈I is directed if for any α, β ∈ I there is a γ ∈ I such that τα ∪ τβ ⊂ τγ .
In this case every open neighborhood of 0 in the generated topology contains an open neighborhood in
one of the topologies τγ .

3.4. Topologies Generated by Families of Semi-Norms

We are concerned mainly with the topology τ generated by a family of semi-norms {µα}α∈I ; this is
the smallest topology containing all sets of

⋃
α∈I τµα . An open set in this topology is a union of translates

of finite intersections of balls of the form Bµi(0; ri). Thus, any open neighborhood of f contains a set of
the form

Bµ1(f ; r1) ∩ · · · ∩Bµn(f ; rn).

This topology is Hausdorff if for any non-zero x ∈ V there is some norm µα for which µα(x) is
not zero.

The description of the neighborhoods in the topology τ shows that a sequence fn converges to f with
respect to τ if and only if µα(fn − f)→ 0, as n→∞, for all α ∈ I .

We will need to examine when two families of semi-norms give rise to the same topology:

Theorem 2. Let τ be the topology on V generated by a family of semi-normsM = {µi}i∈I , and τ ′ the
topology generated by a family of semi-normsM′ = {µ′j}j∈J . Suppose each µi is bounded above by a
linear combination of the µ′j . Then τ ⊂ τ ′.

Proof. Let µ ∈M. Then there exist µ′1, ..., µ
′
n ∈M′, and real numbers c1, ..., cn > 0, such that

µ ≤ c1µ
′
1 + · · ·+ cnµ

′
n.

Now consider any x, y ∈ V . Then

|µ(x)− µ(y)| ≤ µ(x− y) ≤
n∑
i=1

|ci|µ′i(x− y).

So µ is continuous with respect to the topology generated by µ′1, ..., µ
′
n. Thus, τµ ⊂ τ ′. Since this is

true for all µ ∈M, we have τ ⊂ τ ′.
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3.5. Completeness

A sequence (xn)n∈N in a topological vector space V is Cauchy if for any neighborhood U of 0 in V ,
the difference xn − xm lies in U when n and m are large enough. The topological vector space V is
complete if every Cauchy sequence converges.

Theorem 3. Let {τα}α∈I be a directed family of Hausdorff vector topologies on V , and τ the generated
topology. If each τα is complete then so is τ .

Proof. Let (xn)n≥1 be a sequence in V , which is Cauchy with respect to τ . Then clearly it is Cauchy
with respect to each τα. Let xα = limn→∞ xn, relative to τα. If τα ⊂ τγ then the sequence (xn)n≥1 also
converges to xγ relative to the topology τα, and so xγ = xα. Consider α, β ∈ I , and choose γ ∈ I such
that τα ∪ τβ ⊂ τγ . This shows that xα = xγ = xβ , i.e., all the limits are equal to each other. Let x denote
the common value of this limit. We have to show that xn → x in the topology τ . Let W ∈ τ contain x.
Since the family {τα}α∈I which generates τ is directed, it follows that there is a β ∈ I and a Bβ ∈ τβ
with x ∈ Bβ ⊂ W . Since (xn)n≥1 converges to x with respect to τβ , it follows xn ∈ Bβ for large n.
So xn → x with respect to τ .

3.6. Metrizability

Suppose the topology τ on the topological vector space V is generated by a countable family of
semi-norms µ1, µ2, .... For any x, y ∈ V define

d(x, y) =
∑
n≥1

2−ndn(x, y) (36)

where
dn(x, y) = min{1, µn(x− y)}.

Then d is a metric, it is translation invariant, and generates the topology τ [10].

4. The Schwartz Space S(R)

Our objective in this section is to show that the Schwartz space is complete, in the sense that every
Cauchy sequence converges. Recall that S(R) is the set of all C∞ functions f on R for which

pa,b(f)
def
= ||f ||a,b

def
= sup

x∈R
|xaDbf(x| <∞ (37)

for all a, b ∈ W = {0, 1, 2, ...}. The functions pa,b are semi-norms, with || · ||0,0, being just the sup-norm.
Thus the family of semi-norms given above specify a Hausdorff vector topology on S(R). We will call
this the Schwartz topology on S(R).

Theorem 4. The topology on S(R) generated by the family of semi-norms || · ||a,b for all
a, b ∈ {0, 1, 2, ...}, is complete.



Mathematics 2015, 3 538

Proof. Let (fn)n≥1 be a Cauchy sequence on S(R). Then this sequence is Cauchy in each of the
semi-norms || · ||a,b, and so each sequence of functions xaDbfn(x) is uniformly convergent. Let

gb(x) = lim
n→∞

Dbfn(x). (38)

Let f = g0. Using a Taylor theorem argument it follows that gb is Dbf . For instance, for b = 1,
observe first that

fn(y) = fn(x) +

∫ 1

0

dfn
(
(1− t)x+ ty)

)
dt

dt = fn(x) +

∫ 1

0

f ′n
(
(1− t)x+ ty

)
(y − x) dt,

and so, letting n→∞, we have

f(y) = f(x) +

∫ 1

0

g1
(
(1− t)x+ ty

)
(y − x) dt,

which implies that f ′(x) exists and equals g1(x).
In this way, we have xaDbfn(x) → xaDbf(x) pointwise. Note that our Cauchy hypothesis implies

that the sequence of functions xaDbfn(x) is Cauchy in sup-norm, and so the convergence

xaDbfn(x)→ xaDbf(x)

is uniform. In particular, the sup-norm of xaDbf(x) is finite, since it is the limit of a uniformly
convergent sequence of bounded functions. Thus f ∈ S(R).

Finally, we have to check that fn converges to f in the topology of S(R). We have noted above that
xaDbfn(x)→ xaDbf(x) uniformly. Thus fn → f relative to the semi-norm || · ||a,b. Since this holds for
every a, b ∈ {0, 1, 2, 3, ...}, we have fn → f in the topology of S(R).

Now let’s take a quick look at the Schwartz space S(Rd). First some notation. A multi-index a is an
element of {0, 1, 2, ...}d, i.e., it is a mapping

a : {1, ..., d} → {0, 1, 2, ...} : j 7→ aj.

If a is a multi-index, we write |a| to mean the sum a1 + · · · + ad, xa to mean the product xa11 ...x
ad
d ,

and Da to mean the differential operator Da1
x1
...Dad

xd
. The space S(Rd) consists of all C∞ functions f on

Rd such that each function xaDbf(x) is bounded. On S(Rd) we have the semi-norms

||f ||a,b = sup
x∈Rd

|xaDbf(x)|

for each pair of multi-indices a and b. The Schwartz topology on S(Rd) is the smallest topology making
each semi-norm || · ||a,b continuous. This makes S(Rd) a topological vector space.

The argument for the proof of the preceding theorem goes through with minor alterations and
shows that:

Theorem 5. The topology on S(Rd) generated by the family of semi-norms || · ||a,b for all
a, b ∈ {0, 1, 2, ...}d, is complete.
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5. Hermite Polynomials, Creation and Annihilation Operators

We shall summarize the definition and basic properties of Hermite polynomials (our approach is
essentially that of Hermite’s original [11]). We repeat for convenience of reference much of the
presentation in Section 2.1 of [7].

A central role is played by the Gaussian kernel

p(x) =
1√
2π
e−x

2/2. (39)

Properties of translates of p are obtained from

exy−
y2

2 =
p(x− y)

p(x)
. (40)

Expanding the right side in a Taylor series we have

exy−
y2

2 =
p(x− y)

p(x)
=
∞∑
n=0

1

n!
Hn(x)yn, (41)

where the Taylor coefficients, denoted Hn(x), are

Hn(x) =
1

p(x)

(
− d

dx

)n
p(x). (42)

This is the n–th Hermite polynomial and is indeed an n–th degree polynomial in which xn has
coefficient 1, facts which may be checked by induction.

Observe the following∫
R

p(x− y)

p(x)

p(x− z)

p(x)
p(x)dx = e−

y2+z2

2

∫
R

ex(y+z)p(x) dx

= e−
y2+z2

2
+

(y+z)2

2

= eyz.

Going over to the Taylor series and comparing the appropriate Taylor coefficients (differentiation with
respect to y and z can be carried out under the integral) we have

〈Hn, Hm〉L2(p(x)dx) = n!δnm. (43)

Thus an orthonormal set of functions is given by

hn(x) =
1√
n!
Hn(x). (44)

Because these are orthogonal polynomials, the n–th one being exactly of degree n, their span contains
all polynomials. It can be shown that the span is in fact dense inL2(p(x)dx). Thus the polynomials above
constitute an orthonormal basis of L2(p(x)dx).
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Next, consider the derivative of Hn:

H ′n(x) = (−1)np(x)−1p(n+1)(x)− (−1)np(x)−1p′(x)p(x)−1pn(x)

= −Hn+1(x) + xHn(x).

So (
− d

dx
+ x

)
hn(x) =

√
n+ 1hn+1(x). (45)

The operator (
− d

dx
+ x

)
is called the creation operator in L2

(
R; p(x)dx

)
.

Officially, we can take the creation operator to have domain consisting of all functions f which can
be expanded in L2(p(x)dx) as

∑
n≥0 anhn, with each an a complex number, and satisfying the condition∑

n≥0(n + 1)|an|2 < ∞; the action of the operator on f yields the function
∑

n≥0
√
n+ 1 anhn+1.

This makes the creation operator unitarily equivalent to a multiplication operator (in the sense discussed
later in subsection A.5) and hence a closed operator (see A.1 for definition). For the type of smooth
functions f we will mostly work with, the effect of the operator on f will in fact be given by application
of
(
− d
dx

+ x
)

to f .
Next, from the fundamental generating relation Equation (41) we have :

yexy−y
2/2 = lim

ε↓0

∑
n≥0

1

n!

1

ε
[Hn(x+ ε)−Hn(x)] yn. (46)

Using Equation (41) again on the left we have∑
n≥1

1

(n− 1)!
Hn−1(x)yn = lim

ε↓0

∑
n≥0

1

n!

1

ε
[Hn(x+ ε)−Hn(x)] yn. (47)

Letting y = 0 allows us to equate the n = 0 terms, and then, successively, the higher order terms. From
this we see that

H ′n(x) = nHn−1(x) (48)

where H−1 = 0. Thus:
d

dx
hn(x) =

√
nhn−1(x). (49)

The operator
d

dx

is the annihilation operator in L2
(
R; p(x)dx

)
. As with the creation operator, we may define it in a more

specific way, as a closed operator on a specified domain.
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6. Hermite Functions, Creation and Annihilation Operators

In the preceding section we studied Hermite polynomials in the setting of the Gaussian space
L2
(
R; p(x)dx

)
. Let us translate the concepts and results back to the usual space L2

(
R; dx

)
.

To this end, consider the isomorphism:

U : L2(R, p(x)dx)→ L2(R, dx) : f 7→ √pf. (50)

Then the orthonormal basis polynomials hn go over to the functions φn given by

φn(x) = (−1)n
1√
n!

(2π)−1/4ex
2/4d

ne−x
2/2

dxn
. (51)

The family {φn}n≥0 forms an orthonormal basis for L2(R, dx).
We now determine the annihilation and creation operators on L2(R, dx). If f ∈ L2(R, dx) is

differentiable and has derivative f ′ also in L2(R, dx), we have:(
U d

dx
U−1

)
f(x) =

√
p(x)

d

dx

[
p(x)−1/2f(x)

]
= f ′(x) + p(x)1/2

(
−1/2

)
p(x)−3/2p′(x)f(x)

= f ′(x) +
1

2
xf(x).

So, on L2(R, dx), the annihilator operator is

A =
d

dx
+

1

2
x (52)

which will satisfy
Aφn =

√
nφn−1 (53)

where φ−1 = 0. For the moment, we proceed by taking the domain of A to be the Schwartz space S(R).
Next, (

U
(
− d

dx
+ x

)
U−1

)
f(x) = −f ′(x) + xf(x)− 1

2
xf(x)

=

(
− d

dx
+

1

2
x

)
f(x).

Thus the creation operator is

C = A∗ = − d

dx
+

1

2
x. (54)

The reason we have written A∗ is that, as is readily checked, we have the adjoint relation

〈Af, g〉 =

〈
f,

(
− d

dx
+

1

2
x

)
g

〉
(55)

with the inner-product being the usual one on L2(R, dx). Again, for the moment, we take the domain of
C to be the Schwartz space S(R) (though, technically, in that case we should not write C as A∗, since
the latter, if viewed as the L2–adjoint operator, has a larger domain).
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For this we have
Cφn =

√
n+ 1φn+1. (56)

Observe also that

AC =
1

4
x2 − d2

dx2
+

1

2
I and CA =

1

4
x2 − d2

dx2
− 1

2
I (57)

which imply:
[A,C] = AC − CA = I, the identity. (58)

Next observe that
CAφn =

√
n
√
nφn = nφn (59)

and so CA is called the number operator N :

N = A∗A = CA = − d2

dx2
+
x2

4
− 1

2
the number operator. (60)

As noted above in Equation (59), the number operator N has the eigenfunctions φn:

Nφn = nφn. (61)

Integration by parts (see Lemma 10) shows that

〈f, g′〉 = −〈f ′, g〉

for every f, g ∈ S(R), and so also
〈f, g′′〉 = 〈f ′′, g〉.

It follows that the operator N satisfies

〈Nf, g〉 = 〈f,Ng〉 (62)

for every f, g ∈ S(R).
Now consider the case of Rd. For each j ∈ {1, ..., d}, there are creation, annihilation, and

number operators:

Aj =
∂

∂xj
+

1

2
xj, Cj = − ∂

∂xj
+

1

2
xj, Nj = CjAj. (63)

These map S(Rd) into itself and, as is readily verified, satisfy the commutation relations

[Aj, Ck] = δjkI, [Nj, Ak] = −δjkAj, [Nj, Ck] = δjkCj. (64)

Now let us be more specific about the precise definition of the creation and annihilation
operators. The basis {φn}n≥0 for L2(R) yields an orthonormal basis {φm}m∈W d of L2(Rd) given by
φm = φm1(x1) · · ·φmd(xd). For convenience we say φm = 0 if some mj < 0. Given its effect on the
orthonormal basis {φm}m∈W d , the operator Ck has the form:

φm 7→
√
mk + 1φm′ ,
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where m′i = mi for all i ∈ {1, ..., d} except when i = k, in which case m′k = mk + 1. The domain of Ck
is the set D(Ck) given by

D(Ck) =

{
f ∈ L2(R)

∣∣∣∣ ∑
m∈W d

(mk + 1)|am|2 <∞ where am = 〈f, φm〉
}
.

The operator Ck is then officially defined by specifying its action on a typical element of its domain:

Ck

( ∑
m∈W d

amφm

)
=
∑
m∈W d

am
√
mk + 1φm′ , (65)

where m′ is as before. The operator Ck is essentially the composite of a multiplication operator and a
bounded linear map taking φm → φm′ where m′ is as defined above. (See subsection A.5 for precise
formulation of a multiplication operator.) Noting this, it can be readily checked that Ck is a closed
operator using the following argument: Let T be a bounded linear operator and Mh a multiplication
operator (any closed operator will do); we show that the composite MhT is a closed operator. Suppose
xn → x. Since T is a bounded linear operator, Txn → Tx. Now suppose also that Mh(Txn) → y.
Since Mh is closed, it follows then that Tx ∈ D(Mh) and y = MhTx.

The operators Ak and Nk are defined analogously.

Proposition 6. Let L0 be the vector subspace of L2(Rd) spanned by the basis vectors {φm}m∈W d .
Then for k ∈ {1, 2, . . . , d}, Ck|L0 and Ak|L0 have closures given by Ck and Ak, respectively (see
subsection A.4 for the notion of closure).

Proof. We need to show that the graph of Ck, denoted Gr(Ck), is equal to the closure of the
graph of Ck|L0, i.e., to Gr(Ck|L0) (see to subsection A.1 for the notion of graph). It is clear that
Gr(Ck|L0) ⊆ Gr(Ck). Using this and the fact that Ck is a closed operator, we have

Gr(Ck|L0) ⊆ Gr(Ck) = Gr(Ck).

Going in the other direction, take (f, Ckf) ∈ Gr(Ck). Now f =
∑

m∈W d amφm where am = 〈f, φm〉.
Let fN be given by

fN =
∑
m∈W d

N

amφm where W d
N = {m ∈ W d | 0 ≤ m1 ≤ N, . . . , 0 ≤ md ≤ N}.

Observe that fN ∈ L0 . Moreover

lim
N→∞

fN = f and lim
N→∞

CkfN = lim
N→∞

∑
m∈W d

N

(mk + 1)amφm = Ckf

in L2(Rd). Thus (f, Ckf) ∈ Gr(Ck|L0) and so we have Gr(Ck) ⊆ Gr(Ck|L0).
The proof for Ak follows similarly.

Linking this new definition for Ck with our earlier formulas Equation (63) we have:

Proposition 7. If f ∈ S(Rd) then

Ckf = − ∂f

∂xk
+
xk
2
f, and Akf =

∂f

∂xk
+
xk
2
f.
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Proof. Let g = − ∂f
∂xk

+ xk
2
f . Since f ∈ S(Rd), we have g ∈ L2(Rd). So we can write g as

g =
∑

j∈W d ajφj where aj = 〈g, φj〉. Let us examine these aj’s more closely. Observe

aj = 〈g, φj〉 =
〈
− ∂f

∂xk
+
xk
2
f, φj

〉
=
〈
f,
∂φj
∂xk

+
xk
2
φj

〉
= 〈f,

√
jkφj′′〉

where j′′i = ji for all i ∈ {1, ..., d} except when i = k, in which case j′′k = jk − 1.
Bringing this information back to our expression for g we see that

g =
∑
j∈W d

√
jk〈f, φj′′〉φj

=
∑
m∈W d

√
mk + 1〈f, φm〉φm′′ where m′′ is as defined above

= Ckf by (65).

The second equality is obtained by letting m = j′′ and noting that φj′′ = 0 when j′′k is −1. The proof
follows similarly for Ak.

7. Properties of the Functions in Sp(R)

Our aim here is to obtain a complete characterization of the functions in Sp(R). We will
prove that Sp(R) consists of all square-integrable functions f for which all derivatives f (k) exist for
k ∈ {1, 2, ..., p} and

sup
x∈R
|xaf (b)(x)| <∞

for all a, b ∈ {0, 1, ..., p− 1} with a+ b ≤ p− 1.
A significant tool we will use is the Fourier transform:

f̂(p) = Ff(p) = (2π)−1/2
∫
R

e−ipxf(x) dx. (66)

This is meaningful whenever f is in L1(R), but we will work mainly with f in S(R). We will use
the following standard facts:

• F maps S(R) onto itself and satisfies the Plancherel identity:∫
R

|f(x)|2 dx =

∫
R

|f̂(p)|2 dp (67)

• for any f ∈ S(R),

f(x) = (2π)−1/2
∫
R

eipxf̂(p) dp (68)

• if f ∈ S(R) then
pf̂(p) = −iF(f ′)(p). (69)
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Consequently, we have

||f ||sup ≤ (2π)−1/2
∫
R

|f̂(p)| dp

= (2π)−1/2
∫
R

(1 + p2)1/2|f̂(p)|(1 + p2)−1/2 dp

= (2π)−1/2
[∫

R

(1 + p2)|f̂(p)|2 dp
]1/2

π1/2 by Cauchy-Schwartz

≤ 2−1/2
[
||f̂ ||L2 + ||pf̂ ||L2(R,dp)

]
≤ 2−1/2 (||f ||L2 + ||f ′||L2) by Plancherel and Equation (69). (70)

For the purposes of this section it is necessary to be precise about domains. So we take now A and C
to be closed operators in L2(R), with common domain

D(C) = D(A) = {f ∈ L2(R) |
∑
n≥0

n|〈f, φn〉|2 <∞}

and
Cf =

∑
n≥0

〈f, φn〉
√
n+ 1φn+1, Af =

∑
n≥0

〈f, φn〉
√
nφn−1.

Moreover, define operators C1 and A1 on the common domain

D1 = all differentiable f ∈ L2 with f ′ ∈ L2 and xf(x) ∈ L2(dx) (71)

and

C1f(x) =

[
− d

dx
+

1

2
x

]
f(x), A1f(x) =

[
d

dx
+

1

2
x

]
f(x) for all f ∈ D1. (72)

We will prove below that C and C1 (and A and A1) are, in fact, equal.
For a function

f =
∑
n≥0

anφn ∈ L2(R),

we will use the notation fN for the partial sum:

fN =
N∑
n=0

anφn.

Observe the following about the derivatives f ′N :

Lemma 8. If f ∈ D(C), then {f ′N} is Cauchy in L2(R).

Proof. Note that

f ′N =

(
A− C

2

)
fN .

So ||f ′N − f ′M ||L2 ≤ 1
2
||AfN − AfM ||L2 + 1

2
||CfN − CfM ||L2 .
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Now for M < N we have∥∥∥AfN − AfM∥∥∥2
L2

=
∥∥∥ N∑
n=M+1

an
√
nφn−1

∥∥∥2
L2

=
N∑

n=M+1

|an|2n.

Likewise, ∥∥∥CfN − CfM∥∥∥2
L2

=
∥∥∥ N∑
n=M+1

an
√
n+ 1φn+1

∥∥∥2
L2

=
N∑

n=M+1

|an|2(n+ 1).

Since f ∈ D(C), we know
∑N

n=M+1 |an|2(n + 1) tends to 0 as M goes to infinity. Thus {f ′N} is
Cauchy in L2(R).

Lemma 9. If f ∈ D(C) then f is, up to equality almost everywhere, bounded, continuous and {fN}
converges uniformly to f , i.e., ‖f − fN‖sup → 0 as N →∞.

Proof. It is enough to show that ‖fM − fN‖sup → 0 as M,N →∞. Note that

||fM − fN ||sup ≤ 2−1/2 (||fN − fM ||L2 + ||f ′N − f ′M ||L2)

by Equation (70). Since f ∈ L2(R) we have ||fN − fM ||L2 → 0 as M,N → ∞ and by Lemma 8 we
have that ||f ′N − f ′M ||L2 → 0 as M,N →∞. Therefore {fN} converges uniformly to f .

Next we establish an integration-by-parts formula:

Lemma 10. If f, g ∈ L2(R) are differentiable with derivatives also in L2(R) then∫
R

f ′(x)g(x) dx = −
∫
R

f(x)g′(x) dx. (73)

Proof. The derivative of fg, being f ′g + fg′, is in L1. So the fundamental theorem of calculus applies
to give: ∫ b

a

f ′(x)g(x) dx+

∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a) (74)

for all real numbers a < b.
Now fg ∈ L1, and so

lim
N→∞

∫ ∞
N

f(x)g(x) dx = lim
N→∞

∫ −N
−∞

f(x)g(x) dx = 0.

Consequently, there exist aN < −N < N < bN with

f(aN)g(aN)→ 0 and f(bN)g(bN)→ 0 as N →∞.

Plugging into Equation (74) we obtain the desired result.
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Next we have the first step to showing that C1 equals C:

Lemma 11. If f is in the domain of C1 then f is in the domain of C and

Cf = C1f and Af = A1f. (75)

Proof. Let f be in the domain of C1. Then we may assume that f is differentiable and both f and the
derivative f ′ are in L2(R). We have then

〈C1f, φn〉 =

∫
R

φn(x)

[
− d

dx
+

1

2
x

]
f(x) dx

=

∫
R

f(x)

[
d

dx
+

1

2
x

]
φn(x) dx by Equation (73)

=
√
n〈f, φn−1〉 by Equation (53). (76)

Then
||C1f ||2 =

∑
n≥0

|〈C1f, φn〉|2 =
∑
n≥1

n|〈f, φn−1〉|2. (77)

Because this sum is finite, it follows that f is in the domain D(C) of C. Moreover,

Cf =
∑
n≥0

√
n+ 1〈f, φn〉φn+1

=
∑
m≥0

〈C1f, φm〉φm by Equation (76)

= C1f.

The argument showing Af = A1f is similar.

We can now prove:

Theorem 12. The operators C and C1 are equal, and the operators A and A1 are equal. Thus, a
function f ∈ L2(R) is in the domain of C (which is the same as the domain of A) if and only if f is,
up to equality almost everywhere, a differentiable function with derivative f ′ also in L2(R) and with∫
R
|xf(x)|2 dx <∞.

Proof. In view of Lemma 11, it will suffice to prove that D(C) ⊂ D(C1). Let f ∈ D(C). Then∑
n≥0

n|〈f, φn〉|2 <∞.

This implies that the sequences {C1fN}N≥0 and {A1fN}N≥0 are Cauchy, where fN is the partial sum

fN =
N∑
n=0

〈f, φn〉φn.

Now
1

2
(A1 − C1)fN = f ′N , and

1

2
(A1 + C1)fN(x) = xfN(x).
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So the sequences of functions {f ′N}N≥0 and {hN}N≥0, where

hN(x) = xfN(x),

are also L2–Cauchy. Now, as shown in Lemma 9, we can take f to be the uniformly convergent pointwise
limit of the sequence of continuous functions fN .

By Lemma 8, the sequence of derivatives f ′N is Cauchy in L2(R). Let g = limN→∞ f
′
N in L2(R).

Observe that

fN(y) = fN(x) +

∫ 1

0

f ′N
(
(x+ t(y − x)

)
(y − x) dt. (78)

Now
∫ 1

0
|f ′N(x + t(y − x))(y − x) − g(x + t(y − x))(y − x)| dt ≤

√
|y − x|||f ′N − g||L2 by the

Cauchy-Schwartz inequality. Since ‖f ′N − g‖L2 → 0 as N →∞, we have∫ 1

0

f ′N(x+ t(y − x))(y − x) dt→
∫ 1

0

g(x+ t(y − x))(y − x) dt.

Because {fN}N≥0 converges to f uniformly by Lemma 9, taking the limit asN →∞ in Equation (78)
we obtain

f(y) = f(x) +

∫ 1

0

g
(
(x+ t(y − x)

)
(y − x) dt.

Therefore f ′ = g ∈ L2(R). Lastly, we have, by Fatou’s Lemma:∫
R

|xf(x)|2 dx ≤ lim inf
N→∞

∫
R

|xfN(x)|2 dx <∞,

because the sequence {gN}N≥0 is convergent. Thus we have established that f ∈ D(C1).

Finally we can characterize the space Sp(R):

Theorem 13. Suppose f ∈ Sp(R), where p ≥ 1. Then f is (up to equality almost every where) a 2p

times differentiable function and
sup
x∈R
|xaf (b)(x)| <∞

for every a, b ∈ {0, 1, 2, ...} with a + b < 2p. Moreover, Sp(R) consists of all 2p times differentiable
functions for which the functions x 7→ xaf (b)(x) are in L2(R) for every a, b ∈ {0, 1, 2, ...}
with a+ b ≤ 2p.

Proof. Consider f ∈ S1(R). Then

f =
∑
n≥0

anφn with
∑

n≥0 n
2|an|2 <∞. (79)

In particular, f ∈ D(C). Moreover,

Cf =
∑
n≥0

an
√
n+ 1φn+1 Af =

∑
n≥0

an
√
nφn−1.

From these expressions and Equation (79) it is clear that Cf and Af both belong to D(C). Thus,

B1B2f ∈ L2(R) for all B1, B2 ∈ {C,A, I}.
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Similarly, we can check that if f ∈ Sp(R), where p ≥ 2, then

B1B2f ∈ Sp−1(R) for all B1, B2 ∈ {C,A, I}.

Thus, inductively, we see that

B1 · · ·B2pf ∈ L2(R) for all B1, ..., B2p ∈ {C,A, I}.

(This really means that f is in the domain of each product operator B1 · · ·B2p.) Now the operators
d
dx

and multiplication by x are simple linear combinations of A and C. So for any a, b ∈ {0, 1, 2, ...}
with a + b ≤ 2p we can write the operator xa( d

dx
)b as a linear combination of operators B1...B2p with

B1, ..., B2p ∈ {C,A, I}.
Conversely, suppose f is 2p times differentiable and the functions x 7→ xaf (b)(x) are in L2(R) for

every a, b ∈ {0, 1, 2, ...} with a+ b ≤ 2p. Then f is in the domain of C2p and so∑
n≥0

|〈f, φn〉|2n2p <∞.

Thus f ∈ Sp(R).
The preceding facts show that if f ∈ Sp(R) then for every B1, ..., B2p ∈ {C,A, I}, the element

B1 · · ·B2p−1f is in the domain of C, and so, in particular, is bounded. Thus,

sup
x∈R
|xaf (b)(x)| <∞

for all a, b ∈ {0, 1, 2, ...} with a+ b ≤ 2p− 1.

We do not carry out a similar study for Sp(Rd), but from the discussions in the following sections, it
will be clear that:

• Sp(Rd) is a Hilbert space with inner-product given by

〈f, g〉p = 〈f, T 2p
d g〉

• as a Hilbert space, Sp(Rd) is the d–fold tensor product of Sp(R) with itself.

8. Inner-Products on S(R) from N

For f ∈ L2(R), define

||f ||t =

{∑
n≥0

(n+ 1)2t|〈f, φn〉|2
}1/2

(80)

for every t > 0. More generally, define

〈f, g〉t =
∑
n≥0

(n+ 1)2t〈f, φn〉L2〈φn, g〉L2 , (81)

for all f, g in the subspace of L2(R) consisting of functions F for which ||F ||t <∞.
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Theorem 14. Let f ∈ S(R). Then for every t > 0 we have ||f ||t < ∞. Moreover, for every integer
m ≥ 0, we also have

Nmf =
∑
n≥0

nm〈f, φn〉φn, (82)

where on the left Nm is the differential operator − d2

dx2
+ x2

4
− 1

2
applied n times, and on the right the

series is taken in the sense of L2(R, dx). Furthermore,

‖f‖2m/2 = 〈f, (N + 1)mf〉. (83)

This result will be strengthened and a converse proved later.

Proof. Let m ≥ 0 be an integer. Since f ∈ S(R), it is readily seen that Nf is also in S(R), and thus,
inductively, so is Nmf . Then we have

〈f,Nmf〉 =
∑
n≥0

〈f, φn〉〈φn, Nmf〉

=
∑
n≥0

〈f, φn〉〈Nmφn, f〉 by Equation (62)

=
∑
n≥0

〈f, φn〉 〈nmφn, f〉

=
∑
n≥0

nm|〈f, φn〉|2.

Thus we have proven the relation

〈f,Nmf〉 =
∑
n≥0

nm|〈f, φn〉|2. (84)

An exactly similar argument shows

〈f, (N + 1)mf〉 =
∑
n≥0

(n+ 1)m|〈f, φn〉|2 = ‖f‖2m/2. (85)

So if t > 0, choosing any integer m ≥ t we have

‖f‖2t/2 ≤ ‖f‖2m/2 = 〈f, (N + 1)mf〉 <∞.

Observe that the series ∑
n≥0

nm〈f, φn〉φn (86)

is convergent in L2(R, dx) since∑
n≥0

n2m|〈f, φn〉|2 = 〈N2mf, f〉 <∞.
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So for any g ∈ L2(R, dx) we have, by an argument similar to the calculations done above:

〈Nmf, g〉 =
∑
n≥0

nm〈f, φn〉〈φn, g〉

=
∑
n≥0

〈nm〈f, φn〉φn, g〉

=

〈∑
n≥0

nm〈f, φn〉φn, g

〉
.

This proves the statement about Nmf .

We have similar observations concerning Cmf and Amf . First observe that since C and A are
operators involving d

dx
and x, they map S(R) into itself. Also,

〈Af, g〉 = 〈f, Cg〉,

for all f, g ∈ S(R), as already noted. Using this, for f ∈ S(R), we have

〈φn+m, Cmf〉 = 〈Amφn+m, f〉
=

√
(n+m)(n+m− 1) · · · (n+ 1) 〈φn, f〉.

Therefore,

Cmf =
∑
n≥0

[
(n+m)!

n!

]1/2
〈f, φn〉φn+m. (87)

Similarly,

Amf =
∑
n≥0

[
n!

(n−m)!

]1/2
〈f, φn〉φn−m. (88)

More generally, if B1, ..., Bk are such that each Bi is either A or C then

B1...Bkf =
∑
n≥0

θn,k〈f, φn〉φn+r, (89)

where the integer r is the excess number of C’s over the A’s in the sequence B1, ..., Bk, and θn,k is a real
number determined by n and k. We do have the upper bound

θ2n,k ≤ (n+ k)k ≤ [(n+ 1)k]k = (n+ 1)kkk. (90)

Note also that

||B1...Bkf ||2 = 〈(B1...Bk)
∗B1...Bkf, f〉 =

∑
n≥0

θ2n,k|〈f, φn〉|2. (91)

Let’s look at the case of Rd. The functions φn generate an orthonormal basis by tensor products.
In more detail, if a ∈ W d is a multi-index, define φa ∈ L2(Rd) by

φa(x) = φa1(x1)...φad(xd).
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Now, for each t > 0, and f ∈ L2(Rd), define

||f ||t
def
=

{∑
a∈W d

[(a1 + 1)...(ad + 1)]2t|〈f, φa〉|2
}1/2

, (92)

and then define
〈f, g〉t =

∑
a∈W d

[(a1 + 1)...(ad + 1)]2t〈f, φa〉〈φa, g〉, (93)

for all f, g in the subspace of L2(Rd) consisting of functions F for which ||F ||t <∞.
Let Td be the operator on S(Rd) given by

Td = (Nd + 1)...(N1 + 1).

Then, for every non-negative integer m, we have

||f ||2m/2 = 〈f, Tmd f〉.

The other results of this section also extend in a natural way to Rd.

9. L2–Type Norms on S(R)

For integers a, b ≥ 0, and f ∈ S(R), define

||f ||a,b,2 = ||xaDbf(x)||L2(R,dx). (94)

Recall the operators

A =
d

dx
+

1

2
x, C = − d

dx
+

1

2
x, N = CA

and the norms
||f ||m = 〈f, (N + 1)mf〉.

The purpose of this section is to prove the following:

Theorem 15. The system of semi-norms given by ||f ||a,b,2 and the system given by the norms ||f ||m
generate the same topology on S(R).

Proof. Let a, b be non-negative integers. Then

||f ||a,b,2 = ||(A+ C)a2−b(A− C)bf ||L2

≤ a linear combination of terms
of the form ||B1...Bkf ||L2 ,

where each Bi is either A or C, and k = a+ b. Writing cn = 〈f, φn〉, we have

||B1...Bkf ||2L2 = ||
∑
n≥0

cnθn,kφn+r||

=
∑
n≥0

|cn|2θ2n,k,
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where
r = #{j : Bj = C} −#{j : Bj = A},

and, as noted earlier in Equation (90),

θ2n,k ≤ (n+ 1)kkk.

So
||B1...Bkf ||2L2 ≤

∑
n≥0

|cn|2(n+ 1)kkk = kk||f ||2k/2 ≤ kk||f ||2k. (95)

Thus ||f ||a,b,2 is bounded above by a multiple of the norm ||f ||a+b.
It follows, that the topology generated by the semi-norms || · ||a,b,2 is contained in the topology

generated by the norms || · ||k.
Now we show the converse inclusion. From

||f ||2k = 〈f, (N + 1)2kf〉L2 ≤ ||f ||2L2 + ||(N + 1)2kf ||2L2

and the expression of N as a differential operator we see that ||f ||2k is bounded above by a linear
combination of ||f ||2a,b,2 for appropriate a and b. It follows then that the topology generated by the norms
|| · ||k is contained in the topology generated by the semi-norms || · ||a,b,2.

Now consider Rd. Let a, b ∈ W d be multi-indices, where W = {0, 1, 2, ...}. Then for
f ∈ S(Rd) define

||f ||a,b,2 =

{∫
Rd

|xaDbf(x)|2 dx
}1/2

.

These specify semi-norms and they generate the same topology as the one generated by the norms
|| · ||m, with m ∈ W . The argument is a straightforward modification of the one used above.

10. Equivalence of the Three Topologies

We will demonstrate that the topology generated by the family of norms || · ||k, or, equivalently, by the
semi-norms || · ||a,b,2, is the same as the Schwartz topology on S(R).

Recall from Equation (70) that we have, for f ∈ S(R)

||f ||sup ≤ 2−1/2 (||f ||L2 + ||f ′||L2) .

Putting in xaDbf(x) in place of f(x) we then have

||f ||a,b ≤ a linear combination of ||f ||a,b,2, ||f ||a−1,b,2, and ||f ||a,b+1,2. (96)

Next we bound the semi-norms ||f ||a,b,2 by the semi-norms ||f ||a,b. To this end, observe first

‖f‖2L2 =

∫
R

(1 + x2)−1(1 + x2)|f(x)|2 dx

≤ π‖(1 + x2)|f(x)|2‖sup
≤ π

(
‖f‖2sup + ‖xf(x)‖2sup

)
≤ π (‖f‖sup + ‖xf(x)‖sup)2 .
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So for any integers a, b ≥ 0, we have

||f ||a,b,2 = ||xaDbf ||L2 ≤ π1/2(||f ||a,b + ||f ||a+1,b). (97)

Thus, the topology generated by the semi-norms || · ||a,b,2 coincides with the Schwartz topology.
Now lets look at the situation for Rd. The same result holds in this case and the arguments are similar.

The appropriate Sobolev inequalities require using (1 + |p|2)d instead of 1 + p2. For f ∈ S(Rd), we
have the Fourier transform given by

F(f)(p) = f̂(p) = (2π)−d/2
∫
Rd

e−i〈p,x〉f(x) dx. (98)

Again, this preserves the L2 norm, and transforms derivatives into multiplications:

pj f̂(p) = −iF
(
∂f

∂xj

)
(p).

Repeated application of this shows that

|p|2f̂(p) = −F (∆f) (p), (99)

where

∆ =
n∑
j=1

∂2

∂x2j

is the Laplacian. Iterating this gives, for each r ∈ {0, 1, 2, ...} and f ∈ S(Rd),

|p|2rf̂(p) = (−1)rF (∆rf) (p), (100)

which in turn implies, by the Plancherel formula Equation (67), the identity:∫
Rd

∣∣∣|p|2r|f̂(p)|
∣∣∣2 dp =

∫
Rd

|∆rf(x)|2 dx. (101)

Then we have, for any m > d/4,

||f ||sup ≤ (2π)−d/2
∫
Rd

|f̂(p)| dp

= (2π)−d/2
∫
Rd

(1 + |p|2)m|f̂(p)|(1 + |p|2)−m dp

= K

[∫
Rd

(1 + |p|2)2m|f̂(p)|2 dp
]1/2

by Cauchy-Schwartz,

where K = (2π)−d/2
[∫

Rd
dp

(1+|p|2)2m

]1/2
< ∞. The function (1 + s)n/(1 + sn), for s ≥ 0, attains a

maximum value of 2n−1, and so we have the inequality (1 + s)2m ≤ 22m−1(1 + s2m), which leads to

(1 + |p|2)2m ≤ 22m−1(1 + |p|4m).

Then, from Equation (102), we have

||f ||2sup ≤ K222m−1 (||f ||2L2 + ||∆mf ||2L2

)
. (102)
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This last quantity is clearly bounded above by a linear combination of ||f ||0,b,2 for certain multi-indices
b. Thus ||f ||sup is bounded above by a linear combination of ||f ||0,b,2 for certain multi-indices b. It follows
that ||xaDbf ||sup is bounded above by a linear combination of ||f ||a′,b′,2 for certain multi-indices a′, b′.

For the inequality going the other way, the reasoning used above for Equation (97) generalizes readily,
again with (1 + x2) replaced by (1 + |x|2)d. Thus, on S(Rd) the topology generated by the family of
semi-norms || · ||a,b,2 coincides with the Schwartz topology.

Now we return to Equation (102) for some further observations. First note that

∆ =
1

4

d∑
j=1

(Cj − Aj)2

and so ∆m consists of a sum of multiples of (3d)m terms each a product of 2m elements drawn from the
set {A1, C1, ..., Ad, Cd}. Consequently, by Equation (95)

||∆mf ||2L2 ≤ c2d,m||f ||2m, (103)

for some positive constant cd,m. Combining this with Equation (102), we see that for m > d/4, there is
a constant kd,m such that

||f ||sup ≤ kd,m||f ||m (104)

holds for all f ∈ S(Rd).
Now consider f ∈ Sp(Rd), with p > d/4. Let

fN =
∑

j∈W d,|j|≤N

〈f, φj〉φj.

Then fN → f in L2 and so a subsequence {fNk}k≥1 converges pointwise almost everywhere to f .
It follows then that the essential supremum ||f ||∞ is bounded above as follows:

||f ||∞ ≤ lim sup
N→∞

|fN |sup.

Note that fN → f also in the || · ||p–norm. It follows then from Equation (104) that

||f ||∞ ≤ kd,p||f ||p (105)

holds for all f ∈ Sp(Rd) with p > d/4. Replacing f by the difference f − fN in Equation (105), we
see that f is the L∞–limit of a sequence of continuous functions which, being Cauchy in the sup-norm,
has a continuous limit; thus f is a.e. equal to a continuous function, and may thus be redefined to
be continuous.

11. Identification of S(R) with a Sequence Space

Suppose a0, a1, ... form a sequence of complex numbers such that∑
n≥0

(n+ 1)m|an|2 <∞, for every integer m ≥ 0. (106)
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We will show that the sequence of functions given by

sn =
n∑
j=0

ajφj

converges in the topology of S(R) to a function f ∈ S(R) for which an = 〈f, φn〉 for every n ≥ 0.
All the hard work has already been done. From Equation (106) we see that (sn)n≥0 is Cauchy in each

norm || · ||m. So it is Cauchy in the Schwartz topology of S(R), and hence convergent to some f ∈ S(R).
In particular, sn → f in L2. Taking inner-products with φj we see that aj = 〈f, φj〉.

Thus we have

Theorem 16. Let W = {0, 1, 2, ...}, and define

F : L2(R)→ CW

by requiring that
F (f)n = 〈f, φn〉L2

for all n ∈ W . Then the image of S(R) under F is the set of all a ∈ CW for which
||a||2m

def
=
∑

n≥0(n + 1)2m|an|2 < ∞ for every integer m ≥ 0. Moreover, if F
(
S(R)

)
is equipped

with the topology generated by the norms || · ||m then F is a homeomorphism.
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A. Spectral Theory in Brief

In this section we present a self contained summary of the concepts and results of spectral theory that
are relevant for the purposes of this article.

Let H be a complex Hilbert space. A linear operator on H is a linear map

A : DA → H,
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where DA is a subspace of H . Usually, we work with densely defined operators, i.e., operators A for
which DA is dense.

A.1. Graph and Closed Operators

The graph of the operatorA is the set of all ordered pairs (x,Ax) with x running over the domain of A:

Gr(A) = {(x,Ax) : x ∈ DA}. (107)

Thus Gr(A) is A viewed as a set of ordered pairs, and is thus A itself taken as a mapping in the
set-theoretic sense. The operatorA is said to be closed if its graph is a closed subset ofH⊕H; put another
way, this means that if (xn)n≥1 is any sequence inH which converges to a limit x and if limn→∞Axn = y

also exists then x is in the domain of A and y = Ax.

A.2. The Adjoint A∗

If A is a densely defined operator on H then there is an adjoint operator A∗ defined as follows.
Let DA∗ be the set of all y ∈ H for which the map

fy : DA → C : x 7→ 〈Ax, y〉

is bounded linear. Clearly, DA∗ is a subspace of H . The bounded linear functional fy extends to a
bounded linear functional fy on H . So there exists a vector z ∈ H such that fy(x) = 〈z, x〉 for all
x ∈ H . Since DA is dense in H , the element z is uniquely determined by x and A. Denote z by A∗y.
Thus, A∗y is the unique vector in H for which

〈x,A∗y〉 = 〈Ax, y〉 (108)

holds for all x ∈ DA. Using the definition of A∗ for a densely-defined operator A it is readily seen that
A∗ is a closed operator.

A.3. Self-Adjoint Operators

The operator A is self-adjoint if it is densely defined and A = A∗. Thus, if A is self-adjoint then
DA = DA∗ and

〈x,Ay〉 = 〈Ax, y〉 (109)

for all x, y ∈ DA. Note that a self-adjoint operator A, being equal to its adjoint A∗, is automatically a
closed operator.

A.4. Closure, and Essentially Self-Adjoint Operators

Consider a densely-defined linear operator S on H . Assume that the closure of the graph of S is the
graph of some operator S. Then S is called the closure of S. We say that S is essentially self-adjoint if
its closure is a self-adjoint operator. In particular, S must then be a symmetric operator, i.e., it satisfies

〈Sx, y〉 = 〈x, Sy〉 (110)
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for all x, y ∈ H . A symmetric operator may not, in general, be essentially self-adjoint.

A.5. The Multiplication Operator

Let us turn to a canonical example. Let (X,F , µ) be a sigma-finite measure space. Consider the
Hilbert space L2(µ). Let f : X → C be a measurable function. Define the operator Mf on L2(µ)

by setting
Mfg = fg, (111)

with the domain of Mf given by

D(Mf ) = {g ∈ L2(µ) : fg ∈ L2(µ)}. (112)

Let us check that D(Mf ) is dense in L2(µ). By sigma-finiteness of µ, there is an increasing
sequence of measurable sets Xn such that

⋃
n≥1Xn = X and µ(Xn) < ∞. For any h ∈ L2(µ) let

hn = 1Xn∩{|f |≤n}h. Then∫
|fhn| dµ ≤ n

∫
|h|1Xn dµ ≤ nµ(Xn)1/2||h||L2 <∞

and so hn ∈ D(Mf ). On the other hand,

||hn − h||2L2 → 0

by dominated convergence. So D(Mf ) is dense in H .
It may be shown that

M∗
f = Mf . (113)

Thus Mf is self-adjoint if f is real-valued.
A very special case of the preceding example is obtained by taking X to be a finite set, say

X = {1, 2, ..., d}, and µ as counting measure on the set of all subsets of X . In this case, L2(µ) = Cd,
and the operator Mf , viewed as a linear map

Mf : Cd → Cd

is given by the diagonal matrix 
f1 0 0 · · · 0

0 f2 0 · · · 0

0 0 f3 · · · 0
...

...
...

...
...

0 0 0 · · · fd

 . (114)

Now take the case where µ is counting measure on the sigma-algebra of all subsets of a countable set
X . Let f be any real-valued function on X . Let D0

f be the subspace of L2(µ) consisting of all functions
g for which {g 6= 0} is a finite set, and let M0

f be the restriction of Mf to D0
f . Then it is readily checked

that M0
f is essentially self-adjoint. Consequently, the restriction of Mf to any subspace of Df larger than

D0
f is also essentially self-adjoint.
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A.6. The Spectral Theorem

The spectral theorem for a self-adjoint operator A on a separable complex Hilbert space H says that
there is a sigma-finite measure space (X,F , µ), a unitary isomorphism

U : H → L2(µ)

and a measurable real-valued function f on X such that

A = U−1MfU. (115)

Expressing A in this way is called a diagonalization of A (the terminology being motivated by
Equation (114)).

A.7. The Functional Calculus

If g is any measurable function on R we can then form the operator

g(A)
def
= U−1Mg◦fU. (116)

If g is a polynomial then g(A) works out to be what it should be, a polynomial inA. Another example,
is the function g(x) = eikx, where k is any constant; this gives the operator eikA.

A.8. The Spectrum

The essential range of f is the smallest closed subset of R whose complement U satisfies
µ
(
f−1(U)

)
= 0. It consists of all λ ∈ R for which the operator Mf −λI = Mf−λ has a bounded inverse

(which is M(f−λ)−1). This essential range forms the spectrum σ(A) of the operator A. Thus σ(A) is the
set of all real numbers λ for which the operator A− λI has a bounded linear operator as inverse.

A.9. The Spectral Measure

Associate to each Borel set E ⊂ R the operator

P ′E = M1f−1(E)

on L2(X,µ). This is readily checked to be an orthogonal projection operator. Hence, so is the operator

PA(E) = U−1P ′EU.

Moreover, it can be checked that the association E 7→ PA(E) is a projection-valued measure, i.e.,
PA(∅) = 0, PA(R) = I , PA(E ∩ F ) = PA(E)PA(F ), and for any disjoint Borel sets E1, E2, ... and
any vector x ∈ H we have

PA(∪n≥1En)x =
∑
n≥1

PA(En)x. (117)

This is called the spectral measure for the operator A, and is uniquely determined by the operator A.
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A.10. The Number Operator

Let us examine an example. Let W = {0, 1, 2, ...}, and let µ be counting measure on W . On W we
have the function

N ′ : W → R : n 7→ n.

Correspondingly we have the multiplication operator MN ′ on the Hilbert space L2(W,µ).
Now consider the Hilbert space L2(R). We have the unitary isomorphism

U : L2(R)→ L2(W,µ) : f 7→ (〈f, φn〉)n≥0 .

Consider the operator N on L2(R) given by

N = U−1MN ′U.

Then
Nf =

∑
n∈W

n〈f, φn〉φn

and the domain of N is
DN = {f ∈ L2(R) :

∑
n∈W

n2|〈f, φn〉|2 <∞}.

Comparing with Equation (82) we see that

(Nf)(x) =

(
− d2

dx2
+
x2

4
− 1

2

)
f(x)

for every f ∈ S(R).
Thus the self-adjoint operator N extends the differential operator − d2

dx2
+ x2

4
− 1

2
, and, notationally,

we will often not make a distinction. In view of the observation made at the end of subsection A.5, the
differential operator − d2

dx2
+ x2

4
− 1

2
on the domain S(R) is essentially self-adjoint, with closure equal to

the operator N .
The operator U above helps realize the operator N as the multiplication operator MN ′ , and is thus an

explicit realization of the fact guaranteed by the spectral theorem.

B. Explanation of Physics Terminology

In quantum theory, one associates to each physical system a complex Hilbert spaceH [4]. Each state
of the system is represented by a bounded self-adjoint operator ρ ≥ 0 for which tr(ρ) = 1. An observable
is represented by a self-adjoint operator A on H. The relationship of the mathematical formalism with
physics is obtained by declaring that

tr(PA(E)ρ)

is the probability that in state ρ the observable A has value in the Borel set E ⊂ R. Here, PA is the
spectral measure for the self-adjoint operator A.

The states form a convex set, any convex linear combination of any two states being also clearly a
state. There are certain states which cannot be expressed as a convex linear combination of distinct
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states. These are called pure states. A pure state is always given by the orthogonal projection onto a ray
(1–dimensional subspace ofH). If φ is any unit vector on such a ray then the orthogonal projection onto
the ray is given by: Pφ:ψ 7→ 〈ψ, φ〉φ and then the probability of the observable A having value in a Borel
set E in the state Pφ then works out to be

〈PA(E)φ, φ〉.

Suppose, for instance, the spectrum of A consists of eigenvalues λ1, λ2, ..., with Aun = λnun for an
orthonormal basis {un}n≥1 ofH. Then the probability that the observable represented by A has value in
E in state Pφ is ∑

{n:λn∈E}

|〈un, φ〉|2.

Thus the spectrum σ(A) here consists of all the possible values of A that could be realized.
To every system there is a special observable H called the Hamiltonian. The physical significance

of this observable is that it describes the energy of the system. There is a second significance to this
observable: if ρ is the state of the system at a given time then time t later the system evolves to the state

ρt = e−i
t
~Hρei

t
~H ,

where ~ is Planck’s constant.
A basic system considered in quantum mechanics is the harmonic oscillator. One may think of this

crudely as a ball attached to a spring, but the model is used widely, for instance also for the quantum
theory of fields. The Hilbert space for the harmonic oscillator is L2(R). The Hamiltonian operator, up
to scaling and addition of the constant −1

2
, is

H = − d2

dx2
+
x2

4
− 1

2
.

The energy levels are then the spectrum of this operator. In this case the spectrum consists of all the
eigenvalues 0, 1, 2, .... The creation operator bumps an eigenstate of energy n up to a state of energy
n+ 1; an annihilation operator lowers the energy by 1 unit.

In many applications, the eigenstates represent quanta, i.e., excitations of the system. Thus raising
the energy by one unit corresponds to the creation of an excited state, while lowering the energy by one
unit corresponds to annihilating an excited state.
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