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1. Introduction

Differential equations of fractional order have recently been proven to be valuable tools in the
modeling of many physical phenomena [1–3]. There has also been a significant theoretical development
in fractional differential equations in recent years; see the monographs of Abbas et al. [4],
Kilbas et al. [5], Miller and Ross [6], Podlubny [7] and Samko et al. [8].

The basic theory for initial value problems for fractional differential equations involving the
Riemann–Liouville and Liouville–Caputo differential operator was discussed by Diethelm [9].
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Recently, fractional functional differential equations, fractional differential inclusions and
impulsive fractional differential equations with different conditions were studied, for example, by
Aghajani et al. [10], Ahmad and Nieto [11], Benchohra et al. [12], Chalishajar and Karthikeyan [13,14],
Henderson and Ouahab [15,16], Ouahab [17,18] and in the references therein.

In this paper, we study the existence of solutions of the following implicit fractional differential
equation with initial condition:

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J

y(0) = y0

(1)

where J = [0, b], 0 < α < 1 and f : J × R× R→ R is a continuous function.
This problem is motivated by the importance of implicit ordinary differential equations of the form:

f(t, x(t), x′(t), . . . , x(n−1)(t)) = 0. (2)

under various initial and boundary conditions. Implicit equations have been considered by many
authors [19–26]. Furthermore, our intention is to extend the results to implicit differential equations
of fractional order.

Very recently, some existence results for an implicit fractional differential equation on compact
intervals were investigated [27–29].

Our goal in this work is to give some existence and uniqueness results for implicit fractional
differential equations.

2. Fractional Calculus

According to the Riemann–Liouville approach to fractional calculus, the notation of the fractional
integral of order α (α > 0) is a natural consequence of the well-known formula (usually attributed to
Cauchy) that reduces the calculation of the n−fold primitive of a function f to a single integral of the
convolution type. The Cauchy formula reads:

[Inf ](t) =
1

(n− 1)!

∫ t

0

(t− s)n−1f(s) ds, t > 0 , n ∈ N.

Definition 1. The fractional integral of order α > 0 of a function f ∈ L1(a, b) is defined by:

Iαa+f(t) :=

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds,

where Γ is the classical gamma function. When a = 0, we write Iαf(t) = f(t) ∗ φα(t), where φα(t) =
tα−1

Γ(α)
for t > 0, φα(t) = 0 for t ≤ 0 and φα → δ as α → 0+, where δ is the Dirac delta function. For

consistency, I0 = Id (Identity operator), i.e., I0f(t) = f(t). Furthermore, by Iαf(0+), we mean the
limit (if it exists) of Iαf(t) for t→ 0+; this limit may be infinite.

After the notion of the fractional integral, that of the fractional derivative of order α (α > 0) becomes
a natural requirement, and one is attempted to substitute α with −α in the above formulas. However,
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this generalization needs some care in order to guarantee the convergence of the integral and to preserve
the well-known properties of the ordinary derivative of integer order. Denoting by Dn, with n ∈ N, the
operator of the derivative of order n, we first note that:

DnIn = Id, InDn 6= Id, n ∈ N,

i.e., Dn is the left inverse (and not the right inverse) to the corresponding integral operator In. We can
easily prove that:

InDnf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, t > 0.

As a consequence, we expect that Dα is defined as the left inverse to Iα. For the fractional derivative of
order α > 0 with integer n, such that n− 1 < α ≤ n, we have:

Definition 2. For a function f given on interval [a, b], the Riemann–Liouville fractional-order derivative
of order α of f is defined by:

Dα
a f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)−α+n−1f(s)ds,

provided the right-hand side is defined.

Defining for consistency, D0 = I0 = Id, then we easily recognize that:

DαIα = Id, α ≥ 0, (3)

and

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α > 0, γ > −1, t > 0. (4)

Of course, Properties (3) and (4) are a natural generalization of those known when the order is a positive
integer.

Note the remarkable fact that the fractional derivative Dαf is not zero for the constant function
f(t) = 1, if α 6∈ N. In fact, Equation (4) with γ = 0 illustrates that:

Dα1 =
t−α

Γ(1− α)
, α > 0, t > 0. (5)

It is clear that Dα1 = 0, for α ∈ N, due to the poles of the gamma function at the points 0,−1,−2, . . ..
We now observe an alternative definition of fractional derivative, introduced by Caputo [30,31] in

the late 1960s and adopted by Caputo and Mainardi [32] in the framework of the theory of linear
viscoelasticity (see a review in [2]).

Definition 3. Let f ∈ ACn([a, b]). The Liouville–Caputo fractional-order derivative of f is defined by:

(cDα
a f)(t) :=

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds.
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This definition is of course more restrictive than the Riemann–Liouville definition, in that it requires
the absolute integrability of the derivative of order n. Whenever we use the operator cDα, we (tacitly)
assume that this condition is met. We easily recognize that in general:

Dαf(t) := DnIn−αf(t) 6= In−αDnf(t) := cDαf(t), (6)

unless the function f(t), along with its first n− 1 derivatives, vanishes at t = 0+. In fact, assuming that
the passage of the n−derivative under the integral is legitimate, we recognize that, for n − 1 < α < n

and t > 0,

Dαf(t) =c Dαf(t) +
n−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0+), (7)

and therefore, recalling the fractional derivative of the power Function (4):

Dα

(
f(t)−

n−1∑
k=0

tk

Γ(k + 1)
f (k)(0+)

)
= cDαf(t). (8)

The alternative definition, that is Definition 3, for the fractional derivative thus incorporates the initial
values of the function and of lower order. The subtraction of the Taylor polynomial of degree n − 1

at t = 0+ from f(t) means a sort of regularization of the fractional derivative. In particular, according
to this definition, the relevant property for which the fractional derivative of a constant is still zero is
satisfied, i.e.,

cDα1 = 0, α > 0. (9)

At the end of this section, we present some properties of a special function. Denote Eα,β the generalized
Mittag–Leffler special function defined by:

Eα,β(z) :=
∞∑
k=0

zk

Γ(kα + β)
.

Also,

Eα,β(z) =
1

2πi

∫
Υ

λα−βeλ

λα − z
dλ

where Υ is a contour, which starts and ends at −∞ and encircles the disc |λ| ≤ |z| 1α counterclockwise.

Lemma 1. [9] Let α > 0, n = dαe and λ ∈ R. The solution of the initial value problem:
cDαy(t) = λy(t) + q(t)

y(k)(0) = yk, k = 0, 1, . . . , n− 1,

(10)

where q ∈ C[0, b] is a given function, can be expressed in the form:

y(t) =
n−1∑
k=0

ykuk(t) + y∗(t)
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with:

y∗(t) =


Iα0 q(t) if λ = 0

1
λ

∫ t
0
q(t− s)u′0(s)ds if λ 6= 0,

where uk(t) = Ik0 eα(t), k = 0, 1, . . . , n− 1 and eα(t) := Eα(λtα).

Remark 1. In the case 0 < α < 1, we can rewrite the solution of Problem (10) in the form:

y(t) = y(0)Eα(λtα) + α

∫ t

0

q(t− s)sα−1E ′α(λsα)ds

Lemma 2. Let v : [0, b]→ [0,∞) be a real function, and w is a nonnegative, locally-integrable function
on [0, b]. Assume that there are constants a > 0 and 0 < β < 1, such that:

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)β
ds,

then there exists a constant K = K(β), such that:

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)β
ds,

for every t ∈ [0, b].

Proof. From Gronwall’s lemma for singular kernels, whose proof can be found in Lemma 7.1.1 on page
188 of [33], we know that:

v(t) ≤ w(t) + c

∫ t

0

E ′1−β(c(t− s))w(s)ds

where c ∈ R is a constant dependent on β. Now, E ′1−β(s) is bounded for s ∈ [0, b] and for s→ t−:

E ′1−β(c(t− s)) ≈ a

c−β(t− s)β

where a > 0 is a constant. This implies that:

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)β
ds

with constant K = K(β).

Lemma 3. Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X.

Then, T admits a unique fixed-point x∗ in X(i.e., T (x∗) = x∗).

Lemma 4. If K is a convex subset of a topological vector space V and T is a continuous mapping of K
into itself, so that T (K) is contained in a compact subset of K, then T has a fixed point.

Lemma 5. Consider a sequence of real-valued continuous functions {fn}n∈N defined on a closed and
bounded interval [0, b]. If this sequence is uniformly bounded and equicontinuous, then there exists a
subsequence (fnk) that converges uniformly.
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For further readings and details on fractional calculus, we refer to the books and papers by
Kilbas et al. [5], Podlubny [7] and Samko et al. [8].

3. Existence and Uniqueness

In this section, we prove some existence results and describe the structure of the solution set. We first
note that if y ∈ C[0, b] is an absolutely continuous function on [0, b] satisfying Equation (1), then:

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), cDαy(s))ds.

Theorem 1. Assume that there exist K1, K2 > 0, such that:

|f(t, x, y)− f(t, x̄, ȳ)| ≤ K1|x− x̄|+K2|y − ȳ|, for each x, x̄, y, ȳ ∈ R.

If b
αK1

α
+K2 < 1, then there exists unique y ∈ C(J,R), which satisfy Equation (1).

Proof. Consider N : C(J,R)→ C(J,R) defined by:

N(z(t)) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds, z(t)

)
, t ∈ J.

Let z1, z2 ∈ C(J,R), then:

|N(z1(t))−N(z2(t))| ≤ K1

Γ(α)

∫ t

0

(t− s)α−1|z1(s)− z2(s)|ds+K2|z1(t)− z2(t)|

≤
(
K1t

α

Γ(α)

)
||z1 − z2||∞ +K2|z1(t)− z2(t)|

Hence:

‖N(z1)−N(z2)‖∞ ≤
(
K1b

α

Γ(α)
+K2

)
‖z1 − z2‖∞, for each z1, z2 ∈ C(J,R).

From the Banach fixed point theorem, Lemma 3, there exists a unique z ∈ C(J,R), such that z = N(z).

Therefore:

z(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds, z(t)

)
, t ∈ J.

Set

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds.

This implies that cDαy(t) = z(t), and hence:

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J.

The goal of the second result of this section is to apply the Schauder fixed point theorem, Lemma 4.
For the study of this problem, we present some auxiliary lemmas.
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Lemma 6. Let ε, ε′ ∈ (0, 1) and L : C1(J,R)→ C(J,R) be an operator defined by:

L(z) = ε cDαz + ε′z.

Then, L is a linear, continuous and invertible operator.

Proof. It is clear that L is a linear operator. For every z ∈ C1(J,R), we have:

‖L(z)‖∞ ≤
(
εb−α+1

Γ(α)
+ ε′

)
(‖z′‖∞ + ‖z‖∞) for every z ∈ C1(J,R).

Hence, L is continuous. Now, we show that if L(z) = 0, then z = 0, that is L is injective. Indeed, let
z ∈ C(J,R), such that L(z) = 0, then:

ε cDαz(t) + ε′z(t) = 0, t ∈ J ⇒ z(0) = 0.

From Lemma 1, we have: z = 0.

Let h ∈ C(J,R); we consider the fractional Cauchy problem:

cDαz +
ε′

ε
z =

h(t)

ε
, z(0) = h(0).

Again from Lemma 1, we obtain that:

εz(t) = εh(0)Eα

(
−ε
′

ε
tα
)

+ α

∫ t

0

(t− s)α−1E ′α

(
−ε
′

ε
(t− s)α

)
h(s)ds.

This implies that L is bijective, and from the Banach isomorphism theorem, L−1 is a continuous
operator.

Lemma 7. Let F : C1(J,R)→ C(J,R) be an operator defined by:

F (z) = ε cDαz + ε′(y0 + Iαf(., z, cDαz)).

We note

[L(z)](t) := y0 +
1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds, t ∈ J.

Assume:
(H1) there exist M1,M3 > 0,M2 ∈ (0, 1), such that:

|f(t, x, y)| ≤M1|x|+M2|y|+M3, for each x, y,∈ R, t ∈ J.

Then, F is continuous and compact.

Proof. The proof will be given in three steps.

Step 1: F is continuous.
Let (zn)n∈N ⊂ C1(J,R) be a sequence, such that (zn)n∈N → z ∈ C1(J,R).
Then:
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∣∣∣∣∫ t

0

(t− s)α−1(zn(s)− z(s))ds

∣∣∣∣ ≤ tα

α
‖zn − z‖∞.

Thus:

‖L(zn)− L(z)‖∞ ≤ bα

Γ(α + 1)
‖zn − z‖∞ → 0, n→∞.

Furthermore: ∣∣∣∣∫ t

0

(t− s)−α(z′n(s)− z′(s))ds
∣∣∣∣ ≤ t1−α

1− α
‖z′n − z′‖∞.

and hence:

‖L̄(zn)− L̄(z)‖∞ ≤ b1−α

Γ(2− α)
‖z′n − z′‖∞ → 0, n→∞,

where:

L̄(z) := cDαz(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αz′(s), t ∈ J.

Hence:

‖F (zn)− F (z)‖∞ ≤ ε′bα

Γ(α + 1)
‖f(·, zn, L̄(zn))− f(·, z, L̄(z))‖∞

+ε‖L̄(zn)− L̄(z)‖∞ → 0, as n→∞.

Step 2: F sends bounded sets in C1(J,R) into bounded sets in C(J,R).
For each t ∈ J and z ∈ B(0, r), we have:

‖(Fz)(t)‖ ≤ εb1−α

Γ(2−α)
r + ε′

(
|y0|+

∫ t
0

1
Γ(α)

(t− s)α−1|f(s, z(s), (L̄z)(s))|ds
)

≤ εb1−α

Γ(2−α)
r + ε′

(
|y0|+

∫ t
0

1
Γ(α)

(t− s)α−1(M1|z(s)|+M2|L̄(z)(s)|+M3)ds
)

≤ εb1−α

Γ(2−α)
r + ε′|y0|+ ε′

Γ(α)

∫ t
0
(t− s)α−1

(
M2rb1−α

Γ(2−α)
+M1r +M3

)
ds.

Then:

‖F (z)‖∞ ≤
εb1−αr

Γ(2− α)
+ ε′|y0|+

ε′bα

Γ(α + 1)

(
M2rb

1−α

Γ(2− α)
+M1r +M3

)
.

Step 3: F maps bounded sets into equicontinuous sets.
Let t1, t2 ∈ J , such that t1 < t2 and z ∈ B(0, r); we have:

|(Fz)(t2)− (Fz)(t1)| ≤ εr
Γ(1−α)

[
∫ t2
t1

(t2 − s)−αds+
∫ t1

0
((t2 − s)−α − (t1 − s)−α)ds]

+ ε′

Γ(α)

∫ t2
0

((t2 − s)α−1 − (t1 − s)α−1))|f(s, z(s), (L̄z)(s))|ds
+ ε′

Γ(α)

∫ t2
t1

(t2 − s)α−1)|f(s, z(s), (L̄z)(s))|ds
≤ εr

Γ(2−α)
(t2 − t1)1−α + ε′l

Γ(α+1)
(t1(tα−1

2 − tα−1
1 )+

ε′l
Γ(α+1)

(t2 − t1)α + εr
Γ(2−α)

(t1(t−α2 − t−α1 ))

where:

l = M1r +
M2rb

1−α

Γ(2− α)
+M3.

Then, the right-hand side tends to zero as t2 − t1 → 0. By the Arzelá-Ascoli theorem, Lemma 5, we
conclude that F : C1(J,R)→ C(J,R) is a compact continuous operator.
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Now, we present a result without Lipschitz condition.

Theorem 2. Suppose that there is a constant M > 0, such that for each λ ∈ [0, 1) and z ∈ C1(J,R)

with ‖z‖1 = M , we have:
(H2) ε cDαz+ ε′z 6= λ[ε cDαz+ ε′(y0 + Iαf(t, z(t), cDαz))]. Then, the implicit Problem (1) has at least
one solution. Moreover, if 0 < M2 < 1, then Fix(L−1F ) is compact.

Proof. From Lemmas 6 and 7, the operators L, F : C1(J,R) → C(J,R) are linear, continuous,
invertible and continuous and compact, respectively. Hence, L−1F : C1(J,R)→ C1(J,R) is a compact
continuous operator. Set:

U = {z ∈ C1(J,R) : ‖z‖1 < M}.

Assume that there exists λ ∈ [0, 1) and z ∈ ∂U , such that

z = λL−1F (z)⇒ L(z) = λF (z).

Hence:
ε cDαz(t) + ε′z(t) = λ[ε cDαz + ε′(y0 + Iαf(t, z(t), cDαz)],

which contradicts with (H2). As a consequence of the nonlinear alternative of Leray–Schauder, we
deduce that L−1F has a fixed point z in U , which is a solution to Problem (1). Now, we show that
Fix(L−1F ) is compact. Let z ∈ Fix(L−1F ), then:

z = (L−1F )(z)⇒ z = y0 + Iαf(·, z(·), cDαz) and cDαz = f(·, z(·), cDαz).

Thus,

|z(t)| ≤ |y0|+
M3b

α

Γ(α + 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1 (M2|cDαz(s)|+M1|z(s)|) ds

and:

|cDαz(t)| ≤ 1

1−M2

(M1|z(t)|+M3)

Let:
µ(t) = sup

τ∈[0,t]

|z(τ)|

Thus:

µ(t) ≤ C1 + C2

∫ t

0

(t− s)α−1µ(s)ds.

where:
C1 = |y0|+

M3b
α

Γ(α + 1)
+

M3M2b
α

Γ(α + 1)(1−M2)

and:
C2 =

M2M1

Γ(α)(1−M2)
+

M1

Γ(α)
.



Mathematics 2015, 3 407

By Lemma 2, there exists K3 > 0, such that:

‖z‖∞ ≤ K3.

Therefore,

‖z‖1 = ‖(L−1(F (z))‖1

≤ ‖L−1‖‖(Fz)‖∞.

Additionally, since ‖z‖∞ ≤ K3:

⇒ ‖cDαz‖∞ ≤ 1

1−M2

(M1K3 +M3)

and:

‖Iαf(., z(.), L̄(z))‖∞ ≤ bα

Γ(α + 1)

(
M2(M1K3 +M3)

1−M2

+M1K3 +M3

)
This implies that there exists K4 > 0, such that:

‖z‖1 < K4.

Therefore, Fix(L−1F ) is bounded. Hence, L−1F (Fix(L−1F )) is compact. Now, since L−1F is a
continuous operator, the set Fix(L−1F ) is a closed set. It is clear that

Fix(L−1F ) ⊂ L−1F (Fix(L−1F )),

and thus, we conclude that Fix(L−1F ) is compact.

By the approximation method, we present the existence of the solution for Problem (1):

Theorem 3. Assume that:
(H3) for each ε > 0, there exists δ > 0 and k = k(ε), with:

limε→0+k(ε) = 0

such that, if |t1 − t2| < δ, |x− x̄| < δ, |y − ȳ| < k(ε), then we have:

|f(t1, x, y)− f(t2, x̄, ȳ)| < k(ε).

If the approximation sequence (zn)n∈N defined by:

z0(t) = y0, t ∈ J,

zn(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1zn−1(s)ds, zn−1(t)

)
, t ∈ J, n ∈ N.

is bounded, then there exist at least one solution of Problem (1).
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Proof. Since (zn)n∈N is bounded, we only need to show that (zn)n∈N is equicontinuous. We show this
fact by induction. We consider n = 1; let t1, t2 ∈ J . Then, by (H3) we have, for ε > 0; we consider
r > 0, such that k(r) ≤ ε there exists δ > 0, such that for |tα1 − tα2 | < η, |t1 − t2| < η, η ≤
min

(
δ
2
, δΓ(α+1)

2(1+|y0|) ,
δΓ(α+1)

2M(1+|y0|)

)
, we have:

|z1(t1)− z1(t2)| =

=

∣∣∣∣f (t1, y0 −
tα1

Γ(α + 1)
y0, y0

)
− f

(
t2, y0 −

tα2
Γ(α + 1)

y0, y0

)∣∣∣∣ ≤
≤ k(r) ≤ ε.

We suppose that |tα1 − tα2 | < η, |t1 − t2| < η, η ≤ min
(
δ
2
, δΓ(α+1)

2(1+|y0|) ,
δΓ(α+1)

2M(1+|y0|)

)
for each p ≤ n. Let

p = n+ 1:

|zn+1(t1)− zn+1(t2)| =

∣∣∣∣f (t1, y0 +
1

Γ(α)

∫ t1

0

(t1 − s)α−1zn(s)ds, zn(t1)

)
−f
(
t2, y0 +

1

Γ(α)

∫ t2

0

(t2 − s)α−1zn(s)ds, zn(t2)

)∣∣∣∣ .
Set:

F∗(t) =
1

Γ(α)

∫ t

0

(t− s)α−1zn(s)ds.

Without loss of generality, we can assume that t1 ≥ t2:

|F∗(t1)− F∗(t2)| ≤ M

Γ(α)
|
(∫ t1

0

((t1 − s)α−1 − (t2 − s)α−1))ds+

∫ t2

t1

(t2 − s)α−1ds

)
|

≤ M

Γ(α + 1)
(tα2 − tα1 ),

where M = ‖z‖∞.
By (H3), we have:

|zn+1(t1)− zn+1(t2)| =

∣∣∣∣f (t1, y0 +
1

Γ(α)

∫ t1

0

(t1 − s)α−1zn(s)ds, zn(t1)

)
−f
(
t2, y0 +

1

Γ(α)

∫ t2

0

(t2 − s)α−1zn(s)ds, zn(t2)

)∣∣∣∣
≤ k(r) ≤ ε.

Hence, by the Arzelá-Ascoli theorem, Lemma 5, we conclude that (zn)n∈N is relatively compact in
C(J,R). Then, there exists a subsequence {znk}, which converges to some limit z. Since f is continuous,
this implies that:

z = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds, z(s)

)
.

Example 1. Consider the Cauchy problem:

cDαy(t) = f(t, y) + h(cDαy(t)), t ∈ J := [0, b], y(0) = y0 ∈ R, (11)
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where f : J × R → R, h : R → R are continuous functions. Assume that there exist K1, K2 > 0,
such that:

|f(t, x̄)− f(t, x)| ≤ K1|x̄− x|, for all, x̄, x ∈ R and t ∈ J ;

|h(ȳ)− h(y)| ≤ K2|ȳ − y|, for all, ȳ, y ∈ R.

If bαK1

α
+K2 < 1, then, from Theorem 1, Problem (11) has a unique solution.

For instance, take J = [0, 1] and α = 1
2

with f(t, y) = t+ 1
6

cos y and h(cDαy(t)) = 1
2

sin(cDαy(t)),
t ∈ J and y ∈ R. Then, Problem (11) becomes:

cDαy(t) = t+
1

6
cos y +

1

2
sin(cDαy(t)), t ∈ J, y(0) = y0 ∈ R, (12)

It is clear that the functions f and h in Problem (12) are continuous and:

|f(t, ȳ)− f(t, y)| ≤ 1

6
|ȳ − y|, |h(cDαȳ(t))− h(cDαy(t))| ≤ 1

2
|cDαȳ(t)−c Dαy(t)|,

for all, y, ȳ ∈ R, t ∈ J.

We have:
bαK1

α
+K2 =

1

3
+

1

2
=

5

6
< 1

This implies that Problem (12) has a unique solution.

4. Conclusions

We have proven an existence result for implicit fractional differential equations. In the future, we will
extend the results to other fractional derivatives and boundary value problems.

Acknowledgments

The research has been partially supported by the Ministerio de Economía y Competitividad of Spain
under Grants MTM2010-15314 and MTM2013–43014–P, XUNTA de Galicia, the local government,
under Grant R2014/002 and co-financed by the European Community fund FEDER.

Author Contributions

Each of the authors, Juan J. Nieto, Abelghani Ouahab and V. Venktesh, contributed to each part of
this study equally and read and approved the final version of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gaul, L.; Klein, P.; Kempfle, S. Damping description involving fractional operators. Mech. Syst.
Signal Process. 1991, 5, 81–88.



Mathematics 2015, 3 410

2. Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanis. In
Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.;
Springer-Verlag: Wien, Austria, 1997; pp. 291–348.

3. Metzler, F.; Schick, W.; Kilian, H.G.; Nonnenmacher, T.F. Relaxation in filled polymers: A
fractional calculus approach. J. Chem. Phys. 1995, 103, 7180–7186.

4. Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations;
Springer: New York, NY, USA, 2012.

5. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential
Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, North-Holland
Mathematics Studies.

6. Miller, K. S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John
Wiley: New York, NY, USA, 1993.

7. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
8. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and

Applications; Gordon and Breach: Yverdon, Switzerland, 1993.
9. Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented

Exposition Using Differential Operators of Caputo Type; Springer-Verlag: Berlin, Germany, 2010;
Volume 2004, Lecture Notes in Mathematics.
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