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Abstract: The connection problem for orthogonal polynomials is, given a polynomial
expressed in the basis of one set of orthogonal polynomials, computing the coefficients
with respect to a different set of orthogonal polynomials. Expansions in terms of
orthogonal polynomials are very common in many applications. While the connection
problem may be solved by directly computing the change–of–basis matrix, this approach
is computationally expensive. A recent approach to solving the connection problem involves
the use of the spectral connection matrix, which is a matrix whose eigenvector matrix is
the desired change–of–basis matrix. In Bella and Reis (2014), it is shown that for the
connection problem between any two different classical real orthogonal polynomials of the
Hermite, Laguerre, and Gegenbauer families, the related spectral connection matrix has
quasiseparable structure. This result is limited to the case where both the source and target
families are one of the Hermite, Laguerre, or Gegenbauer families, which are each defined
by at most a single parameter. In particular, this excludes the large and common class of
Jacobi polynomials, defined by two parameters, both as a source and as a target family. In
this paper, we continue the study of the spectral connection matrix for connections between
real orthogonal polynomial families. In particular, for the connection problem between any
two families of the Hermite, Laguerre, or Jacobi type (including Chebyshev, Legendre, and
Gegenbauer), we prove that the spectral connection matrix has quasiseparable structure. In
addition, our results also show the quasiseparable structure of the spectral connection matrix
from the Bessel polynomials, which are orthogonal on the unit circle, to any of the Hermite,
Laguerre, and Jacobi types. Additionally, the generators of the spectral connection matrix



Mathematics 2015, 3 383

are provided explicitly for each of these cases, allowing a fast algorithm to be implemented
following that in Bella and Reis (2014).

Keywords: orthogonal polynomials; connection problem; change of basis; quasiseparable
matrices; semiseparable matrices; structured matrices; spectral connection matrix

1. Introduction

Let {Pk(x)}∞k=0 be a sequence of real–valued polynomials, with deg(Pk(x)) = k, and let w(x)

be a non–negative real–valued weight function on some interval [a, b]. Then {Pk(x)}∞k=0 is said to
be orthogonal with respect to the weight function w(x) on [a, b] if for each j 6= k, 〈Pk, Pj〉 =∫ b
a
Pk(x)Pj(x)w(x) dx = 0 and 〈Pj, Pj〉 6= 0. The expansions of polynomials in bases of such

orthogonal polynomials are of interest in mathematics, as are many other uses of orthogonal polynomials.
The classical orthogonal polynomials are useful in applications too numerous to include a full list, but
notably include Gaussian quadrature [1], random matrix theory [2], fluid dynamics [3], and computations
in quantum mechanics [4]; for a longer attempt at listing applications, see [5].

We consider the problem of, given constants {ak} and orthogonal polynomials {Pk} (the source
family) and {Qk} (the target family), computing constants {bk} such that

∑
akPk =

∑
bkQk. We

will refer to this as the connection problem, and in this paper we will consider the case where the
source polynomial family {Pk} and the target polynomial family {Qk} are Hermite, Laguerre, or Jacobi
(including any of its special cases of Chebychev, Legendre, and Gegenbauer). At the conclusion will we
also discuss a connection to the Bessel polynomials, which are often considered classical although they
are orthogonal on the unit circle.

The connection problem appears in areas such as harmonic analysis [6], mathemati-
cal physics [7], combinatorics [8], etc. It is obvious that the connection problem can
be solved by determining the entries of a suitable connection matrix. While the recur-
rence relations satisfied by real orthogonal polynomials may seem to reduce the computa-
tional complexity of this approach, inversion at a cost of O(n3) operations is still required.
As such, the connection problem has been studied extensively in the literature, see for
instance [9–15].

One of the most complete solutions to the connection problem currently is that in [16] (and continued
in [17]). The authors propose an algorithm for producing recurrence relations for desired connection
coefficients and provide some examples. While their method uses only the recurrence relations for
the orthogonal families and covers a very wide range of cases, the authors readily acknowledge the
shortcomings of their approach by stating that they “do not succeed in resolving it through a compact
form." They continue, explaining that “it is required to guess a closed form for the solution of the
recurrence from enough data produced by a symbolic programming language [16].”

Another more recent approach to the connection problem has involved the use of rank structured
matrices [18–20]. Although their traditional connection to orthogonal polynomials has been as moment
matrices or recurrence matrices, alternative links have also been made recently, which have contributed
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to the connection problem. In 1991 Alpert and Rokhlin [21] addressed the connection problem between
Legendre and Chebyshev polynomials. Later Keiner made significant progress in solving the connection
problem within the Gegenbauer family (that is, where both source and target families are Gegenbauer, but
for different values of the parameter) in [22] by exploiting the rank structure of the spectral connection
matrix. In [23] it was shown that the spectral connection matrix corresponding to a change of basis
within the Laguerre or within the Jacobi families has semiseparable structure, which is a type of the
quasiseparable structure considered here. In [24], the connection problem between different families
chosen among Hermite, Laguerre, and Gegenbauer was solved. There, it was shown that the spectral
connection matrix has quasiseparable rank structure, and explicit algorithms were given.

In this paper, we continue the work in [24] by proving that the spectral connection matrix has
quasiseparable rank structure when the target family is the large and very useful family of Jacobi
polynomials, including Chebychev polynomials as special cases. We also prove the same result for
any change of basis within the Hermite, Laguerre, and Jacobi types. At the conclusion, we also address
a change of basis into any of these types from the set of Bessel polynomials. Explicit formulas for the
generators of these quasiseparable matrices are given, allowing a fast algorithm to be implemented as
in [24].

The structure of the paper is as follows. In Section 2, we collect some well–known results about the
classes of orthogonal polynomials considered, for the reader’s convenience. Next, Section 3 introduces
the class of quasiseparable matrices, the main computational tool of our algorithm. While the connection
matrix is not itself quasiseparable, we show that it is a scaled eigenvector matrix of a known (and easily
computable) quasiseparable matrix, known as the spectral connection matrix. This and implementation
details are shown in Section 4, and explicit expressions for the generators are given in Section 5. A
connection to the Bessel polynomials is made in Section 6, and some conclusions are offered in the
final section.

2. Orthogonal Polynomials and the Connection Problem

Let P = {Pk(x)}nk=0 and Q = {Qk(x)}nk=0 be two sequences of real orthogonal polynomials
(orthogonal with respect to two inner products on Pn, 〈·, ·〉P and 〈·, ·〉Q, respectively) which we will
refer to as the source family and the target family, respectively. Suppose that a polynomial p(x) is given
in terms of the coefficients {ak}nk=0 such that

p(x) =
n∑
k=0

akPk(x).

Then it is well–known that the coefficients {bk}nk=0 such that

p(x) =
n∑
k=0

bkQk(x)

that we wish to compute are related via the change of basis matrix Φ by [b0 · · · bn]T = Φ[a0 · · · an]T ,
and that

Φ = (φi,j)
n
i,j=0 such that φi,j =

〈Pj, Qi〉Q
〈Qi, Qi〉Q

.
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Computing this change of basis matrix directly from this relation, or in the standard way involving
matrix inversion, is computationally expensive. In the case where the target family Q is Hermite,
Laguerre, or Jacobi, we provide in this paper an alternative process. For reference, next we collect
some useful information about these classical orthogonal polynomial families, noting that the source
family P need not be among these families.

Definition 1. The (monic) Hermite polynomials {Hk(x)}∞k=0 form a sequence of polynomials
orthogonal with respect to w(x) = e−x

2
on the interval (−∞,∞). They are given by the following

recurrence relation:

H−1(x) := 0, H0(x) := 1, and
Hk+1(x) := xHk(x)− k

2
Hk−1(x) for k = 0, 1, 2, . . .

(1)

Each Hk is an eigenfunction of the differential operator

DH = − d2

dx2
+ 2x

d

dx
(2)

corresponding to eigenvalue 2k.

Definition 2. The (monic) Laguerre polynomials corresponding to fixed parameter γ > −1, denoted
{L(γ)

k (x)}∞k=0, form a sequence of polynomials orthogonal with respect to w(x) = xγe−x on the interval
[0,∞). They are given by the following recurrence relation:

L
(γ)
−1(x) := 0, L

(γ)
0 (x) := 1, and

L
(γ)
k+1(x) := xL

(γ)
k (x)− (2k + γ + 1)L

(γ)
k (x)− k(k + γ)L

(γ)
k−1(x) for k = 0, 1, 2, . . .

(3)

Each L(γ)
k is an eigenfunction of the differential operator

Dγ = −x d
2

dx2
− (1 + γ − x)

d

dx
(4)

corresponding to eigenvalue k.

Definition 3. The (monic) Jacobi polynomials corresponding to fixed parameters α,β > −1 , denoted
{J (α,β)

k (x)}∞k=0, form a sequence of polynomials orthogonal with respect to w(x) = (1− x)α(1 + x)β on
the interval [−1, 1]. They are given by the following recurrence relation:

J
(α,β)
−1 (x) := 0 J

(α,β)
0 (x) := 1

J
(α,β)
k+1 (x) :=

(
x+

α2 − β2

(α + β + 2k)(α + β + 2k + 2)

)
J
(α,β)
k (x)

− 4k(k + α)(k + β)(k + α + β)

(α + β + 2k)2(α + β + 2k + 1)(α + β + 2k − 1)
J
(α,β)
k−1 (x) for k = 0, 1, 2, ...

(5)

Each J (α,β)
k is an eigenfunction of the differential operator

Dα,β = (x2 − 1)
d2

dx2
+ ((α + β + 2)x+ α− β)

d

dx
(6)

corresponding to eigenvalue k(k + α + β + 1). Note that letting α = β = 0 generates the family of
monic Legendre polynomials, and α = β = −1/2 generates the monic Chebyshev polynomials of the
first kind, after some accommodations for the normalization. The Gegenbauer class is a subset of Jacobi
where α = β.
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It is convenient in what follows to be able to represent the first and second derivatives of these familes
in terms of the families themselves, so we collect these results next. The results, some of which are given
in [24], follow in a similar way as those given in [23].

Lemma 4. The (monic) Hermite polynomials {Hk(x)}k satisfy

d

dx
(Hk(x)) = kHk−1(x)

and
d2

dx2
(Hk(x)) = k(k − 1)Hk−2(x).

The (monic) Laguerre polynomials {L(γ)
k (x)}k satisfy

d

dx
(L

(γ)
k (x)) =

k−1∑
i=0

(−1)k−i+1k!

i!
Li(x)

and
d2

dx2
(L

(γ)
k (x)) =

k−2∑
i=0

(−1)k−i(k − i− 1)
k!

i!
Li(x).

The (monic) Jacobi polynomials {J (α,β)
k (x)}k satisfy

d

dx
(J (α,β)
n (x)) = An

n−1∑
i=0

BiJ
(α,β)
i (x) + Cn

n−1∑
i=0

DiJ
(α,β)
i (x)

and
d2

dx2
(J

(α,β)
k (x)) =

k−2∑
i=0

(
k−i−1∑
l=1

(AkBk−l + CkDk−l)(Ak−lBi + Ck−lDi)

)
J
(α,β)
i (x)

where

Ak =
(−1)k+1Γ(k + α + 1)2k−1Γ(k + 1)

Γ(2k + α + β + 1)
Bi =

(−1)iΓ(2i+ α + β + 2)

Γ(i+ α + 1)2iΓ(i+ 1)

Ck =
Γ(k + β + 1)2k−1Γ(k + 1)

Γ(2k + α + β + 1)
Di =

Γ(2i+ α + β + 2)

Γ(i+ β + 1)2iΓ(i+ 1)
.

3. Quasiseparable Matrices

The main result of the paper is that the spectral connection matrix for a wide variety of connection
problems exhibits a rank structure known as quasiseparability. The class of quasiseparable matrices has
received a lot of attention in recent years, and many interesting relationships between quasiseparability
and orthogonal polynomials are well–studied, such as recurrent matrices, where the matrix captures
the recurrence relations, and the low–rank structure corresponds to spare recurrence relations (see, for
instance, [25]).

In terms of implementation, the low–rank structure means that the n2 entries of the matrix can be
represented by a smallerO(n) number of parameters, called the generators of the quasiseparable matrix.
This sparse representation powers many of the fast and accurate algorithms available for quasiseparable
matrices. For the purposes of this paper, we will only need upper triangular matrices which have rank
structure in the upper triangular portion. We will also begin indexing at 0 instead of 1 as in the standard
work in the area, to match indices on polynomials.
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Definition 5. A matrix A is (0, nU)–quasiseparable (or upper nU–quasiseparable) if it is upper
triangular and max(rankA12) = nU , where the maximum is taken over all symmetric partitions of
the form

A =

[
? A12

? ?

]
.

Among the many important subclasses of upper quasiseparable matrices are the banded matrices, and
diagonal–plus–upper–semiseparable matrices. A matrix is diagonal–plus–upper–semiseparable if it is of
the form

diag(d) + triu(uvT )

for d, u, v n–vectors, and triu denotes the strictly upper triangular portion. Both banded matrices and
diagonal–plus–upper–semiseparable matrices are easily seen to satisfy the low–rank conditions, and are
hence quasiseparable. It should be noted, however, that these two subclasses do not overlap nontrivially.
Indeed, in general, diagonal–plus–upper–semiseparable matrices have the form

d1 u1v2 u1v3 · · · u1vn

0 d2 u2v3 · · · u2vn

0 0 d3
. . . ...

...
... . . . . . . un−1vn

0 0 · · · 0 dn


from which we can see any zero entries anywhere in the strictly upper triangular portion force zero entries
in either the entire row or column, up to the main diagonal. Thus diagonal–plus–upper–semiseparable
matrices cannot have positive upper bandwidth. Details may be found in [26].

The following generator representation is well–known [27] to be equivalent to the definition in terms
of ranks above.

Theorem 6. Let A be an (n + 1) × (n + 1) matrix. Then A is (0, nU)-quasiseparable if and only if
there exists a set of generators {dl, gi, bk, hj} for i = 0, . . . , n− 1, j = 1, . . . , n, k = 2, . . . , n− 1, and
l = 0, . . . , n such that 

d0

. . . gibi+1 · · · bj−1hj

. . .

dn


.

The generators of A are matrices of the sizes

dk gk bk hk

size 1× 1 1× rk rk−1 × rk rk−1 × 1

range k ∈ [0, n] k ∈ [0, n− 1] k ∈ [1, n− 1] k ∈ [1, n]

where max
k
rk = nU .
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We conclude this section with a result from [24] that allows, given an upper triangular and
quasiseparable matrix in terms of its generators, a fast algorithm to compute a scaled eigenvector matrix.
As we will see, together with the later results in the paper, this will enable a fast algorithm for the
connection problem described above.

Theorem 7. Let G be an (n + 1) × (n + 1) upper triangular quasiseparable matrix with generators
{gi}n−1i=0 , {hj}nj=1, {bm}n−1m=1, and {dl}nl=0. Let

g̃
(k)
i =

gi
dk − di

and b̃(k)m = bm +
hmgm
dk − dm

for i = 0, ..., n− 1, m = 1, ..., n− 1 and k = 1, ..., n+ 1. Let x0 = e1 and

xk =



g̃
(k)
0 b̃

(k)
1 · · · b̃

(k)
k−1hk

g̃
(k)
1 b̃

(k)
2 · · · b̃

(k)
k−1hk

...
g̃
(k)
k−2b̃

(k)
k−1hk

g̃
(k)
k−1hk

1

0
...
0


for k = 1, ..., n. Note that xk is column k of the upper triangular quasiseparable matrix defined by the
parameters {d̃l, g̃(k)i , b̃

(k)
m , hj}, where each d̃l = 1. Then

X =
[
x0 · · · xn

]
is an eigenvector matrix of G.

The following O(n2) algorithm can then be used to compute the desired scaled eigenvector matrix:

Set H = hk, xk(k, 1) = 1, xk(j, 1) = 0 for j = k + 1, ..., n

For j = k − 1 : −1 : 0

Compute xk(j, 1) = g̃
(k)
j H

Update H = b̃
(k)
j H

End.

4. The Spectral Connection Matrix

In contrast to the obvious algorithm of computing the change of basis matrix directly, this section
shows how the spectral connection matrix, for which we will have an explicit description in terms of
the quasiseparable generators, is related to this change of basis matrix in a manner that allows it to be
computed using the results of the previous section.
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Definition 8. Let n ∈ N, and suppose that P = {Pk(x)}nk=0 andQ = {Qk(x)}nk=0 are two finite families
of real orthogonal polynomials with respect to inner products 〈·, ·〉P and 〈·, ·〉Q respectively. Let DP be
the differential operator associated with P (that is, each Pk is an eigenfunction of DP ). Let

gij =
〈Qi,DP (Qj)〉Q
〈Qi, Qi〉Q

Then the matrix G = (gij)
n
i,j=0 is called the spectral connection matrix from P to Q.

The next theorem reveals the relationship between the spectral connection matrix and the connection
matrix itself. The proof comes from [23].

Theorem 9. Let P = {Pk(x)}nk=0 and Q = {Qk(x)}nk=0 be two finite families of classical orthogonal
polynomials. Let Φ be the connection matrix from P to Q, and let G be the spectral connection matrix
from P to Q. Then Φ is the eigenvector matrix of G with each diagonal entry scaled to 1.

The next theorem gives an explicit expression of the entries of the spectral connection matrix for
a connection problem given in terms of the parameters of the orthogonal polynomials involved. This
generalizes a corresponding theorem from [24] which was proved only under the restriction that the
source family P was among the Hermite, Laguerre, or Gegenbauer families. The following theorem is
valid for any change of basis between orthogonal polynomials where the hypotheses are satisfied.

Theorem 10. Let P = {Pk(x)}nk=0 and Q = {Qk(x)}nk=0 be two families of (monic) real orthogonal
polynomials where Q is a classical family, and let G = (gi,j)

n
i,j=0 be the spectral connection matrix from

P to Q. Suppose that each Qk(x) is an eigenfunction of the differential operator DQ, as provided in
Definitions 1, 2, and 3, corresponding to eigenvalue λk. Similarly let each Pk(x) be an eigenfunction of
the differential operator

DP = (ãx2 + b̃x+ c̃)
d2

dx2
+ (d̃x+ ẽ)

d

dx

Suppose that there exist constants a, b, c, d, e,
{
{njk}

n−1
k=0

}n
j=0

,
{
{mj

k}
n−2
k=0

}n
j=0

, {γk}nk=0, {δk}nk=0

and {εk}nk=0 satisfying

(DP −DQ)(y) = (ax2 + bx+ c)
d2y

dx2
+ (dx+ e)

dy

dx

d

dx
(Qj(x)) =

j−1∑
k=0

njkQk(x)

d2

dx2
(Qj(x)) =

j−2∑
k=0

mj
kQk(x)

xQk(x) = γkQk+1(x) + δkQk(x) + εkQk−1(x).

Note that for any k < 0, we adopt the convention that njk = mj
k = γk = 0 for any j. Then the entries of

G are given by
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gi,j =

{
λi, i = j,

0, otherwise
+

{
aγi−2γi−1m

j
i−2 + dγi−1n

j
i−1, i ≤ j

0, otherwise

+

{
enji + dnjiδi + bγi−1m

j
i−1 + aγi−1m

j
i−1(δi−1 + δi), i < j

0, otherwise

+

{
cmj

i + bmj
iδi + amj

i (γiεi+1 + δ2i + γi−1εi) + dnji+1εi+1, i < j − 1

0, otherwise

+

{
bmj

i+1εi+1 + amj
i+1(δi+1εi+1 + εi+1δi), i < j − 2

0, otherwise

+

{
amj

i+2εi+2εi+1, i < j − 3

0, otherwise.

Proof. First, note that through direct substitution, xQk(x) = γkQk+1(x) + δkQk(x) + εkQk−1(x) gives
that x2Qk(x) = γkγk+1Qk+2+(γkδk+γkδk+1)Qk+1+(γkεk+1+δ2k+γk−1εk)Qk+(δkεk+εkδk−1)Qk−1+

εkεk−1Qk−2. By definition, gij =
〈Qi,DP (Qj)〉Q
〈Qi, Qi〉Q

, and applying identities we have

gij =
1

〈Qi, Qi〉Q
(
〈Qi,DQ(Qj)〉Q + 〈Qi, (DP −DQ)(Qj)〉Q

)
=

1

〈Qi, Qi〉Q
(
〈Qi, λjQj〉Q + 〈Qi, (DP −DQ)(Qj)〉Q

)
=

λi, i = j,

0, otherwise
+

1

〈Qi, Qi〉Q
(
〈Qi, (DP −DQ)(Qj)〉Q

)

=

λi, i = j,

0, otherwise
+

1

〈Qi, Qi〉Q
(
〈Qi, (ax

2 + bx+ c)Q′′j 〉Q + 〈Qi, (dx+ e)Q′j〉Q
)

=

λi, i = j,

0, otherwise
+

1

〈Qi, Qi〉Q

(
〈Qi, a

j−2∑
k=0

mj
kx

2Qk〉Q + 〈Qi, b

j−2∑
k=0

mj
kxQk〉Q

+ 〈Qi, c

j−2∑
k=0

mj
kQk〉Q + 〈Qi, d

j−1∑
k=0

njkxQk〉Q + 〈Qi, e

j−1∑
k=0

njkQk〉Q

)

Simplifying, we have
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=

λi, i = j,

0, otherwise
+

cm
j
i , i < j − 1,

0, otherwise
+

en
j
i , i < j,

0, otherwise

+
1

〈Qi, Qi〉Q

(
〈Qi, a

j−2∑
k=0

mj
k(γkγk+1Qk+2 + (γkδk + γkδk+1)Qk+1

+(γkεk+1 + δ2k + γk−1εk)Qk + (δkεk + εkδk−1)Qk−1 + εkεk−1Qk−2)〉Q

+〈Qi, b

j−2∑
k=0

mj
k(γkQk+1 + δkQk + εkQk−1)〉Q

+ 〈Qi, d

j−1∑
k=0

njk(γkQk+1 + δkQk + εkQk−1)〉Q

)

=

λi, i = j,

0, otherwise
+

cm
j
i , i < j − 1,

0, otherwise
+

en
j
i , i < j,

0, otherwise

+
1

〈Qi, Qi〉Q

(
a

j−2∑
k=0

mj
k〈Qi, γkγk+1Qk+2 + (γkδk + γkδk+1)Qk+1

+(γkεk+1 + δ2k + γk−1εk)Qk + (δkεk + εkδk−1)Qk−1 + εkεk−1Qk−2〉Q

+b

j−2∑
k=0

mj
k〈Qi, γkQk+1 + δkQk + εkQk−1〉Q + d

j−1∑
k=0

njk〈Qi, γkQk+1 + δkQk + εkQk−1〉Q

)

Then, taking advantage of the linearity of the inner product and orthogonality, we arrive at the
desired result.

5. Structure of Spectral Connection Matrices

In [23], it is proven that the spectral connection matrices within the Jacobi family and within
the Laguerre family (that is, when the source and target families are of the same type, defined by
different parameters) have diagonal–plus–upper–semiseparable structure, which is a subclass of
quasiseparable. In [24], it is proven that between different classical families defined by at most
a single parameter (that is, when both source and target families are from the Hermite, Laguerre,
and Gegenbauer types), the spectral connection matrix has quasiseparable structure (but not always
diagonal–plus–upper–semiseparable structure).

In this section, we further extend this work to include source and target families of Jacobi polynomials.
That is, we show that for the connection problem from any real orthogonal polynomial family satisfying
an appropriate differential operator into any family of the Hermite, Laguerre, or Jacobi types, the spectral
connection matrix has quasiseparable structure.

Furthermore, the generators of the spectral connection matrix are given explicitly, allowing the results
of Section 3 to be used in the fast eigenvector algorithm provided. To produce a desired connection
matrix within the classical orthogonal polynomials, one would simply use the appropriate generators
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provided below in Theorem 7. The output of this algorithm, the eigenvector matrix of the prescribed
spectral connection matrix, is the desired connection matrix.

Theorem 11. Let P = {Pk(x)}∞k=0 be a family of real-valued polynomials orthogonal on some [a, b]

with respect to a weight function w(x) such that each Pk(x) is an eigenfunction of

D = (ãx2 + b̃x+ c̃)
d2

dx2
+ (d̃x+ ẽ)

d

dx

Then the spectral connection matrix from P to the monic Hermite family H = {Hk(x)}nk=0 is
(0, 4)−quasiseparable, with generators

dk = 2k + ãk(k − 1) + (d̃− 2)k

gi =
[

(1/4)ã (1/2)b̃ c̃+ (1/2)ã(2i+ 1) + (1/2)d̃ ẽ+ b̃i
]

hj =
[

0 0 0 j
]T

bk =


0 k 0 0

0 0 k 0

0 0 0 k

0 0 0 0

 .
Theorem 12. Let P = {Pk(x)}∞k=0 be a family of real-valued polynomials orthogonal on some [a, b]

with respect to a weight function w(x) such that each Pk(x) is an eigenfunction of

D = (ãx2 + b̃x+ c̃)
d2

dx2
+ (d̃x+ ẽ)

d

dx
.

Then the spectral connection matrix from P to the Laguerre family H = {Lγk(x)}nk=0 is
(0, 4)−quasiseparable, with generators

dk = k(ãk − ã+ d̃)

gi =
[

(−1)ic̃/i! (−1)i(−ic̃+ b̃− c̃− ẽ+ b̃γ)/i! 1/2 1/2
]

hj =
[

(−1)jj!j (−1)jj! a(j) a(j)
]T

bk =


1 0 0 0

0 1 0 0

0 0 B(k) 0

0 0 0 0

 or


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 B(k)


for k even or k odd, respectively, where

a(j) = j(b̃j + d̃j + 2ãj2 − 2ãj + d̃γ + 2ãjγ − 2ãγ + b̃γ) and

B(k) = (2kã/a)(k + 1)(k + γ)(k + γ + 1).
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Theorem 13. Let P = {Pk(x)}∞k=0 be a family of real-valued polynomials orthogonal on some [a, b]

with respect to a weight function w(x) such that each Pk(x) is an eigenfunction of

D = (ãx2 + b̃x+ c̃)
d2

dx2
+ (d̃x+ ẽ)

d

dx
.

The spectral connection matrix from P to the Jacobi family J = {J (α,β)
k (x)}nk=0 is

(0, 8)−quasiseparable, with generators

dk = k(k + α + β + 1) + (ã− 1)f(k, k − 1)f(k − 1, k − 2) + (d̃− α− β − 2)f(k, k − 1)

gi =
[
η1(i) H(i) η2(i) 0 η1(i) J(i) η2(i) 0

]
hj =

[
0 Aj 0 Aj 0 Cj 0 Cj

]T

bk =



1 AkBk 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 BkCk 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 AkDk 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 CkDk

0 0 0 0 0 0 0 1


where Ak, Bk, Ck, and Dk are as defined in the Jacobi derivative identity, δi and εi are as defined by the
Jacobi recurrence relation, and

f(l,m) = AlBm + ClDm

η1(i) = Bi−2(ã − 1) + Bi−1

(
(ã− 1)(δi−1 + δi) + b̃

)
+ Bi

(
(ã− 1)(εi + εi+1 + δ2i ) + c̃+ 1 + b̃δi

)
+Bi+1εi+1

(
(ã− 1)(δi+1 + δi) + b̃

)
+Bi+2εi+2εi+1(ã− 1)

η2(i) = Di−2(ã− 1) +Di−1

(
(ã− 1)(δi−1 + δi) + b̃

)
+Di((ã− 1)(εi + εi+1 + δ2i ) + c̃+ 1 + b̃δi)

+Di+1εi+1((ã− 1)(δi+1 + δi) + b̃) +Di+2εi+2εi+1(ã− 1)

H(i) = Bi−1

(
d̃− α− β − 2

)
+Bi

(
ẽ− α + β + δi(d̃− α− β − 2)

)
+Bi+1εi+1

(
d̃− α− β − 2

)
+ (ã− 1) [Bi−2(AiBi + Ai−1Bi−1) +Di−2(BiCi +Bi−1Ci−1)]

+Bi

(
(ã− 1)(δi + δi−1) + b̃

)
f(i, i− 1)−Bi+1(ã− 1)εi+2εi+1f(i+ 1, i+ 2)

J(i) = Di−1(d̃− α− β − 2) +Di

(
ẽ− α + β + δi(d̃− α− β − 2)

)
+Di+1εi+1(d̃− α− β − 2)

+(ã− 1) [Bi−2(AiDi + Ai−1Di−1) +Di−2(DiCi +Di−1Ci−1)]

+Di

(
(ã− 1)(δi + δi−1) + b̃

)
f(i, i− 1)−Di+1(ã− 1)εi+2εi+1f(i+ 1, i+ 2).

The preceding three theorems can be proven by direct verification. From Equations (2), (4), and (6),
it is clear that the Hermite, Laguerre, and Jacobi families all satisfy the differential operator condition in
the hypotheses of the preceding three theorems, so overall we come to the following statement.
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Theorem 14. Let G be the spectral connection matrix corresponding to a change of basis among the
Hermite, Laguerre, or Jacobi types. Then G is quasiseparable, with generators as provided above.

6. The Bessel Polynomials

In this section we will briefly explore the connection of the preceding work to the Bessel polynomials,
which are often considered a classical type. They have many properties similar to those of the Hermite,
Laguerre, and Jacobi types, but they are orthogonal on the unit circle and not on any real interval.

Definition 15. The (monic) Bessel polynomials {Bk(z)}∞k=0 form a sequence of polynomials orthogonal
with respect to w(z) = e−2/z on the unit circle. They are given by the following recurrence relation:

B−1(z) := 0, B0(z) := 1, and

Bk+1(z) := zBk(z) +
1

(2k + 1)(2k − 1)
Bk−1(z) for k = 0, 1, 2, . . .

(7)

Each Bk is an eigenfunction of the differential operator

D = z2
d2

dz2
+ (2z + 2)

d

dz
(8)

corresponding to eigenvalue k(k + 1).
The generalized Bessel polynomials are a larger parameterized type that contains Bessel as a special

case. Each generalized Bessel polynomial of degree k corresponding to parameter a is an eigenfunction
of the differential operator

Da,b = z2
d2

dz2
+ (az + 2)

d

dz
(9)

corresponding to eigenvalue k(k+ a− 1). The traditional Bessel polynomials correspond to the special
case where a = 2.

It is clear that the generalized Bessel polynomials, and in particular the traditional Bessel
polynomials, satisfy a differential operator whose form satisfies the conditions on the source family in
Theorems 11, 12, and 13. We therefore have also shown that the spectral connection matrix
corresponding to a change of basis from the Bessel polynomials to any of the other classical types
has quasiseparable structure, with generators provided in the previous section. This allows us to enjoy
the advantages of the efficient spectral connection matrix approach when changing coordinates from
a family of polynomials orthogonal on the unit circle to a family of polynomials orthogonal on the
real line.

In addition, the following theorem from [28] (and further developed in [29]) reveals the total scope of
the source families in Theorems 11, 12, and 13.

Theorem 16. Any orthogonal sequence {Pk}∞k=0 such that for each k

(ãx2 + b̃x+ c̃)
d2

dx2
Pk + (d̃x+ ẽ)

d

dx
Pk = λkPk

with ã, b̃, c̃, d̃, ẽ ∈ C is of the Hermite, Laguerre, Jacobi, or Bessel type. This is known as
Bochner’s property.



Mathematics 2015, 3 395

So we may conclude that the Bessel, Hermite, Laguerre, and Jacobi families are the only orthogonal
polynomial types that satisfy the differential operator required for Theorems 11, 12, and 13.

7. Conclusions

This paper contains an improvement on the recent work in using the rank structured spectral
connection matrix to solve the connection problem. Previous work required that the source and target
orthogonal polynomial families each be one of the single–parameter classical real orthogonal polynomial
families. It also excluded the very important case of Jacobi polynomials (save for the Gegenbauer
subclass), both as a source and a target family. The work presented here has greatly relaxed these
restrictions. The target family is allowed to be any classical one, which alone broadens the result
dramatically to include changes of basis into any of the Jacobi families, including Chebyshev and
Legendre. The restrictions on the source family have been lessened to include all of the classical types,
including Jacobi, as well as the Bessel polynomials. Although the Bessel polynomials have much in
common with the classical types and are sometimes considered classical themselves, they differ in that
they are orthogonal on the unit circle. Thus the progress here has extended the research to directly
address a change of basis from a set of polynomials orthogonal on the unit circle to a set orthogonal
on a real interval. We have shown that all of the spectral connection matrices in this much larger set
of connections have quasiseparable structure. Additionally we have provided the specific generators
for each of the three types, allowing for a fast algorithm for the connection problem in this more
general case.
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