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Abstract: In this paper, we consider generalized space-time fractional cable equation in 

presence of external source. By using the Fourier-Laplace transform we obtain the Green 

function in terms of infinite series in H-functions. The fractional moments of the 

fundamental solution are derived and their asymptotic behavior in the short and long time 

limit is analyzed. Some previously obtained results are compared with those presented in 

this paper. By using the Bernstein characterization theorem we find the conditions under 

which the even moments are non-negative. 
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1. Introduction 

The cable equation has been used to model electrotonic properties of neuronal dendrities [1]. In the 

work of Baer and Rinzel [2], for the first time, theoretical study of wave propagation mediated by 

dendritic spine is performed, where the dendritic tissue is modeled with the classical cable equation. 
The classical cable equation which models the membrane potential  x,tV=V  along the axial x-direction 

of a dendrite with diameter d, relative to the resting membrane potential restV , is given by 

     
2

2

*, * *, *
*, *

* 4 *
m rest

m m m e
L m

dV x t d V x tdr V V
c r r i x t

dt r dx r


    (1)

where mr  denotes the specific membrane resistance, Lr  is the longitudinal resistivity, mc  denotes the 

membrane capacitance per unit area, and ei  is the external injected current per unit area. The product 

τ m mc r  is the time constant for the dendrite. 

The cable equation can be derived from the Nernst-Planck equation for electrodiffusive motion of 

ions [3]. There are generalizations of the cable Equation (1) where the non-local nature of the diffusive 

transport of living cells is taken into consideration. In the excellent works of Henry, Langlands and 

Wearne [4–6], time fractional cable models for spiny neuronal dendrities are introduced and 

investigated in detail. They derived the time fractional cable equations from fractional Nernst-Planck 

equations, and investigated the electrotonic effects of the trapping properties of spines [4]. In the work 

of Li and Deng [7], space-time fractional cable equation is introduced where the spatial non-local 

effects are taken into account by modifying the Ohm’s law to fractional one. Thus, Li and Deng 

considered the following space-time fractional cable equation in the infinite domain x     

   1 μ 2 1( , )
( , ) λ ( , ) ( , )t t

V x t
D V x t D V x t f x t

t
 

   


 (2)

where x and t are dimensionless parameters (see relation (10) from [7]), 0 α 1  , 0 β 1  , λ
4

m

L

dr

r
  

is the space dendrite for the dendrite, i.e., the cable,   2 1 β( , ) λ ,t rest m ef x t D V r i x t   is the external 

source (external injected current). In Equation (2), 1
tD   is the Riemann-Liouville (R-L) fractional 

derivative of order 1  [8,9]:  
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t
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    (3)

and μ  is the Riesz fractional operator defined by [9,10]  
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 are the left and right R-L fractional derivatives of order μ  defined 

respectively by [8,9]  
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Here we note that the Riesz fractional operator (4) can be represented as   2/ , and that it is a 

generalization of the Laplacian which is obtained for 2  . It represents pseudodifferential operator 

with Fourier symbol k
 , i.e.,        F f x k k F f x k

         [10].  

The boundary conditions for the cable Equation (2) are given by 

  0lim =tx,V
x 

 (7)

and the initial condition by 

   ,0V x g x . (8)

Here we note that the fractional cable equation with nonlocal boundary conditions is recently 

considered in [11]. 
Equation (2) with 0   and ( , ) 0f x t   is the space-time fractional diffusion equation which 

describes the competition between the subdiffusion and Levy flights, and which can be obtained from the 

continuous time random walk (CTRW) theory for broad distribution of waiting times and long-tailed 

distribution of jump lengths [12]. Fractional diffusion equations in presence of external force were also 

of interest in many recent papers [12–15]. Analytical solutions of fractional differential equations and 

numerical methods of fractional cable equation have been considered by many authors [16–24], to 

name but a few. 

In our work, we further generalize Equation (2) by introducing time fractional derivative of Caputo 
form of order 0 1   , defined by [8,9]  

   

   
  10

1
,     1 ,      

n
t

C t n

f u
D f t du n n n N

n t u


      
    (9)

which has been used in different contexts. 

The application of different forms fractional derivatives [8–10,25,26] have been found to be a 

useful tool for modeling systems with memory, due to the power-law memory kernel contained in the 

convolution integral. It is shown that the fractional derivatives appear in the diffusion equation describing 

anomalous diffusive processes where the mean square displacement has a power-law dependence on  

time [12], and that they can be used for modeling aquifer problems [13,27], non-exponential relaxation 

problems [28,29], etc. Furthermore, time fractional derivatives are equivalent to infinitesimal 

generators of generalized time fractional evolutions that arise in the transition from microscopic to 

macroscopic time scales [28,29]. The transition from first order time derivative to the fractional one 

arises in many physical problems as shown by Hilfer [25,30,31]. Contrary to the time fractional 

derivatives, the Riesz space fractional derivative has benn shown to represent suitable tool for 
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modeling Levy flights for which the second moment diverges, and, thus, the fractional moments 

should be calculated in order to analyze the superdiffusive behavior of the particle [12,14]. 

Thus, the generalization of the cable equation by using time fractional derivatives and Riesz space 

fractional derivative take into consideration temporal memory effect and long range spatial correlations. 

This paper is organized as follows. In Section 2, we consider generalized space-time fractional 

cable equation with a source term. The fundamental solution (Green function) is represented in terms 

of infinite series in H-functions. The fractional moments of the fundamental solution are derived in 

Section 3, and their asymptotic behaviors are analyzed. Summary is given in Section 4. 

2. Solution of the problem 

In this paper, we consider the following generalized space-time fractional cable equation 

   1 2 1( , ) ( , ) ( , ) ( , )C t t tD V x t D V x t D V x t f x t   
      (10)

where   is a time parameter introduced for dimensional purposes. Without loss of generality we set 

1  . A few words about Equation (10) are in order. Let us apply R-L time fractional integral of 

order 0 1    defined by [8,9]  

   
 

 10

1 t

t

f u
I f t du

t u



    (11)

to Equation (10). By using the relation      0t C tI D f t f t f      for 0 1    [8,9], and then 

applying first time derivative, we rewrite Equation (10) in form (2), i.e.,  

   1 1 2 1 1 1( , )
( , ) ( , ) ( , )t t t t t

dV x t
D D V x t D D V x t D f x t

dt
          (12)

where we use the relation    1
t t

d
I f t D f t

dt
   for 0 1    [8,9]. In order Equation (12) to be 

generalization of the classical cable equation we need 1 2     and 1 2    . From Equation (12) 

we see that we have fractional derivative of the source term, i.e., 
  1 2 1 1( , ) ,t t t rest m eD f x t D D V r i x t     . This additional parameter 0 1    may be used for better 

fitting experimental data. 

Theorem 1. The solution of Equation (10) with boundary conditions (7) and initial condition (8) is 

given by 

         
0

, , , ,
t

fV x t G x t g d G x t f d d
 

 
                , (13)
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 Re 0  , and 
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H z
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 is the Fox H-function [32–34]. 

Proof. By applying Laplace transform with respect to the time t to Equation (10) we obtain 

         1 1 2 1 ˆˆ ˆ ˆ, , , ,s V x s s g x s V x s s V x s f x s          (16)

where we use the initial condition (7) and the following formula for the Laplace transform of the 

Caputo fractional derivative [8,9]  

       ˆ, , , ,0tL D V x t x s s V x s V x        (17)

where      ˆ, , ,L V x t x s V x s   ,      ˆ, , ,L f x t x s f x s   , and the Laplace transform of the R-L 

fractional derivative defined by [8,9]  

       1 1 1

0
ˆ, , , ,t t t

L D V x t x s s V x s D V x t  


         (18)

Here we suppose that    0, 0
1 


tt txVD , ( },{   ) (please see [4]). The Fourier transform of  

(16) yields 

         1 1 2 1 ˆˆ ˆ ˆ, , , ,s V k s s g k s k V k s s V k s f k s
          

  (19)

where      skVsksxVF ,
~
ˆ,,ˆ   is the Fourier transform of  ˆ , ,V x s       ,g k F g x k     

     sksxfFskf ,,ˆ,
~
ˆ  , and we use that      F f x k k f k

    
  [10]. Thus, we obtain 

      
1

1 2 1 1 2 1

1 ˆˆ , , ,
s

V k s k s g k f k s
s s k s s s k s



      
 

     


 . (20)

Here 

 
1 2

1 2 1 1 2
ˆ ,

s s
G k s

s s k s s k s

 

     
 

     


 (21)

is the Green function (solution for    g x x   i.e.,   1~ kg , and   0, txf ), and 

 
1

1 2 1 1 2

1ˆ ,f

s
G k s

s s k s s k s



     
 

     


. (22)

Thus, the solution can be represented in a form given by (13). Expanding the right hand side of (21) 

and (22) in a power series in s (see the approach given in [8,9]), we arrive at 



Mathematics 2015, 3 158 

 

 

   
 

 
2

2
1

10

ˆ ,
n

n

n
n

s
G k s

s k

 



 



, 

(23)

   
 

 
1

2
1

10

ˆ ,
n

n

f n
n

s
G k s

s k

 



 



. 

(24)

Using the Laplace transform formula for the three parameter Mittag-Leffler (M-L) function 
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n        is the Pochhammer symbol) [35]:  
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it yields 
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The convergence of series in three parameter M-L functions of form (26) and (27) is shown in [36]. 

For various relations and applications of the M-L functions we refer to [37]. If we use the relation 

between the three parameter M-L function and the H-function [33] 
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The inverse Fourier transform of above expressions 
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can be found by using the cosine transform of the H-function with 1   [33]  
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If we use the following property of the H-function [33]  
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then (32) and (33) yield 
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If we further use the following transformation formula for the H-function [33]  
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relations (35) and (36) transform into the form (14) and (15). Thus, we prove the theorem. Here we 

note that instead of solutions (14) and (15) one can uses the solutions (35) and (36). 

Next, we consider several special cases of the fundamental solution of Equation (10). 
Corollary 1. The Green function (14) in case where 2   (second space derivative), becomes 
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Corollary 2. The Green function (38) in case where 1   is given by 
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which, by using the properties of H-function [16], can be represented in a form given in [4], i.e.,  
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Corollary 3. The solution (40) in case of 1     reduces to the solution of the classical  

cable equation 
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   (41)

as it should be. For 0 , solution (41) turns to the Gaussian form for classical diffusion equation. 
Corollary 4. The Green function (14) in case where 1   and 0   (space-time fractional 

diffusion equation), becomes 
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which corresponds to the fundamental solution of space-time fractional diffusion equation (see for 

example [14,38]). 

Example 1. The fundamental solution (Green function) of Equation (10), without external source 

term, with boundary conditions (7) and initial condition (8) is given by (14), and can be obtained if in 
solution (13) we set ( ) ( )g x x   and 0),( txf . 

If we set 1 , we obtain the following result for the Green function given by Li and Deng [7]  
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Example 2. The solution (13) in case of ( ) 0,g x   and external source, given by 
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 which corresponds to instantaneous input 
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Here we note that we use solutions (35) and (36) instead of (14) and (15) in order to apply the Euler 

transform formula [33]  
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Therefore, for (44) we find 
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where we use relation (37). By using the Mellin transform of the Fox H-function 
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Example 3. The solution (2.4) in case of ( ) 0,g x   and external source given by 
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, which corresponds to instantaneous input      ,ei x t x h t   [7], 

where  th  is the Heaviside step function which is equal to one for 0t  and zero otherwise, can be 

calculated in a same way as in Example 2. Thus, we find 
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3. Fractional Moments 

Next we calculate the fractional moments [12] of the Green function (14)  
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from where we analyze the anomalous diffusive behavior. For Levy flights the second moment does 

not exist, thus the fractional moment  x t


 is introduced and then instead of second moment one 

finds  
2/
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Using the Mellin transform [33] for 0 2     , from (47), we obtain 
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From (51) we see that the second moment ( 2  ) exists only if 2  . We note that the even moments 

also exist only in case where 2  . 

The following special cases are worth to be mentioned. For 0 , recalling the asymptotic formula 

  z
z

~
1


 when 1z  we obtain that the Green function is not normalized to one, i.e.,. it is time 

dependent quantity 
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which means that the Green function is not a probability distribution function. From (52) we conclude 

that 
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 does not depend on parameter  . By using the asymptotic behavior of the M-L  

function [39–41] for 0  , 0   
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it yields 
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1 1

t
x t t

 





      
. (54)

Since 1 0   , 



dxtxG ),(  shows power law decay in time. 

Such non-conservation of the norm is important in certain cases, as described by the Hilfer idea of 

fractional generators of the dynamics [42]. The non-conservation of norm appears in the decaying of 

the charge density in semiconductors with exponential distribution of traps, as well as power law time 

decay of the ion-recombination isothermal luminescence in condensed media [43,44]. Here we note 

that non-conservation of norm has been observed in the analysis of fractional diffusion equation with 

composite time fractional derivative [13,14]. 

Graphical representation of   0
tx  is given in Figure 1. From the figure one can see that for 

classical cable equation 1     (solid line),   0
tx  has an exponential decay to zero as it is 

expected from relation (52). For 3 / 4     (dashed line), and 3 / 4  , 1/ 2   (dot-dashed line) it 

shows slower power law decay to zero of form (55). Here we note that since 0 1 1    ,   0
tx  

(52) is a completely monotone function and is always positive (see for example [45,46]).  

 

Figure 1. Graphical representation of   0
tx  (52) for 1  . 

For 2  and 2 , temporal behavior of the second moment  tx2  gives 
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 (55)

which in the short time limit behaves as 

   
1

2 2
~

t
x t



   
 (56)
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and in the long time limit as 

   
1 2

2
4

2
~

2 2

t
x t

 

       
 (57)

where we apply the asymptotic behavior of the three parameter M-L function [39,47,48].  

   , ~ ,      
t

E t t


 
   

  
. (58)

The second moment (55) gives the rate of spreading of the Green function for 2  . 

Graphical representation of the second moment (55) is presented in Figure 2. Solid line corresponds 
to the case where 1      , i.e., for the classical cable equation. Power law decay of the second 

moment can be observed for 3 / 4  , 7 / 8     (dashed line), which is in accordance to the 

behavior (57). The dot-dashed line gives the power law behavior of the second moment for 3 / 4  , 

7 / 8  , 1/ 2  . The dotted line gives the behavior of the second moment for 7 / 8  , 1/ 4  , 

1  . We see that it has negative sign, which seems to have no physical meaning. In order to avoid 

such situations we should set 2 2 0     , which can be obtained from the analysis of the 

Laplace transform of the second moment (55) (see relation (65), and [45,46]). However, such 

negativity of the second moment is interpreted in a way that for these values of the parameters the 

current switches directions [5]. This negativity of the second moment means that the Green function is 

not strictly positive for some values of parameters, i.e., it may have negative values as well. 

 

Figure 2. Graphical representation of second moment (57) for 1  . 

For 4  and 2 , we calculate the fourth moment  tx 4  which gives 
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The fourth moment reflects the convergence of the tails of the Green function. Its calculation is 

important in order to derive the non-Gaussian parameter, which is defined through the ration between 

the fourth moment and second moment [49,50]. The short time limit of the fourth moment yields 

 
 

  
2 1

4 24
~

2 1 1

t
x t



     
 (60)

and the long time limit 

   
1 2 3

4
6

24
~

2 2 3

t
x t

  

       
. (61)

Graphical representation of the fourth moment (59) is given in Figure 3. Same parameters as for 
Figure 2 are used, i.e., 1       (solid line), 3 / 4  , 7 / 8     (dashed line), 3 / 4  , 

7 / 8  , 1/ 2   (dot-dashed line). The negativity of the forth moment (dotted line, which 

corresponds to 7 / 8  , 1/ 4  , 1  ) appears since the inequality    3 1 2 1 1         is 

not satisfied (see relation (65) from Remark 1). 

 

Figure 3. Graphical representation of the fourth moment (59) for 1  . 

Furthermore, we can calculate the even moments  tx m2 , Nm , for 2  , of the fundamental 

solution. They are given by three parameter M-L function in the following form 

     

 

        
   

1 122
2

0

1 1 2 1
1, 1 1

2
( )

!

1
1

2
. 2 ! .

1 1 1

n n mm
m

n

m m
m

t
x t

n

m m n
m t E t

n m

  



  
  





      
   

         


 (62)

From general result (62) directly follow relations (52), (55) and (59) for 0m , 1m  and  

2m , respectively. 
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Positivity of the Even Moments 

Here we note that one can find the constraints of parameters under which the even moments (62) are 

non-negative. For this reason, we consider the following function 

   
   1 1 2 1

1, 1 1

m m
mK t t E t  

    . (63)

In order (63) to be non-negative, from the Bernstein characterization theorem (see for  

example [45,46,51]), its Laplace transform 

     
    

 
1 1 1 1

11 2

m m

m

s
f s L K t s

s

    


   

 
 (64)

should be completely monotone function (given function   Rf ,0:  is a completely monotone if 

      01  sf nn  for all  0 Nn  and 0s , see Definition 1.3 on page 2 from [45]). Since 

0 1 1     then, from Definition 3.1 on page 15 from [45], 1s  is a Bernstein function 

(   Rf ,0:  is a Bernstein function if   0sf  for all 0s , and       01 1   sf nn  for all Nn  

and 0s ), and thus 1 2s    is a Bernstein function too, as a sum of two Bernstein functions (see 

Corollary 3.7 on page 20 from [45]). From here we conclude that 
1 2

1

s  
 is a completely monotone 

function (Exercise 9.9 from [52], see also [53]), and 
  11 2

1
m

s
  

 is a completely monotone as a 

product of  1m  completely monotone functions (see Corollary 6 on page 5 from [45]). Therefore, 
    1 1 1 1m ms       should be completely monotone. Function of form s , 0s , is completely 

monotone for any 0  [45]. From here, we conclude that the following inequality 

 2 1 0m m       (65)

should be satisfied in order even moments (62) to be non-negative. The case with 1   yields 

 1 1 0m m    . For the classical cable equation 1   all the even moments are non-

negative since (65) is satisfied for any Nm . This can also be concluded from the Green function 

(41), which is non-negative function. 

4. Conclusions 

In this paper, a generalization of the space-time fractional cable equation is discussed. The new 

mathematical model takes into account the temporal memory effects and spatial non-locality. Further 

we derive the Green function of the generalized space-time fractional cable equation by the application 

of Laplace and Fourier transforms. The Green function of the proposed equation is obtained in an exact 

form in terms of infinite series in H-functions. We analyze the anomalous behavior of the derived 

model by calculating the fractional moments of the Green function. It is shown that the Green function is 

not normalized, i.e., it is a time dependent quantity which shows power law decay. Such non-conservation 

of norm has been observed in different fractional models. We analyze the even moments and we show 

that they may have negative sign, which means that the Green function is not always positive, and that 
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the current switches directions. By using of Bernstein characterization theorem we show under which 

conditions of parameters the even moments are non-negative. 
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