

  Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses




Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses







Mathematics 2015, 3(1), 16-28; doi:10.3390/math3010016




Communication



Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses



Annamalai Anguraj 1, Mullarithodi C. Ranjini 2, Margarita Rivero 3 and Juan J. Trujillo 4,*





1



Department of Mathematics, PSG College of Arts and Science, Coimbatore-641 014, Tamil Nadu, India






2



Department of Mathematics, Karunya University, Coimbatore-641 114, Tamil Nadu, India






3



Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain






4



Departamento de Matemáticas, Universidad de La Laguna, Estadística, e I.O., 38271 La Laguna, Tenerife, Spain









*



Author to whom correspondence should be addressed; Tel.: +34-922318209.







Academic Editor: Hari M. Srivastava



Received: 8 December 2014 / Accepted: 19 January 2015 / Published: 21 January 2015



Abstract:

 In this paper, we investigate the existence of solutions for the fractional neutral differential equations with random impulses. The results are obtained by using Krasnoselskii’s fixed point theorem. Examples are added to show applications of the main results.
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1. Introduction

Fractional Differential Equations, in which an unknown function is contained under the operation of a derivative of fractional order, have been of great interest recently. Many papers and books on fractional differential equations have appeared (see [1–6]). In [7], Lakshmikantham and Vatsala derived the basic theory of fractional differential equations. In [8], Hernandez et al. proved the existence of solutions of abstract fractional differential equations by using fixed point techniques.

On the other hand, impulsive differential systems are proved to be adequate mathematical models for numerous processes and phenomena studied in population dynamics, physics, chemistry and engineering. In recent years, some impressive results have been obtained in this area (see [7,9]). For the general theory of impulsive differential systems, the reader can refer to [10].

However, actual impulses do not always happen at fixed points but usually at random points. When the impulses exist at random points, the solutions of the differential systems are stochastic processes. Random impulsive systems are more realistic than deterministic impulsive systems. The study of random impulsive differential equations is a new area of research. So far, few results have been discussed in random impulsive systems. The existence and uniqueness of differential system with random impulses is studied by Anguraj et al. in [11,12]. In [13], Wu and Duan discussed the oscillation, stability and boundedness of second-order differential systems with random impulses, and in [14,15], the authors proved the existence and stability results of random impulsive semilinear differential systems.

Recently, the study of impulsive differential equations has attracted a great deal of attention in fractional dynamics and its theory has been treated in several works (see [16,17]). Also, several authors [18–20] have studied the behaviour of neutral dfferential equations. The main reason for this interest is that delay differential equations play an important role in applications. For instance, in biological applications, delay equations give a better description of fluctuations in population than the ordinary ones. Also, neutral delay differential equations appear as models of electrical networks which contain lossless transmission lines. Such networks arise, for example, in high speed computers where lossless transmission lines are used to interconnect switching circuits. In [21], Agarwal, Zhou and He proved the existence results of fractional neutral functional differential equations and also in [22], Anguraj et al. proved the existence results for fractional impulsive neutral differential equations. By the motivation of the recent surge in developing the theory of fractional neutral differential equations, we present a new idea of research to prove the existence of fractional neutral differential equations with random impulses.

This paper is divided into four sections. In Secion 2, we recall some basic definitions and preliminary facts. In Section 3, we shall establish the existence theorem for the Equation (1) by using the Krasnoselskii’s fixed point theorem and in the final section, an illustrative example is presented.



2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Ω a non-empty set. Assume that τk is a random variable defined from Ω to [image: there is no content] for all k = 1, 2, … where 0 < dk < ∞. Furthermore, assume that τi and τj are independent of each other as i ≠ j for i, j = 1, 2, …. Let τ, T ∈ R be two constants satisfying τ < T. We denote Rτ = [τ, T], R+ = [t0, ∞).

We consider the fractional neutral functional differential equations with random impulses of the form:



{cDα(x(t)−g(t,xt))=A(t,x)x(t)+f(t,xt),t∈[τ,T],t≠ζkx(ζk)=bk(τk)x(ζk−),t=tk,k=1,2,…xt0=ϕ



(1)




where cDα is the standard Caputo’s fractional derivative of order 0 < α < 1. f, g: Rτ × C → Rn, C = C([−r, 0], Rn) are given functions mapping [−r, 0] into Rn with some given r > 0. ϕ is a function defined from [−r, 0] to Rn; xt is a function when t is fixed, defined by xt(θ) = x(t + θ), for θ ∈ [−r, 0]; ζ0 = t0 and ζk = ζk−1 + τk for k = 1, 2, …. Here t0 ∈ Rτ is an arbitrary given real number. Obviously, t0 = ζ0 < ζ1 < ζ2 < …. < ζk < …; bk: Dk → Rn×n is a matrix valued function for each k=1,2,…,x(ζk−)=limt→ζkx(t) with the norm ║x║t = supt−r<s<t ║x(s)║ for each t satisfying τ ≤ t ≤ T and T ∈ R+ is a given number, ║.║ is any given norm in Rn. Let [image: there is no content] denote the Banach space of bounded linear operators from Rn to Rn with the norm ‖A‖[image: there is no content]=sup{‖A(y)‖:‖y‖=1}.
Denote {Bt, t ≥ 0} the simple counting process generated by ζn, that is, {Bt ≥ n} = {ζn ≤ t}, and denote [image: there is no content] the σ-algebra generated by {Bt, t ≥ 0}. Then [image: there is no content] is a probability space. For the simplicity, denote the Banach space Γ = {all functions defined from [t0 − r, ∞) to Rn with the norm defined by [image: there is no content]}.

Definition 1. ([4]). The fractional integral of order q with the lower limit t0 for a function f is defined as



Iqf(t)=1Γ(q)∫t0t(t−s)(q−1)f(s)ds,t>t0,q>0








provided the right-hand side is pointwise defined on [t0, ∞), where Γ is the gamma function.
Definition 2. ([4]). Riemann-Liouville (R-L) derivative of order q with the lower limit t0for a function f: [t0, ∞) → R can be written as



Dqf(t)1Γ(n−q)dtn∫t0t(t−s)(q−1)f(s)ds,t>t0,n−1<q<n.








The most important property of R-L fractional derivative is that for t > t0and q > 0, we have Dq(Iqf(t)) = f(t), which means that R-L fractional differentiation operator is a left inverse to the R-L fractional integration operator of the same order q.

Definition 3. ([4]). The Caputo fractional derivative of order q with the lower limit t0for a function f: [t0, ∞) −→ R can be written as



cDqf(t)1Γ(n−q)∫t0t(t−s)(n−q−1)f(n)(s)ds=I(n−q)f(n)(t),t>t0,n−1<q<n.








Obviously, Caputo’s derivative of a constant is equal to zero.

We shall state some properties of the operators Iα and cDα.

Proposition 4. ([4,15]) For α, β > o and f as a suitable function, we have


	IαIβf(t) = Iα+f(t)


	IαIβf(t) = IβIαf(t)


	Iα(f(t) + g(t)) = Iαf(t) + Iαg(t)


	Iα cDαf(t) = f(t) − f(0), 0 < α < 1


	cDαIαf(t) = f(t)


	cDαf(t)=I(1−α)Df(t)=I(1−α)f′(t),0<α<1,D=ddt


	cDα cDβf(t) ≠ cD(α+β)f(t)


	cDα cDβf(t) ≠ cDβ cDαf(t)




In [7], Balachandran and Trujillo observed that both the R-L and the Caputo fractional differential operators do not possess neither semigroup nor commutative properties, which are inherent to the derivatives on integer order. For basic facts about fractional integrals and fractional derivatives one can refer to the books [4, 6, 9].

Definition 5. For a given T ∈ (t0, ∞), a stochastic process {x(t), t0 − r ≤ t ≤ T} is called a solution to the Equation (1) in[image: there is no content], if


	x(t) is[image: there is no content]-adapted.


	x(t0 + s) = ϕ(s) when s ∈ [− r; 0], and



x(t)=g(t,xt)+∑k=0∞[∑i=1kg(ti,xti)(bi(τi)−1)∏j=i+1kbj(τj)+∏i=1kbi(τi)[ϕ(0)−g(t0,ϕ)]+∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1A(s,x)x(s)ds}+1Γ(α)∫ζkt(t−s)α−1A(s,x)x(s)ds+∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1f(s,xs)ds}+1Γ(α)∫ζkt(t−s)α−1f(s,xs)ds]I[ζk,ζk+1)(t),t∈[t0,T]



(2)




where[image: there is no content], [image: there is no content]as m > n and IA(.) is the index function, i.e.,



IA(t)={1,ift∈A0,ift∉A











Lemma 6. (Krasnoselskii’s Fixed point theorem). Let X be a Banach space, let E be a bounded closed convex subset of X and let S, U be maps of E into X such that Sx + Uy ∈ E for every pair x, y ∈ E. If S is a contraction and U is Completely continuous, then the equation Sx + Ux = x has a solution on E.



3. Existence Results

In this section, we discuss the existence of the solutions of the system (1). Before stating and proving the main results, we introduce the following hypothesis.


	(H1) The function f satisfies the Lipschitz condition and there exists a positive constant L1 > 0 such that for x, y ∈ C and t ∈ [τ, T],



[image: there is no content]









	(H2) The function g is continuous and there exists a constant L2 > 0 such that



[image: there is no content]









	(H3) [image: there is no content] is a continuous bounded linear operator and there exists a constant L3 > 0 such that



[image: there is no content]








for all x, y ∈ Rn.


	(H4) The functions f and A are continuous and there exist a non-negative constant k such that



[image: there is no content]









	(H5) [image: there is no content] is uniformly bounded. (i.e.) there is a B > 0 such that



[image: there is no content]









	(H6) There exists a constant N > 0 such that



[image: there is no content]











Theorem 7. Under the hypotheses (H1) − (H6), there exists a solution for the equation (1) if



[image: there is no content]



(3)




and


[image: there is no content]



(4)




Proof: Let T be an arbitrary positive number t0 < T < ∞. Let us define an operator P: Γ → Γ as follows:



Px(t)=ϕ(t−t0),t∈[t0−r,t0








and


Px(t)=g(t,xt)+∑k=0∞[∑i=1kg(ti,xti)(bi(τi)−1)∏j=i+1kbj(τj)+∏i=1kbi(τi)[ϕ(0)−g(t0,ϕ)]+∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1A(s,x)x(s)ds}+1Γ(α)∫ζkt(t−s)α−1A(s,x)x(s)ds+∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1f(s,xs)ds}+1Γ(α)∫ζkt(t−s)α−1f(s,xs)ds]I[ζk,ζk+1)(t),t∈[t0,T]








Let Br ={x ∈ Γ: ║x║ ≤ r}

We define the operators S and U on Br as



Sx(t)={ϕ(t−t0)t∈[t0−r,t0]∑k=0∞[∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1A(s,x)x(s)ds}+1Γ(α)∫ζkt(t−s)α−1A(s,x)x(s)ds+∑i=1k∏j=ikbj(τj)Γ(α){∫ζi−1ζi(ζi−s)α−1f(s,xs)ds}+1Γ(α)∫ζkt(t−s)α−1f(s,xs)dsI[ζk,ζk+1)(t),t∈[t0,T]








and


Ux(t)={ϕ(t−t0)t∈[t0−r,t0]g(t,xt+∑k=0∞[∑i=1kg(ti,xti)(bi(τi)−1)∏j=i+1kbj(τj)+∏i=1kbj(τj)[ϕ(0)−g(t0,ϕ)]]I[ζk,ζk+1)(t),t∈[t0,T]








Next, we have to prove that S + U has a fixed point in Br.

The proof is divided into three steps.

Step I: To prove Sx + Uy ∈ Br, for all x, y ∈ Br.

For x, y ∈ Br, consider,



‖Sx+Uy‖=‖∑k=0∞[∑i=1k∏j=ikbj(τj)Γ(α)∫ζi−1ζi(ζi−s)α−1A(s,x)x(s)ds+1Γ(α)∫ζkt(t−s)α−1A(s,x)x(s)ds+∑i=1k∏j=ikbj(τj)Γ(α)∫ζi−1ζi(ζi−s)α−1f(s,xs)ds+1Γ(α)∫ζkt(t−s)α−1f(s,xs)ds]I[ζk,ζk+1)(t)+g(t,yt)+∑k=0∞[∑i=1kg(ti,yti)(bi(τi)−1)∏j=i+1kbj(τj)+∏i=1kbj(τj)[ϕ(0)−g(t0,ϕ)]]I[ζk,ζk+1)(t)‖≤‖g(t,yt)‖+∑k=0∞[∑i=1k‖g(ti,yti)(bi(τi)−1)‖∏j=i+1k‖bj(τj)‖+∏i=1k‖bj(τj)‖‖ϕ(0)−g(t0,ϕ)‖I[ζk,ζk+1)(t)+∑k=0∞[∑i=1k∏j=ik‖bj(τj)‖Γ(α)∫ζi−1ζi(ζi−s)α−1‖A(s,x)‖‖x(s)‖ds+1Γ(α)∫ζkt(t−s)α−1‖A(s,x)‖‖x(s)‖ds]I[ζk,ζk+1)(t)+∑k=0∞[∑i=1k∏j=ik‖bj(τj)‖Γ(α)∫ζi−1ζi(ζi−s)α−1‖f(s,xs)‖ds+1Γ(α)∫ζkt(t−s)α−1‖f(s,xs)‖ds]I[ζk,ζk+1)(t)≤L2+maxk{∑i=1k‖g(ti,yti)[bi(τi)−1]‖}maxi,k{∏j=i+1k‖bj(τj)‖}+maxk{∏i=1k‖bj(τj)‖}‖ϕ(0)−g(t0,ϕ)‖+1Γ(α)maxi,k{1,∏j=1k‖bj(τj)‖}∫t0t(t−s)α−1‖A(s,x)‖‖x(s)‖ds+1Γ(α)maxi,k{1,∏j=1k‖bj(τj)‖}∫t0t(t−s)α−1‖f(s,xs)‖ds≤L2+NB+B‖ϕ(0)−g(t0,ϕ)‖+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[‖A(s,x)−A(s,0)‖+‖A(s,0)‖]‖x(s)‖ds+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[‖f(s,xs)−f(s,0)‖+‖f(s,0)‖]ds≤L2+B(N+‖ϕ(0)−g(t0,ϕ)‖)+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L3‖x‖+k]‖x(s)‖ds+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L1‖x‖+k]ds








Now,



E‖(Sx+Uy)(t)‖≤L2+B(N+E‖ϕ(0)−g(t0,ϕ)‖)+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L3E‖x‖+k]E‖x(s)‖ds+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L3E‖x‖+k]ds










supt0≤t≤TE‖Sx+Uy(t)‖≤L2+B(N+supt0≤t≤TE‖ϕ(0)−g(t0,ϕ)‖)+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L3supt0≤t≤TE‖x‖+k]supt0≤t≤TE‖x(s)‖ds+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L1supt0≤t≤TE‖x‖+k]ds≤L2+B(N+‖ϕ(0)−g(t0,ϕ)‖)+(T−t0)αΓ(α+1)max{1,B}[(L3r+k)r+(L1r+k)]








Therefore, by Equation (3)[image: there is no content], which means that Sx+Uy ∈ Br.

Step II: To prove S is a contraction on Br.

Let x, y ∈ Br.

Consider,



Sx(t)−Sy(t)=∑k=0∞[∑i=1k∏j=ikbj(τj)Γ(α)∫ζi−1ζi(ζi−s)α−1[A(s,x)x(s)−A(s,y)y(s)]ds+1Γ(α)∫ζkζi(t−s)α−1[A(s,x)x(s)−A(s,y)y(s)]ds+∑i=1k∏j=ikbj(τj)Γ(α)∫ζi−1ζi(ζi−s)α−1[f(s,xs)−f(s,ys)]ds+1Γ(α)∫ζkζi(t−s)α−1[f(s,xs)−f(s,ys)]ds]I[ζk,ζk+1)(t).








Then,



‖Sx(t)−Sy(t)‖≤∑k=0∞[∑i=1k∏j=ik‖bj(τj)‖Γ(α)∫ζi−1ζi(ζi−s)α−1[‖A(s,x)(x(s)−y(s))‖+‖A(s,x)−A(s,y))y(s)‖]ds+1Γ(α)∫ζkt(t−s)α−1[‖A(s,x)(x(s)−y(s))‖+‖A(s,x)−A(s,y))y(s)‖]ds]I[ζk,ζk+1)(t)+∑K=0∞[∑i=1k∏j=ik‖bj(τj)‖Γ(α)∫ζi−1ζi(ζi−s)α−1[‖f(s,xs)−f(s,ys)‖]ds+1Γ(α)∫ζkt(t−s)α−1[‖f(s,xs)−f(s,ys)‖]ds]I[ζk,ζk+1)(t)≤1Γ(α)maxi,k{1,∏j=ik‖bj(τj)‖}∫t0t(t−s)α−1[‖A(s,x)(x(s)−y(s))‖+‖A(s,x)−A(s,y))y(s)‖]ds+1Γ(α)maxi,k{1,∏j=ik‖bj(τj)‖}∫t0t(t−s)α−1[‖f(s,xs)−f(s,ys)‖]ds≤1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[(L3‖x‖+k)‖x(s)−y(s)‖+L3‖x−y‖‖y(s)‖]ds+1Γ(α)maxi,k{1,B}∫t0t(t−s)α−1[L1‖x−y‖]ds.








Therefore,



[image: there is no content]








Thus,



[image: there is no content]








Therefore, by Equation (4)S is a contraction.

Step III: To prove that U is a completely continuous operator.

For that, first we prove that U is uniformly bounded.

For any t ∊ [t0,T], consider



[image: there is no content]








Therefore,



[image: there is no content]








That implies that, ║Ux(t)║ ≤ L2 + B(N + ║ϕ(0) − g(t0, ϕ)║).

This yields that U is uniformly bounded.

Next, we have to show that {Ux: x ∈ Br} is equicontinuous.

Let x ∈ Br and let t0 ≤ t1 < t2 ≤ T, then we have



[image: there is no content]








Then



[image: there is no content]



(5)




where,


E‖I1‖≤E(maxk{∑i=1k‖g(t2i,xt2i)(bi(τi)−1)‖}maxi,k{∏j=i+1k‖bj(τj)‖}+maxk{∏j=i+1k‖bj(τj)‖}‖ϕ(0)−g(t0,ϕ))‖[I[ζk,ζk+1)(t2)−I[ζk,ζk+1)(t1)])≤B(N+B(‖ϕ(0)−g(t0,ϕ)‖))E(I[ζk,ζk+1)(t2)−I[ζk,ζk+1)(t1))



(6)




→ 0 as t2 → t1



E‖I2‖≤E(maxk{∑i=1k‖[g(t2i,xt2i)−g(t1i,xt1i)](bi(τi)−1)‖}+maxi,k{∏j=i+1k‖bj(τj)‖}I[ζk,ζk+1)(t1))≤Bmaxk{∑i=1kE(‖[g(t2i,xt2i)−g(t1i,xt1i)](bi(τi)−1)‖)}



(7)




From the Equations (6) and (7), the right hand side of the Equation (5) → 0 as t2 → t1.



[image: there is no content]








as


[image: there is no content]








Thus, U is equicontinuous.



4. Example

Let τk be a random variable defined in Dk ≡ (0, dk) for all k = 1, 2, … where 0 < dk < ∞. Furthermore, assume that τi and τj be independent with each other as i ≠ j for i, j = 1, 2, …

Consider, the following fractional differential equation with random impulses of the form:



{cDα(x(t)−cost(t+3)2x1+x)=19sinx(t)x(t)+1t+1xx+9,t∈[t0,T],t≠ζkx(ζk)=p(k)(τk)x(ζk−),k=1,2…xt0=ϕ



(8)




It is easily seen that the functions f, g and A satisfies the assumptions and clearly, we have [image: there is no content].

Moreover the assumptions (H5) and (H6) are satisfied.

Further, if r = 1, from the above facts, in view of Theorem (3), we conclude that the Equation (8) has a solution on [t0, T], provided that the inequalities:



[image: there is no content]



(9)




and


[image: there is no content]



(10)




are satisfied.
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