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Abstract: Tree-like structures are ubiquitous in nature. In particular, neuronal axons and
dendrites have tree-like geometries that mediate electrical signaling within and between cells.
Electrical activity in neuronal trees is typically modeled using coupled cable equations on
multi-compartment representations, where each compartment represents a small segment of
the neuronal membrane. The geometry of each compartment is usually defined as a cylinder
or, at best, a surface of revolution based on a linear approximation of the radial change
in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth
or even discontinuous jumps at the boundaries between compartments. We propose
a hyperbolic approximation to model the geometry of neurite compartments, a branched,
multi-compartment extension, and a simple graphical approach to calculate steady-state
solutions of an associated system of coupled cable equations. A simple case of transient
solutions is also briefly discussed.
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1. Introduction

Many physiological systems depend on branched structures that exist both at the tissue (e.g., nervous
plexi, lungs and the vascular and lymphatic systems in animals and their equivalent in plants) and
the cellular levels (e.g., most neurons, dendritic cells in the immune system, etc.). In particular,
the transmission of electrical signals through many cells in nervous systems relies on branched
structures that enable fast, cellular communication over possibly long distances [1–7]. The geometry
of neuronal membranes is important for several reasons. For instance, the geometrical properties
of neuronal membranes may exert powerful effects on signal propagation, even in the presence of
voltage-dependent channels [8–12].

The spatio-temporal dynamics of the membrane potential in neurons is typically modeled by systems
of cable equations [13] defined in multi-compartment domains approximating the morphology of
the neuron of interest [14,15]. As a consequence, cable theory [15–20] plays a central role in the
theoretical [8,21–33] and experimental study of electrical conduction in neurons [7,34–38]. In turn,
neuronal morphology is typically modeled by assuming that the thickness of the membrane is zero and
approximating the outer shapes of small segments of the membrane by compartments with cylindrical
geometry [39] or, at best, surfaces of revolution generated by linear functions of the neurite’s diameter.
The union of all such compartments has a geometry that approximates the morphology of the neuron
of interest. However, the resulting geometry of the compartmental model neurons described above is
a coarse approximation with rough or even discontinuous transitions between compartments.

To the best of our knowledge, graphical methods seem to have not been widely applied yet in the
mathematical modeling of neurons. Graphical methods are very useful and popular in different branches
of modern physics. It is worth noting, for example, the Feynman diagrams in quantum mechanical
or statistical field theory [40–48], the Vilenkin–Kuznetsov–Smorodinskii approach to solutions of the
n-dimensional Laplace equation [49–52], applications in solid-state theory, etc. A goal of this paper
is to make a modest step in this direction (see also [32,53] and the references therein). We use
explicit solutions from recent papers on variable quadratic Hamiltonians in nonrelativistic quantum
mechanics [49,54–61] to describe steady-state and transient solutions to linear cable equations derived
for membrane compartments with a non-necessarily constant or monotonically changing radius and
propose, en passage, a new hyperbolic representation for the neurite compartments.

2. Cable Equation with Varying Radius

Single branches in a neurite can be regarded as volumes of revolution, defined by rotating a smooth
function r(x) describing the radius of the neurite along its center, located at x that varies from zero to
the length L of the branch. As a result, the cable theory implies the following set of equations [3,62]:
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where t represents time, V is the transmembrane potential relative to its resting value, Ia is the axial
current, assumed to have a constant density for each cross section, and Im is the current across and around
the membrane; V , Ia, and Im are assumed to be smooth functions of t and x. The membrane capacitance
and resistance are represented by Cm and Rm, respectively, and the intercellular resistivity by Ri; more
details can be found in [3,14,15,62]). The change in the membrane surface area that corresponds to
an infinitesimally small change in x is represented by ds/dt and depends directly on the form of r(x).
Differentiating Equation (1) with respect to x and substituting the result into Equation (2) and Equation
(3) gives a general cable equation for the branch with a possibly changing diameter:
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∂2V
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+ 2

dr

dx

∂V

∂x
− 2
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. (5)

We are particularly interested in solutions of the cable Equation (5) corresponding to at branching
and ending points (“sealed end”). Assuming the branch end is at a point x = x1 and has disk shape, the
boundary condition can be derived by setting:

Ia = πr2Im, (6)

at x = x1. Then, in view of Equation (1) and Equation (2),(
V + CmRm

∂V

∂t
+
Rm

Ri

∂V

∂x

)∣∣∣∣
x=x1

= 0, t ≥ 0, (7)

(see [14]). In a similar fashion, at the somatic end, one gets:(
V + CsRs

∂V

∂t
+
Rs

Ri

∂V

∂x

)∣∣∣∣
x=x0

= 0, t ≥ 0, (8)

where Rs is the somatic resistance and Cs is the somatic capacitance [27]. We shall use these conditions
for the steady-state and transient solutions of the cable equation. Later, we may impose similar boundary
conditions at the points of branching.

2.1. Sealed end steady-state solutions

Assuming ∂V/∂t ≡ 0, the cable Equation (5) and the condition (7) define a boundary value problem
of the form:

0 = r
d2V

dx2
+ 2

dr

dx

dV

dx
− V Ri

Rm

√
1 +

(
dr

dx

)2
 , x0 ≤ x ≤ x1, r > 0 (9)
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with

V |x=x0 = V0,

(
dV

dx
+B (x)V

)∣∣∣∣
x=x1

= 0, B (x1) =
Ri

Rm

. (10)

Note that the coefficient of the first derivative is not necessarily zero, suggesting that there can be
amplification or dampening of potentials due to the geometry of the compartment. The boundary
value problem Equations (9) and (10) can be conveniently solved for x ∈ [x0, x1], in terms of two
linearly-independent standard solutions C (x) and S (x) by setting:

V (x) = V (x0)
C (x) +B (x1)S (x)

C (x0) +B (x1)S (x0)
. (11)

It is then possible to find an explicit expression forB in terms ofC and S by assuming that the the sealed-
end boundary condition extends to the whole interval [x0, x1]. From Equation (11) and the extension of
the sealed-end boundary condition,

B (x) = −V
′

V
= −C

′ (x) +B (x1)S
′ (x)

C (x) +B (x1)S (x)
, x0 ≤ x ≤ x1. (12)

Notice that the function B extends to the interval [x0, x1] when C and S satisfy the special boundary
conditions C (x1) = 1, C ′ (x1) = 0 and S (x1) = 0, S ′ (x1) = −1.

The functionB can be thought of as a ratio of current density and voltage. Notice thatB(x) > 0 when
either V decays when positive or V increases when negative, so in both cases, it can be assumed that the
membrane potential is moving toward its resting position. We shall refer to the case, when B(x) > 0, as
geometric dampening or dampening for short. The opposite case, B(x) < 0, shall be called geometric
amplification, or amplification for short, because it occurs when V increases when already positive or
when V decreases when already negative. To the best of our knowledge, the case of enlargement was
discovered and numerically explored for the first time in [63].

3. Cable Equations Defined on Cylindrical and Hyperbolic Compartments: Analytic, Asymptotic
and Numerical Solutions

Next, we consider a general model of a neurite (e.g., axon or dendrite) as a binary, directed tree,
starting from the soma and extending toward its terminal ends consisting of axially symmetric branches
with cylindrical and hyperbolic geometries. The resulting equations for each of the compartment shapes
are derived next.

3.1. Cylinder

Let r(x) be a constant r0 for 0 ≤ x ≤ L. The steady-state cable Equation (9) takes the
simplest form:

λ2
d2V

dx2
= V, λ2 =

r0Rm

2Ri

, (13)

with a solution depending on the length constant λ [3,14,62],

V (x) = V0
cosh

(
L−x
λ

)
+ λBL sinh

(
L−x
λ

)
cosh (L/λ) + λBL sinh (L/λ)

. (14)
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If subject to the boundary conditions

V (0) = V0, and
(
BLV +

dV

dx

)∣∣∣∣
x=L

= 0 (15)

then,
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)
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(
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λ

) . (16)

For more details, see also [15] and the references therein.

3.2. Hyperbola

Non-monotonic, nonlinear changes in diameter can be modeled by hyperbolic surfaces of revolution.
To do so, let r = a cosh

(
x−b
a

)
on an interval x0 ≤ x ≤ x1; the cable Equation (5) takes the form:(
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∂V
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)
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(
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)
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[
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)
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)
∂2V

∂x2

]
. (17)

This special cases of amplification or dampening are integrable in terms of elementary
functions; see [54,57] for a similar problem related to a model of the damped quantum oscillator. For
the steady-state solutions, one obtains the following equation:

V ′′ + 2λ tanh (λx+ δ)V ′ = µ2
0V, (18)

with
λ =

1

a
, δ = −λb, µ2

0 =
2Ri

aRm

. (19)

The corresponding two linearly-independent solutions,

V1 (x) =
sinh (µx+ γ)

cosh (λx+ δ)
, V2 (x) =

cosh (µx+ γ)

cosh (λx+ δ)
, µ =

√
µ2
0 + λ2, (20)

can be verified by a direct substitution for an arbitrary parameter γ.
The steady-state solution of the boundary value problem

BV (x1) +
dV

dx
(x1) = 0, V (x0) = V0, (21)

is given by

V (x) = V0
C (x1 − x) +BS (x1 − x)
C (x1 − x0) +BS (x1 − x0)

, (22)

where

C (x1 − x) = cosh (λ (b− x1))
cosh (µ (x1 − x))
cosh (λ (x− b))

(23)

+sinh (λ (b− x1))
λ sinh (µ (x1 − x))
µ cosh (λ (x− b))

,

and

S (x1 − x) = cosh (λ (b− x1))
sinh (µ (x1 − x))
µ cosh (λ (x− b))

. (24)
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3.3. General Case of Axial Symmetry

Standard solutions for the case in which there is axial symmetry can be calculated using numerical
methods or approximations of the Wentzel–Kramers–Brillouin (WKB) type. For example [72],

V (x) ≈ 1√
r2 (x) p (x)

[
Aeξ(x) +Be−ξ(x)

]
, (25)

where

p (x) =

(
2

r

ds

dx

Ri

Rm

)1/2

, ξ (x) =

∫ x

x0

p (t) dt. (26)

See [3,62] for further details.

4. A Graphical Approach

The following paragraphs contain descriptions of the graphical rules for steady-state voltages and
currents in a model of dendritic (or axonal) tree with dampening or amplification.

4.1. Single Axially Symmetric Branch with Arbitrary Tapering

For a single branch with center x along an interval [x0, x1], possibly having geometric amplifying or
dampening, the voltage and current density/voltage ratio are given by

V (x) =
C (x1 − x) +B (x1)S (x1 − x)
C (x1 − x0) +B (x1)S (x1 − x0)

V (x0) (27)

= (C (x1 − x) +B (x1)S (x1 − x))V (x1) ,

B (x) =
C ′ (x1 − x) +B (x1)S

′ (x1 − x)
C (x1 − x) +B (x1)S (x1 − x)

= −V
′ (x)

V (x)
, (28)

respectively (see Figure 1).

Figure 1. A single branch with tapering.
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4.2. Junction of Three Branches with Different Types of Tapering

We now consider a general case in which each branch has its own geometry, possibly including
amplification or dampening, assuming that the internal potential and current are assumed to be
continuous at all branch points and at the soma-dendritic junction [14]. Assume there is a main
branch with radius r = r(x) and daughter branches with respective radii r1 = r1(x) and r2 = r2(x)



Mathematics 2014, 2 125

(see Figure 2) and voltages represented by V , V1 and V2, respectively. If the point at which they join is
called x12, then

V (x12) = V1 (x12) = V2 (x12) , (29)

and
r2 (x12)B (x12) = r21 (x12)B1 (x12) + r22 (x12)B2 (x12) . (30)

Figure 2. A junction of three different branches.
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The total ratio constant B(x12) at the branching point x12 is then given by

B (x12) = B (B1 (x1) , B2 (x2)) ,

=
r21 (x12)

r2 (x12)
B1 (x12) +

r22 (x12)

r2 (x12)
B2 (x12) , (31)

=
r21 (x12)

r2 (x12)

C ′1 (x1 − x12) +B1 (x1)S
′
1 (x1 − x12)

C1 (x1 − x12) +B1 (x1)S1 (x1 − x12)

+
r22 (x12)

r2 (x12)

C ′2 (x2 − x12) +B2 (x2)S
′
2 (x2 − x12)

C2 (x2 − x12) +B2 (x2)S2 (x2 − x12)
.

Then B (x0) is a constant of the form:

B (x0) =
C ′ (x12 − x0) +B (x12)S

′ (x12 − x0)
C (x12 − x0) +B (x12)S (x12 − x0)

, (32)

with the coefficient B (x12) found from Equation (31).

4.3. Junction of n-daughter branches

In a similar fashion (see Figure 3), at a branching point xα giving rise to n daughter branches with
potentials Vi, i = 1, ..., n from an originating branch with potential V ,

V (xα) = V1 (xα) = V2 (xα) = ... = Vn (xα) , (33)

and

r2 (xα)B (xα) =
n∑
i=1

r2i (xα)Bi (xα) .
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Figure 3. A junction of (n+ 1)-branches.
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A combination of the above graphical rules results in a simple algorithm for the evaluation of voltages
and currents in the tree model. In short, first evaluate constants B (xα) for all branching points of the
tree and then, apply equation (31) for all open nodes. Finally, remove the above nodes from the tree and
keep repeating the previous step until you reach the root of the tree.

In order to find voltage at a point x of the dendritic tree, follow the path from x0 to x and multiply
the initial voltage V (x0) by the consecutive corresponding factors from equation (27), changing at each
branching point in the tree. The ratio of voltages V (xα) and V (xβ) at two terminal points xα and xβ can
be determined by the previous graphical rule applied to the shortest path between xα and xβ .

5. Examples

Equations (31) and (32) define the ratio coefficients B(xα) for all vertices from the standard node on
Figure 2. For the corresponding voltages, one can write

V (x0) = [C (x12 − x0) +B (x12)S (x12 − x0)]V (x12) , (34)

= [C (x12 − x0) +B (x12)S (x12 − x0)]V (x12)

× [C (x1 − x12) +B (x1)S (x1 − x12)]V (x1) ,

= [C (x12 − x0) +B (x12)S (x12 − x0)]V (x12)

× [C (x2 − x12) +B (x2)S (x2 − x12)]V (x2) ,

and
V (x1)

V (x2)
=
C (x2 − x12) +B (x2)S (x2 − x12)
C (x1 − x12) +B (x1)S (x1 − x12)

. (35)

Further examples are left to the reader.

6. Transient Solutions

Extensions to transient solutions for a single branch with tapering are covered in the following
sections.
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6.1. A Single Branch with Smooth Tapering

Now, consider the cable Equation (5) for a single branch with an arbitrary smooth tapering
r = r (x) on the interval x0 ≤ x ≤ x1. The separation of variables

V (x, t) = e−(1+α
2)t/τmU (x) , τm = CmRm, (36)

results in
1

r

d

dx

(
r2
dU

dx

)
+ ω2 ds

dx
U = 0, ω2 =

2Ri

Rm

α2, (37)

where α is a separation constant. The boundary condition at the sealed-end condition (7) takes the form(
dU

dx
− 1

2
ω2U

)∣∣∣∣
x=x1

= 0. (38)

A general solution of this problem for each branch of the tree can be conveniently written as

U (x) = U (x, ω) = A

[
C (x, ω) +

1

2
ω2S (x, ω)

]
(39)

where A is a constant and C(x, ω) and S(x, ω) are two linearly-independent standard solutions of
Equation (37) that satisfy special boundary conditions C(x1, ω) = 1, C ′(x1, ω) = 0, and S(x1, ω) = 0,
S ′(x1, ω) = 1. Then, the boundary condition Equation (8) at the somatic end x = x0 is(

dU

dx
+

[
Ri

Rs

(
τs
τm
− 1

)
+

Cs
2Cm

ω2

]
U

)∣∣∣∣
x=x0

= 0, τs = CsRs, (40)

which results in a transcendental equation for the eigenvalues (ω):[
1− τs

τm

(
1 +

Rm

2Ri

ω2

)]
Ri

Rs

=
C ′ (x0, ω) +

1
2
ω2S ′ (x0, ω)

C (x0, ω) +
1
2
ω2S (x0, ω)

. (41)

Note that there are infinitely many discrete eigenvalues for this equation [64,68]. The corresponding
eigenfunctions Un = U (x, ωn) = Anun (x) are orthogonal with respect to an inner product defined in
terms of a Lebesgue–Stieltjes integral [64] (see also Appendix and [69,73,74]). In other words,

(um, un) = δmn (un, un) , (42)

where

(u, v) =

∫ x1

x0

u(x)v(x)r(x)ds+
1

2
r2 (x1)u (x1) v (x1) +

Cs
2Cm

r2 (x0)u (x0) v (x0) . (43)

As a consequence,

V (t, x) = V (∞, x) +
∑
n

An exp

[
−
(
1 +

Rm

2Ri

ω2
n

)
t

τm

]
un (x) (44)

is a formal solution of the corresponding initial value problem where V (∞, x) is the steady-state
solution, where ω = ωn are roots of the transcendental equation (41) and the corresponding
eigenfunctions are given by

un (x) = C (x, ωn) +
1

2
ω2
nS (x, ωn) . (45)
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The coefficients An, n = 1, 2, ..., can be obtained using the modified orthogonality relation (42) so that,

An =
(V (x, 0)− V (x,∞) , un (x))

(un (x) , un (x))
(46)

(see the methods in [27,64]). Substitution of equation (46) into equation (44) and changing the order of
summation and integration result in

V (t, x) = V (∞, x) +
∫

Supp µ
G(t, x, y) (V (0, y)− V (∞, y)) dµ(y), (47)

where

G(t, x, y) =
∑
n

exp

[
−
(
1 +

Rm

2Ri

ω2
n

)
t

τm

]
un (x)un (y)

‖un‖2
, (48)

is an analog of the heat kernel. This implies an infinite speed of propagation. The method of images and
other standard methods can be applied for a tree with branching.

6.2. Single Branch with Piecewise Tapering

In the piecewise tapering case,

r =

{
r0 (x) , x0 ≤ x ≤ x01

r1 (x) , x01 ≤ x ≤ x1
(49)

with r0
(
x−01
)
= r1

(
x+01
)
. In a similar fashion,

U (x, ω) =

{
A0

[
C0 (x, ω)−

(
Ri

Rs

(
τs
τm
− 1
)
+ Cs

2Cm
ω2
)
S0 (x, ω)

]
, x0 ≤ x ≤ x01

A1

[
C1 (x, ω) +

1
2
ω2S1 (x, ω)

]
, x01 ≤ x ≤ x1

(50)

assuming that C0(x0, ω) = 1, C ′0(x0, ω) = 0, and S0(x0, ω) = 0, S ′0(x0, ω) = 1, and C1(x1, ω) = 1,
C ′1(x1, ω) = 0 and S1(x1, ω) = 0, S ′1(x1, ω) = 1. Continuity and smoothness of the solution at the point
x01,

U ′
(
x−01
)

U
(
x−01
) =

U ′
(
x+01
)

U
(
x+01
) , (51)

results in the following equation for the eigenvalues

C ′0 (x01, ω)−
(
Ri

Rs

(
τs
τm
− 1
)
+ Cs

2Cm
ω2
)
S ′0 (x01, ω)

C0 (x01, ω)−
(
Ri

Rs

(
τs
τm
− 1
)
+ Cs

2Cm
ω2
)
S0 (x01, ω)

=
C ′1 (x01, ω) +

1
2
ω2S ′1 (x01, ω)

C1 (x01, ω) +
1
2
ω2S1 (x01, ω)

. (52)

Therefore, is possible to obtain a formal solution in the form of equations (47)–(48) once again by
introducing

un (x) =

{
u
(0)
n (x) /u

(0)
n (x01) , x0 ≤ x ≤ x01

u
(1)
n (x) /u

(1)
n (x01) , x01 ≤ x ≤ x1,

(53)

where

u(0)n (x) = C0 (x, ωn)−
(
Ri

Rs

(
τs
τm
− 1

)
+

Cs
2Cm

ω2
n

)
S0 (x, ωn) ,

u(1)n (x) = C1 (x, ωn) +
1

2
ω2S1 (x, ωn) .

Further details are left to the reader.
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7. Summary

We propose a simple graphical approach to steady-state solutions of the cable equation for a general
model of a dendritic or axonal tree with tapering. A simple case of transient solutions is also briefly
discussed. Possible future studies include numerical implementation of the methods described here to
neuronal reconstructions.
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Appendix

A. Modified Orthogonality Relation

We consider the Sturm–Liouville type problem,

Lu+ λρu = 0, (54)

for the second order differential operator

Lu =
d

dx

[
k (x)

du

dx

]
− q (x)u, (55)

where k, q and ρ are continuous real-valued functions on an interval [x0, x1], k and ρ are positive in
[x0, x1], k′ exists and is continuous in [x0, x1], subject to modified boundary conditions

u′ (x0) + (a0 + b0λ)u (x0) = 0, (56)

u′ (x1) + (a1 − b1λ)u (x1) = 0,

with a0, b0 ≥ 0 and a1, b1 ≥ 0 are constants. With the help of the second Green’s formula (see, for
example, [71]), ∫ x1

x0

(vLu− uLv) dx = k

(
v
du

dx
− udv

dx

)∣∣∣∣x1
x0

(57)

for two eigenfunctions u and v corresponding to different eigenvalues

Lu+ λρu = 0, Lv + µρv = 0, λ 6= µ, (58)

from which it is possible to obtain an orthogonality relation of the form [64]∫ x1

x0

u (x) v (x) ρdx+ b1k (x1)u (x1) v (x1) + b0k (x0)u (x0) v (x0) = 0. (59)
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Here, the modified inner product

(u, v) : =

∫
Supp µ

uv dµ (60)

=

∫ x1

x0

u (x) v (x) ρdx+ b1k (x1)u (x1) v (x1) + b0k (x0)u (x0) v (x0) ,

is defined in terms of the Lebesgue–Stieltjes integral [65–67,70,75–79]. The modified orthogonality
relation (59) holds also in the case of a piecewice continuous derivative k′ on the interval [x0, x1].

The junction of three branches (see Figure 2) can be considered in a similar fashion. Suppose that

Liui + λρiui = 0, Liu =
d

dx

[
ki (x)

du

dx

]
− qi (x)u, (61)

with k = 0, 1, 2 for three corresponding branches, respectively, and boundary conditions are given by

u′ (x0) + (a0 + b0λ)u (x0) = 0, (62)

u′ (x1) + (a1 − b1λ)u (x1) = 0,

u′ (x2) + (a2 − b2λ)u (x2) = 0,

at the terminal ends. Introducing integration over the whole tree,∫
T

(vLu− uLv) dx =

∫ x1

x0

(v0L0u0 − u0L0v0) dx (63)

+

∫ x1

x12

(v1L1u1 − u1L1v1) dx+

∫ x2

x12

(v2L2u2 − u2L2v2) dx,

where T denotes the tree domain. and applying the Green’s formula (57) for each branch, one gets∫
T

(vLu− uLv) dx = k0 (x12) (v0 (x12)u
′
0 (x12)− u0 (x12) v′0 (x12)) (64)

−k1 (x12) (v1 (x12)u′1 (x12)− u1 (x12) v′1 (x12))
−k2 (x12) (v2 (x12)u′2 (x12)− u2 (x12) v′2 (x12))
−k0 (x0) (v0 (x0)u′0 (x0)− u0 (x0) v′0 (x0))
+k1 (x1) (v1 (x1)u

′
1 (x1)− u1 (x1) v′1 (x1))

+k2 (x2) (v2 (x2)u
′
2 (x2)− u2 (x2) v′2 (x2)) .

We shall assume that the following continuity conditions:

u0 (x12) = u1 (x12) = u2 (x12) , (65)

k0 (x12)u
′
0 (x12) = k1 (x12)u

′
1 (x12) = k2 (x12)u

′
2 (x12) ,

hold at the branching point x12. In view of the boundary conditions (62), the modified orthogonality
relation takes the form∫ x1

x0

u (x) v (x) ρdx+

∫ x1

x0

u (x) v (x) ρdx+

∫ x1

x0

u (x) v (x) ρdx (66)

+b0k (x0)u (x0) v (x0) + b1k (x1)u (x1) v (x1) + b2k (x2)u (x2) v (x2) = 0.
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The case of the junction of n daughter branches (see Figure 3) is similar. In general, for an arbitrary
tree, one may conclude that only the terminal ends shall add additional mass points to the measure,
provided that the corresponding boundary and continuity conditions hold. Further details are left to the
reader.
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