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Abstract:

 In their breakthrough paper in 2006, Goldston, Graham, Pintz and Yıldırım proved several results about bounded gaps between products of two distinct primes. Frank Thorne expanded on this result, proving bounded gaps in the set of square-free numbers with r prime factors for any [image: there is no content], all of which are in a given set of primes. His results yield applications to the divisibility of class numbers and the triviality of ranks of elliptic curves. In this paper, we relax the condition on the number of prime factors and prove an analogous result using a modified approach. We then revisit Thorne’s applications and give a better bound in each case.
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1. Introduction and Statement of Results

The celebrated twin prime conjecture predicts that there are infinitely many pairs of consecutive primes. While a proof of the conjecture seems to be out of reach by current methods, there has been a spate of recent advances concerning the weaker conjecture:



[image: there is no content]








In 2005, Goldston, Pintz and Yıldırım [1] proved that there exists infinitely many consecutive primes, which are much closer than average, that is,


[image: there is no content]








Based on their methods, Zhang [2] showed that:


[image: there is no content]








Maynard [3] improved the upper bound to 600 using a modified sieve method. The constant was subsequently improved to 252 by an ongoing polymath project [4].
In a similar vein, people have investigated related problems about “almost primes” or numbers with few prime factors. Chen [5] proved that there are infinitely many primes, p, such that [image: there is no content] has at most two distinct prime factors. In [6], Goldston, Graham, Pintz and Yıldırım (GGPY) considered the [image: there is no content] numbers, which are numbers with exactly two distinct prime factors, and showed that there are infinitely many pairs of [image: there is no content] numbers that are at most six apart.

Thorne [7] observed that the methods in [6] are highly adaptable, and generalized the result to [image: there is no content] numbers, which are numbers with exactly r distinct prime factors. In [7], he showed that given an infinite set of primes, [image: there is no content], satisfying certain conditions, and positive integers ν and r with [image: there is no content], there exists an effectively computable constant C(r,ν,[image: there is no content]), such that:



lim infn→∞(qn+1−[image: there is no content])≤C(r,ν,[image: there is no content])








where [image: there is no content] is the n-th [image: there is no content] number, whose prime factors are all in [image: there is no content].
Using this theorem, Thorne proved several corollaries. With a result by Soundararajan [8], he showed that there are infinitely many pairs of [image: there is no content] numbers, m and n, such that the class groups, [image: there is no content] and [image: there is no content], each contain elements of order four, with [image: there is no content]. As a second application, he considered the quadratic twists of elliptic curves over [image: there is no content] without a [image: there is no content]-rational torsion point of order two. Let E/[image: there is no content] be such an elliptic curve, [image: there is no content] denote its Hasse–Weil L-function, rk(E):=rk(E,[image: there is no content]) denote the rank of the group of rational points on E over [image: there is no content] and [image: there is no content] denote the D-quadratic twist of E for a fundamental discriminant, D. Using the work of Ono [9], he showed that for “good” elliptic curve E/[image: there is no content] (defined as in [10]), there are infinitely many pairs of square-free numbers, m and n, such that [image: there is no content], [image: there is no content] and [image: there is no content] hold simultaneously for some absolute constant, [image: there is no content]. For [image: there is no content], Thorne obtained a bound of [image: there is no content]≤ 6,152,146.

In this paper, we revisit Thorne’s examples and obtain stronger bounds by relaxing the [image: there is no content] condition to instead consider bounded gaps between square-free numbers with prime factors all in [image: there is no content]. In this case, we can prove an analogous general theorem with a better bound on the gaps.




Theorem 1. 
Suppose [image: there is no content]is a set of primes with positive Frobenius density. Let ν be a positive integer; and let [image: there is no content]denote the n-th square-free number, whose prime factors are all in [image: there is no content]. Then:



lim infn→∞(qn+ν−[image: there is no content])≤C(ν,[image: there is no content])













Remark 1. 
Theorem 1 also holds for arbitrary sets of primes of positive density satisfying a Siegel–Walfisz-type condition (defined in Section 2).



We observe that if we remove the restriction on the number of prime divisors in each of Thorne’s examples, we can obtain better bounds. Replacing [image: there is no content] by a square-free number in his first example, we obtain the following twin prime-type result.




Corollary 1. 
There are infinitely many square-free numbers, n, such that the class groups, [image: there is no content]and Cl([image: there is no content](−n−8)), each contain elements of order four.



In the second example, the bound, [image: there is no content], can be improved analogously. We give an explicit bound in the case when [image: there is no content].




Corollary 2. 
Let [image: there is no content]. Then, there are infinitely many pairs of square-free numbers, m and n, for which the following hold simultaneously: 


	 (i)

	[image: there is no content],



	 (ii)

	[image: there is no content],



	 (iii)

	[image: there is no content].










Remark 2. 
There are more general applications of Theorem 1. Thorne [7] described an application to the nonvanishing of Fourier coefficients of weight one newforms, where Theorem 1 can also be applied. If [image: there is no content] is a newform of integer weight, then the set of integers, n, such that [image: there is no content] is nonzero modulo ℓ has zero density for all prime ℓ by the theory of Deligne and Serre [11]. Nonetheless, our result shows that there are bounded gaps between such n for almost all ℓ, yielding better bounds than [7].



Our result also applies to the quadratic twists of elliptic curves over [image: there is no content] that have a given 2-Selmer [image: there is no content]-rank. If K is a number field, E is an elliptic curve over K and r is a suitable nonnegative integer, Mazur and Rubin [12] conjecture that for a positive proportion of quadratic extensions, [image: there is no content], the quadratic twist, [image: there is no content], of E by [image: there is no content] has the 2-Selmer rank r. Using ([12] (Proposition 4.2)), our result shows that for K=[image: there is no content], an elliptic curve, E/[image: there is no content], with no two-torsion points, and a given integer, [image: there is no content], either no quadratic twists have 2-Selmer rank r or there are bounded gaps between the square-free numbers, d, such that [image: there is no content] has 2-Selmer rank r.



2. Main Result

We borrow our notation from [6], using k to denote an integer greater than one, [image: there is no content] to denote an admissible k-tuple of linear forms (defined in Section 2.2) with [image: there is no content] for some [image: there is no content], and [image: there is no content] to denote a set of primes with positive density α. The constants implied by “O” and “≪” may depend on k, [image: there is no content] and [image: there is no content]. Let [image: there is no content] denote the number of ways of writing n as a product of k factors and [image: there is no content] denote the number of distinct prime factors of n. [image: there is no content] and [image: there is no content] are the usual Euler and Möbius functions. N and R will denote real numbers regarded as tending to infinity, and we will always assume [image: there is no content].

Given a set of primes, [image: there is no content], with density α, we call a square-free number with prime factors only in [image: there is no content] an E[image: there is no content] number . Let [image: there is no content](N) be the set of primes in [image: there is no content] greater than [image: there is no content] and ξ[image: there is no content] be the characteristic function of all E[image: there is no content](N) numbers. Given a positive integer, M, to be chosen later, let [image: there is no content] be the density of integers, n, congruent to m mod M in the set of E[image: there is no content] numbers and the minimum density δ of a set of linear forms, [image: there is no content], be the minimum of [image: there is no content], [image: there is no content]. We define:



Δ[image: there is no content],b(N;q,a):=∑N<n≤2Nn≡a(modq)n≡b(modM)ξ[image: there is no content](n)−1ϕ(q)∑N<n≤2N(n,q)=1n≡b(modM)ξ[image: there is no content](n)








Following [7], we say that [image: there is no content] satisfies a Siegel-Walfisz condition [image: there is no content] if for each b coprime to M and for any positive C,



∑N<p≤2N,p∈[image: there is no content]p≡a(modq)p≡b(modM)1−1ϕ(q)∑N<p≤2N,p∈[image: there is no content]p≡b(modM)1≪ANlog−CN








holds uniformly for all q with [image: there is no content].
We also recall that a set of primes, [image: there is no content], has Frobenius densityα, [image: there is no content] (cf. [13]), if there is a Galois extension, K/[image: there is no content], and a union of conjugacy classes, H, in G=Gal(K/[image: there is no content]), such that for all primes, p, sufficiently large, [image: there is no content] if and only if p∈[image: there is no content], and [image: there is no content].

Analogous to the approach in [6,7], Theorem 1 follows from the following main result.




Theorem 2. 
Let [image: there is no content]be an infinite set of primes with positive Frobenius density [image: there is no content]that satisfies [image: there is no content]. Let [image: there is no content]be an M-admissible (defined in Section 2.2) k-tuple of linear forms with minimum density δ. There are at least [image: there is no content]forms among them that infinitely, often, simultaneously represent square-free numbers with prime factors all in [image: there is no content], provided that:



[image: there is no content]








where:


[image: there is no content]













Remark 3. 
Our method is not directly applicable in the case when [image: there is no content]. Nonetheless, if we take the limit, [image: there is no content], on the right-hand side of the inequality, we get [image: there is no content]. In practice, one can take a subset of [image: there is no content] with Frobenius density close to one that satisfies [image: there is no content], so that the same k still satisfies the inequality in Theorem 2.



In the case when [image: there is no content] and [image: there is no content], we have the following twin prime-type result.




Corollary 3. 
Let [image: there is no content]be an infinite set of primes with positive Frobenius density [image: there is no content]that satisfies [image: there is no content]. For any even number, d, let δ′=maxmmin([image: there is no content],δm+d). Assume that:



[image: there is no content]








Then, there are infinitely many n for which n and [image: there is no content]are simultaneously square-free numbers with prime factors all in [image: there is no content].


We have plotted the right-hand side of the inequality against α to illustrate the conditions under which one can obtain a twin prime-type result (Figure 1).

Figure 1. The right-hand side of Corollary 3 vs. α.



[image: Mathematics 02 00037 g001 1024]







As another sample application of our theorem, we consider the problem of representing square-free integers by translates of tuples. This problem was actually answered by Hall [14], who even obtained an asymptotic expression for the number of such representations, but, by taking the limit, [image: there is no content], in Theorem 2.1, we easily obtain the following corollary.




Corollary 4. 
Let [image: there is no content]be an admissible k-tuple. Then, there are infinitely many n, such that all of the [image: there is no content]are simultaneously square-free.



Here, we recall from [1] that a k-tuple of integers is admissible if for all prime, p, they do not cover all the residue classes modulo p. We remark that admissibility is not a necessary condition for this corollary to hold, but it is a natural limit of our method.


2.1. The Level of Distribution of E[image: there is no content] Numbers

In this section, we will prove a Bombieri–Vinogradov-type result for E[image: there is no content] numbers if [image: there is no content] satisfies [image: there is no content], generalizing a result of Orr [15]. More precisely, we shall show that the E[image: there is no content] numbers have a level of distribution [image: there is no content]. We remark that a set, [image: there is no content], with positive Frobenius density satisfies [image: there is no content] for some M as a consequence of Lemma 3.1 in [7].




Lemma 1. 
Suppose that [image: there is no content]satisfies [image: there is no content]for some M. Then, for each b coprime to M and for any C, there exists some [image: there is no content], such that:



∑q≤N1/2log−BN(q,M)=1maxa(a,q)=1|Δ[image: there is no content],b(N;q,a)|≪CNlog−CN








Proof. The result is a variant of Motohashi [16]. Similar results are also treated by Bombieri, Friedlander and Iwaniec [17]. We will use the modern treatment given by ([18] (Theorem 17.4)), following the approach of Thorne ([7] (Lemma 3.2)).


Let ξ[image: there is no content],b(n) be the characteristic function of E[image: there is no content](N) numbers congruent to b modulo M and χ[image: there is no content],b(n) be the characteristic function of primes in [image: there is no content](N) congruent to b modulo M. We further define ξ[image: there is no content],b′(n)=ω(n)−1ξ[image: there is no content],b(n). Borrowing the notation from [18], given an arithmetic function, [image: there is no content], define:



Df(N;q,a)=∑n≤Nn≡a(modq)f(n)−1ϕ(q)∑n≤N(n,q)=1f(n)








Finally, we let [image: there is no content] denote the restriction of [image: there is no content] to the interval, I, i.e., [image: there is no content](n)=f(n) if [image: there is no content], [image: there is no content](n)=0 otherwise. We first remark that:


ξ[image: there is no content],b=∑ij≡b(modM)ξ[image: there is no content],i′*χ[image: there is no content],j,Δ[image: there is no content],b(N;q,a)=Dξ[image: there is no content],b|[image: there is no content](2N;q,a)








Hence, for [image: there is no content], where [image: there is no content] will be chosen later,


∑[image: there is no content]max(a,q)=1|Δ[image: there is no content],b(N;q,a)|=∑[image: there is no content]max(a,q)=1|Dξ[image: there is no content],b|[image: there is no content](2N;q,a)|≤∑ij≡b(modM)∑[image: there is no content]max(a,q)=1|Dξ[image: there is no content],i′*χ[image: there is no content],j|[image: there is no content](2N;q,a)|








Fixing [image: there is no content], we now split the interval [image: there is no content] into intervals of the form [image: there is no content], where [image: there is no content]. The number of such intervals is [image: there is no content]. Then, we remark that ∑tξ[image: there is no content],i′|[image: there is no content]*χ[image: there is no content],j|[N/t,2N(1+ε)t] closely approximates ξ[image: there is no content],i′*χ[image: there is no content],j|[image: there is no content]. Both functions are supported in [image: there is no content] and identical on [image: there is no content]. The differences on the intervals, [image: there is no content] and [image: there is no content], contribute [image: there is no content] to each Dξ[image: there is no content],i′*χ[image: there is no content],j|[image: there is no content](2N;q,a). Summing over all [image: there is no content] and all pairs [image: there is no content], such that ij≡b(modM), the total contribution of the error is:


≪εN∑[image: there is no content]1ϕ(q)≪εNlogN








On the other hand, we may apply Theorem 17.4 in [18] with α=ξ[image: there is no content],i′|[image: there is no content] and β=χ[image: there is no content],j|[N/t,2N(1+ε)t]. Note that Condition (17.13) on β is satisfied for some [image: there is no content], since [image: there is no content] satisfies the [image: there is no content] condition, and:


||ξ[image: there is no content],i′|[image: there is no content]||≪εtlog(1−α)/2(εt),||χ[image: there is no content],j|N/t,2N(1+ε)t||∼α(1−2ε)N/tlog((1−2ε)N/t)1/2








where:


[image: there is no content]








Hence, the theorem gives (note that [image: there is no content] for any [image: there is no content]):


∑t∑[image: there is no content]max(a,q)=1|Dξ[image: there is no content],i′|[image: there is no content]*χ[image: there is no content],j|[N/t,2N(1+ε)t](2N;q,a)|≪ε−1/2Nlog−B+2.5N








We take [image: there is no content], and sum over all the pairs [image: there is no content], such that ij≡b(modM) to conclude that:


∑[image: there is no content]max(a,q)=1|Δ[image: there is no content],b(N;q,a)|≪Nlog−2B/3+2N








From there, taking [image: there is no content] gives the desired result.


2.2. Linear Forms and Admissibility

Following [7] and [6], we will prove our results for k-tuples of linear forms:



Li(x):=[image: there is no content]x+[image: there is no content](1≤i≤k),[image: there is no content],[image: there is no content]∈Z,[image: there is no content]>0








We will prove that for any admissible k-tuple with k sufficiently large, there are infinitely many x for which several [image: there is no content] simultaneously represent square-free numbers with all prime factors in [image: there is no content]. The basic setup is the same as [7]. We shall recall only the important notions and hypotheses in this section and refer our readers to ([7] (Section 2.2]) and ([6] (Section 3)) for a detailed exposition. As in [7] and [6], we define the quantities:


P[image: there is no content](n):=∏i=1kLi(n),A:=lcmi([image: there is no content]),S([image: there is no content]):=∏p∣A1−1p−k∏p∤A1−kp1−1p−k








We recall from [7] the following admissibility constraint.



Definition 1. 
Given a positive integer, M, a k-tuple of linear forms [image: there is no content]is M-admissible if the following conditions hold simultaneously.


	(i) 

	For every prime, p, there exists an integer, [image: there is no content], such that p∤∏i=1n([image: there is no content][image: there is no content]+[image: there is no content]);



	 (ii)

	for each i, M divides [image: there is no content];



	 (iii)

	for each i, M is coprime to [image: there is no content]/M.







A k-tuple of linear forms, [image: there is no content], is called admissible if it satisfies only (i). The above stronger admissibility constraint is introduced to incorporate the fact that [image: there is no content] may fail to be well-distributed modulo M.

We will primarily consider the case when [image: there is no content]. Given a set of linear forms [image: there is no content] with Li(n)=[image: there is no content]n+[image: there is no content], remove finitely many primes from [image: there is no content], so that [image: there is no content] for all p∈[image: there is no content]. Throughout the paper, we shall use [image: there is no content] for a sum over all the values relatively prime to A and any prime p∈[image: there is no content](N) (this is different from [7], which only requires the values to be relatively prime to A). As in [7] and [6], we may assume without loss of generality that M-admissibility can be replaced by a stronger condition, which we label Hypothesis [image: there is no content]. The justification for this hypothesis appears in [7].




Hypothesis [image: there is no content]. 
[image: there is no content] is an M-admissible k-tuple of linear forms. The functions Li(n)=[image: there is no content]n+[image: there is no content](1≤i≤k) have integer coefficients with [image: there is no content]>0. Each of the coefficients, [image: there is no content], is divisible by the same set of primes, none of which divides any of the [image: there is no content]. If [image: there is no content], then any prime factor of [image: there is no content][image: there is no content]−aj[image: there is no content] divides each of the [image: there is no content].





2.3. Preliminary Lemmas

In this section, we shall provide the setup of the proof of the main theorem and prove a few key lemmas. We first recall a lemma from [6], which we shall use frequently in this section.




Lemma 2. 
([6] (Lemma 4)) Suppose that γ is a multiplicative function, and suppose that there are positive real numbers [image: there is no content], such that:



[image: there is no content]








and:


[image: there is no content]








if [image: there is no content]. Let g be the multiplicative function defined by:


[image: there is no content]








Let:


[image: there is no content]








Assume that [image: there is no content]is a piecewise differentiable function. Then:


[image: there is no content]








where: [image: there is no content]. The constant implied by “O” may depend on [image: there is no content]and κ, but it is independent of L and F.


Following the approach in [7] and [6], we shall consider the sum:



S:=∑N<n≤2N∑i=1kξ[image: there is no content](Li(n))−ν[image: there is no content]d|P[image: there is no content](n)[image: there is no content]2








where [image: there is no content] are real numbers to be described later. As in [7] and [6], Theorem 2 will follow from the positivity of the sum, S.
Note that there is a key distinction between our definition of S and the definition in [7] and [6]. Here, we sum up [image: there is no content] over only the square-free numbers, d, that are relatively prime to all the primes in [image: there is no content](N). Intuitively, this gives a bigger sieve weight to the values, n, where P[image: there is no content](n) has many prime factors in [image: there is no content](N); hence, the positivity of S can be satisfied for smaller k. As we can see in the proof of Lemma 4, this change also simplifies the calculation of S.

Define:



[image: there is no content]=μ2(r)S([image: there is no content])ifr<R,(r,A)=1and(r,p)=1forallp∈[image: there is no content](N)0otherwise








For each square-free number, d, let:



f(d):=dτk(d)=∏p|dpk,f1:=f*μ








The sieve weights, [image: there is no content], are related to the quantities, [image: there is no content], by:


[image: there is no content]=μ(d)f(d)[image: there is no content]ryrdf1(rd)








Then, by Möbius inversion, we have:


[image: there is no content]=μ(r)f1(r)[image: there is no content]dλdrf(dr)








Since the sum of [image: there is no content] is taken over all the square-free numbers relatively prime to the primes in [image: there is no content](N), we take [image: there is no content] to be supported only on integers coprime to [image: there is no content](N), which implies that the [image: there is no content] are also supported on integers coprime to [image: there is no content](N).
To determine S, we break the sum into parts and evaluate each of them individually. Let:



[image: there is no content]:=∑N<n≤2Nξ[image: there is no content](Lj(n))[image: there is no content]d|P[image: there is no content](n)[image: there is no content]2and[image: there is no content]:=∑N<n≤2N[image: there is no content]d|P[image: there is no content](n)[image: there is no content]2








Then:


[image: there is no content]








We shall now estimate [image: there is no content] and [image: there is no content] in the following two lemmas.



Lemma 3. 
Suppose that [image: there is no content]is a set of linear forms satisfying Hypothesis [image: there is no content]. There is a constant, C, such that if [image: there is no content], then:



[image: there is no content]=S([image: there is no content])∏p1−1p−kα∏p∈[image: there is no content](N)1−kpN(logR)k(1−α)Γ(k(1−α)+1)+O(N(logN)k(1−α)−1)








Proof. From the definition of [image: there is no content], we have:


[image: there is no content]=[image: there is no content]d,e[image: there is no content]λe∑N<n≤2N[d,e]|P[image: there is no content](n)1=N[image: there is no content]d,e[image: there is no content]λef([d,e])+O[image: there is no content]d,e|[image: there is no content]λer[image: there is no content]|








where for each square-free d with [image: there is no content] and [image: there is no content] for all p∈[image: there is no content],


rd:=∑N<n≤2Nd|P[image: there is no content](n)1−Nf(d)








As in the proof of Theorem 7 in [6], note that the error term is [image: there is no content] if [image: there is no content]. For the main term,


[image: there is no content]d,e[image: there is no content]λef([d,e])=[image: there is no content]d,e[image: there is no content]λef(d)f(e)∑r|(d,e)f1(r)=[image: there is no content]rf1(r)[image: there is no content]dλdrf(dr)2=[image: there is no content]rμ2(r)yr2f1(r)=[image: there is no content]rμ2(r)S([image: there is no content])2f1(r)








We use Lemma 2 with:


γ(p)=kifp∤Aandp∉[image: there is no content](N)0otherwise








and [image: there is no content]. Then, [image: there is no content]. It can verified as in ([6] (Lemma 7)) that the conditions in Lemma 2 are satisfied with [image: there is no content], using the fact that the Frobenius density of [image: there is no content](N) is [image: there is no content]. Then, the main term becomes:


S([image: there is no content])∏p1−1p−kα∏p∈[image: there is no content](N)1−kpN(logR)k(1−α)Γ(k(1−α))∫01xk(1−α)−1dx








with the desired error term. The result follows by evaluating the integral.     ☐





Remark 4. 
This argument breaks down when [image: there is no content], since κ needs to be positive in order to apply Lemma 2. A similar phenomenon occurs in the proof of Lemma 4.






Lemma 4. 
Let [image: there is no content]be a set of linear forms satisfying Hypothesis [image: there is no content]. There is a constant, C, such that if [image: there is no content], then:



[image: there is no content]∼DN(logR)(k+1)(1−α)log1−αN








where:


D:=S([image: there is no content])[image: there is no content]ϕ(M)c[image: there is no content]Γ(2(1−α)+1)Γ(2−α)2Γ((k+1)(1−α)+1)∏p1−1p−α(k+1)∏p∈[image: there is no content](N)1−1p1−kp








and c[image: there is no content]=c[image: there is no content](N)>0satisfies:


∑N<n≤2Nξ[image: there is no content](n)=c[image: there is no content]Nlog1−α(N)













Remark 5. 
The ratio, c[image: there is no content](N), approaches a positive constant as N tends to infinity by Theorem 2.4 in [13].



Proof. From the definition of [image: there is no content], we have:



[image: there is no content]=∑N<n≤2Nξ[image: there is no content](Lj(n))[image: there is no content]d|P[image: there is no content](n)[image: there is no content]2=[image: there is no content]d,e[image: there is no content]λe∑N<n≤2N[d,e]|P[image: there is no content](n)/Lj(n)ξ[image: there is no content](Lj(n))








We remark that in the second equality, we have used the condition that [image: there is no content] is not divisible by any prime in [image: there is no content](N), and hence, the condition [image: there is no content]|P[image: there is no content](n) in the sum implies that [image: there is no content]|P[image: there is no content](n)/Lj(n) for nonzero ξ[image: there is no content](Lj(n)). This contributes to the much simpler estimate of [image: there is no content] than that in [7].
Let [image: there is no content] denote the set of residue classes, a, modulo x, such that x|P[image: there is no content](a)/Lj(a). Note that [image: there is no content] by Hypothesis [image: there is no content] (cf. (4.4) in [7]). Then:



[image: there is no content]=∑′d,e[image: there is no content]λe∑a∈Ω*([image: there is no content])∑N<n≤2Nn≡a(mod[d,e])ξ[image: there is no content](Lj(n))








Write [image: there is no content], then [image: there is no content], with [image: there is no content]≡aaj+[image: there is no content](mod[image: there is no content]) and [image: there is no content]≡[image: there is no content](modaj). By assumption, the values, [image: there is no content],aj/M,M, are all coprime. Let [image: there is no content]=[image: there is no content]aj/M. Then, we may use the Chinese Remainder Theorem to combine the congruence conditions modulo [image: there is no content] and [image: there is no content] into a single condition on [image: there is no content]. Let [image: there is no content] denote the set of all possible residue classes of [image: there is no content] modulo x. Then:


[image: there is no content]=∑′d,e[image: there is no content]λe∑a′∈Ω1*([image: there is no content])∑[image: there is no content][image: there is no content]≡a′(mod[image: there is no content])[image: there is no content]≡[image: there is no content](modM)ξ[image: there is no content]([image: there is no content])








Now, we decompose the inner sum:


∑[image: there is no content][image: there is no content]≡a′(mod[image: there is no content])[image: there is no content]≡[image: there is no content](modM)ξ[image: there is no content]([image: there is no content])=1ϕ([image: there is no content])∑ajN<[image: there is no content]≤2ajN[image: there is no content]≡[image: there is no content](modM)ξ[image: there is no content]([image: there is no content])+Δ[image: there is no content],[image: there is no content](ajN;[image: there is no content],a′)+O[image: there is no content](1)








Accordingly, we can decompose [image: there is no content] into its main term and error term [image: there is no content]=M1,j+E1,j. Let Δ[image: there is no content],[image: there is no content](X;[image: there is no content]):=max(a,[image: there is no content])=1|Δ[image: there is no content],[image: there is no content](X;[image: there is no content],a)|. The error term can be estimated using Lemma 1 and Cauchy’s inequality as in the proof of Lemma 4.1 in [7]. Let [image: there is no content], then [image: there is no content]=ajv/M. Note that |Ω1*([image: there is no content])|=|Ω*([image: there is no content])|=τk−1([image: there is no content]). Moreover, by Hypothesis [image: there is no content], we have (a′,[image: there is no content])=1 for all a′∈Ω1*([image: there is no content]). Hence:


E1,j=[image: there is no content]d,e[image: there is no content]λe∑a′∈Ω1*([image: there is no content])(Δ[image: there is no content],[image: there is no content](ajN;[image: there is no content],a′)+O[image: there is no content](1))≤[image: there is no content]d,e[image: there is no content]λeτk−1([image: there is no content])(Δ[image: there is no content],[image: there is no content](ajN;[image: there is no content])+O(1))≪log2kN∑v≤R2(3k−3)ω(v)Δ[image: there is no content],[image: there is no content]ajN;ajvM≪U(log2kN)(ajN)log−U(ajN)≪Nlog2k−UN








for any U. To obtain the third line, we use the fact that |[image: there is no content]|≪logkR≤logkN by (4.3) of [6]. For the main term of [image: there is no content],


(1)M1,j=[image: there is no content]d,e[image: there is no content]λeτk−1([image: there is no content])ϕ([image: there is no content])∑ajN<n≤2ajNn≡[image: there is no content](modM)ξ[image: there is no content](n)∼[image: there is no content]ϕ(M)ϕ(aj)∑ajN<n≤2ajNξ[image: there is no content](n)[image: there is no content]d,e[image: there is no content]λeτk−1([image: there is no content])ϕ([d,e])








where [image: there is no content] is the density of the elements congruent to [image: there is no content] mod M in the set of E[image: there is no content](N) numbers.
Our next step is to evaluate the last sum. Let [image: there is no content] and [image: there is no content]. Then:



[image: there is no content]d,e[image: there is no content]λeτk−1([image: there is no content])ϕ([d,e])=[image: there is no content]d,e[image: there is no content]λef*([image: there is no content])=[image: there is no content]d,e[image: there is no content]λef*(d)f*(e)f*((d,e))=[image: there is no content]d,e[image: there is no content]λef*(d)f*(e)∑r|(d,e)f1*(r)=[image: there is no content]rf1*(r)[image: there is no content]r|d[image: there is no content]f*(d)2=[image: there is no content]rμ2(r)f1*(r)(yr*)2








by an analogue of Lemma 6 in [6], where:


yr*:=μ2(r)rϕ(r)[image: there is no content]mymrϕ(m)








Thus:


yr*=μ2(r)rS([image: there is no content])ϕ(r)[image: there is no content]m<R/r(m,rA)=1μ2(m)ϕ(m)








We use Lemma 2 with:


γ(p)=1ifp∤rAandp∉[image: there is no content](N)0otherwise








and [image: there is no content]. Again, the conditions are verified as in ([6] (Lemma 7)) with [image: there is no content], giving:


cγ=ϕ(rA)rA∏p1−1p−α∏p∈[image: there is no content](N)1−1p








Hence for square-free r with [image: there is no content] and [image: there is no content] for all p∈[image: there is no content](N),



yr*∼ϕ(A)S([image: there is no content])A∏p1−1p−α∏p∈[image: there is no content](N)1−1p(logR/r)1−αΓ(1−α)∫01x−αdx=ϕ(A)S([image: there is no content])A∏p1−1p−α∏p∈[image: there is no content](N)1−1p(logR)1−αΓ(2−α)logR/rlogR1−α








Thus:


[image: there is no content]rμ2(r)f1*(r)(yr*)2∼ϕ(A)2S([image: there is no content])2A2∏p1−1p−2α∏p∈[image: there is no content](N)1−1p2(logR)2(1−α)Γ(2−α)2[image: there is no content]r<Rμ2(r)f1*(r)logR/rlogR2(1−α)








We evaluate the last sum using Lemma 2, taking [image: there is no content] and:


γ(p)=p(k−1)p−1ifp∤rAandp∉[image: there is no content](N)0otherwise








The conditions are satisfied when [image: there is no content], as verified in ([6] [Lemma 8]). Then:


cγ=1S([image: there is no content])Aϕ(A)∏p1−1p−α(k−1)∏p∈[image: there is no content](N)1−1p−11−kp








Hence:


[image: there is no content]rμ2(r)f1*(r)(yr*)2∼ϕ(A)S([image: there is no content])A∏p1−1p−α(k+1)∏p∈[image: there is no content](N)1−1p1−kp(logR)(k+1)(1−α)Γ(2(1−α)+1)Γ(2−α)2Γ((k+1)(1−α)+1)








Plugging the definition of c[image: there is no content] and this identity into (1), we have the desired result. Note that here we have used the fact that [image: there is no content] by Hypothesis [image: there is no content].


2.4. Proof of Theorems 1 and 2

Proof of Theorem 2. Let [image: there is no content], where C is the constant in Lemma 2.6. Noting that [image: there is no content], we have, as [image: there is no content],



S≥S([image: there is no content])∏p1−1p−kα∏p∈[image: there is no content](N)1−kpN(logR)k(1−α)Γ(k(1−α)+1)(kD(k)−ν)








where:


D(k):=c[image: there is no content]δϕ(M)41−αΓ(k(1−α)+1)Γ(2(1−α)+1)Γ(2−α)2Γ((k+1)(1−α)+1)∏p1−1p−α∏p∈[image: there is no content](N)1−1p








Hence, S is positive for all large enough N if:


kD(k)−ν⇔k>νb(1)b(k)41−αc[image: there is no content]δϕ(M)Γ(2−α)Π



(2)




where:


Π:=∏p1−1p−α∏p∈[image: there is no content](N)1−1p








and:


[image: there is no content]








is the beta function. Finally, by a variant of the Tauberian theorem ([19] (Theorem 2.4.1)), we deduce that:


c[image: there is no content]Π∼1ζ[image: there is no content](N)(2)Γ(α)=1Γ(α)∏p∈[image: there is no content](N)1−1p2








where, as we recall from Lemma 4, c[image: there is no content]=c[image: there is no content](N)>0 is the function that satisfies:


∑N<n≤2Nξ[image: there is no content](n)=c[image: there is no content]Nlog1−α(N)








For N large enough, the infinite product approaches one. Now, the result follows from Equation (2). ☐
Proof of Theorem 1. To derive Theorem 1.1 from our main theorem, we consider for given k and m a set of k primes, [image: there is no content], with the appropriate residue classes as needed. Then, {Mx+[image: there is no content]} forms an M-admissible k-tuple, which can be normalized to fit Hypothesis [image: there is no content]. This gives us the value, [image: there is no content], for the constant, C(ν,[image: there is no content]).




3. Discussion of Examples

In this section, we shall revisit two of the examples in [7]. We observe that both Theorem 1.2 and Corollary 1.3 in [7] rely on theorems that are not just applicable to [image: there is no content] numbers, but any square-free numbers whose prime factors satisfy a Chebotarëv condition. Therefore, Theorem 2 applies in these two examples, and we can get better bounds in both cases.


3.1. Example 1: Ideal Class Groups with Order Four Elements

We first recall a result of Soundararajan [8]. Proposition 1 and 2 in [8] show that for any positive square-free number [image: there is no content] (mod 8), whose prime factors are all congruent to [image: there is no content] (mod 8), the class group Cl([image: there is no content](−d)) contains an element of order four.

Applying Theorem 2 with [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], the right-hand side of Theorem 2 is [image: there is no content] when [image: there is no content]. Hence, we may take [image: there is no content]. Considering the eight-admissible two-tuple [image: there is no content], we obtain Corollary 1, which is an improvement on the bound in [7].



3.2. Example 2: Rank Zero Quadratic Twists of Modular Elliptic Curves

As in Section 6 of [7], we shall focus on the elliptic curve [image: there is no content], recalling the setting from [9]. We take the cubic model of [image: there is no content] to be:



[image: there is no content]








The Galois representation:


ρf:Gal([image: there is no content]¯/[image: there is no content])→GL2(Z/2Z)








induced by the natural action of Gal([image: there is no content]¯/[image: there is no content]) on the two-torsion points of [image: there is no content] has the property that:


tr(ρf([image: there is no content]))≡a(p)(mod2)








for all, except finitely many, primes, p. Here, [image: there is no content], and [image: there is no content] is the Frobenius element at p in Gal([image: there is no content][f(x)]/[image: there is no content]). Let S be the set of primes, p, such that tr(ρf([image: there is no content]))≡1 (mod 2). We remark that S is also the set of all primes p, such that [image: there is no content] is irreducible mod p. Equation (1.4) and Theorem 1.1 of Boxer-Diao [10] establish that for any positive square-free number, d, with prime factors all in S, we have:


L(E(−d),1)≠0andrk(E(−d),[image: there is no content])=0








We note that Gal([image: there is no content][f(x)]/[image: there is no content])≅S3; hence, the Chebotarëv density theorem shows that S has density [image: there is no content]. Murty and Murty’s theorem [20] now implies that S satisfies [image: there is no content], as analyzed in [7]. Furthermore, since [image: there is no content] is odd only if [image: there is no content] or p is a quadratic residue mod 11 (cf. the proof of Corollary 1 in [9]) and these values distribute uniformly among the five quadratic residue classes, one may take [image: there is no content]. Given [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], the right-hand side of Theorem 2 is [image: there is no content] when [image: there is no content]. Hence, we may take [image: there is no content]. One may check that the eight-tuple:


[image: there is no content]








contains only quadratic residues mod 11 and, hence, forms an 11-admissible eight-tuple {11n+[image: there is no content]}, such that [image: there is no content]. As a result, there are infinitely many pairs of square-free m and n with:


L(E(−m),1)·L(E(−n),1)≠0,rk(E(−11m))=rk(E(−11n))=0








and:


[image: there is no content]
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