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Abstract: Dynamic post-buckling behavior of microscale cylindrical shells reinforced with
functionally graded carbon nanotubes (FG-CNTs) and conveying microfluid is discussed
for the first time. The microshell is embedded in a Kerr foundation and subjected to an
axial compressive load and a two-dimensional magnetic field effect. CNTs dispersion
across the shell thickness follows a power law, with five distribution types developed.
The modified couple stress theory is applied to incorporate the small-size effect using
a single material parameter. Furthermore, the Knudsen number is used to address the
small-size effect on the microfluid. The external force between the magnetic fluid and
microshell is modeled by applying the Navier–Stokes equation depending on the fluid
velocity. Nonlinear motion equations of the present model are derived using Hamilton’s
principle, containing the Lorentz magnetic force. According to the Galerkin method, the
equations of motion are transformed into an algebraic system to be solved, determining
the post-buckling paths. Numerical results indicate that the presence of the magnetic
field, CNT reinforcement, and fluid flow improves the load-bearing performance of the
cylindrical microshells. Also, many new parametric effects on the post-buckling curves
of the FG-CNT microshells have been discovered, including the shell geometry, magnetic
field direction, length scale parameter, Knudsen number, and CNT distribution types.

Keywords: cylindrical microshells; post-buckling; nonlinear analysis; microfluid; magnetic
fluid; FG-CNTs
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1. Introduction
Carbon nanotubes represent a novel class of materials with outstanding stiffness and

strength [1]. Due to their superior mechanical, electrical, and physical qualities CNTs have
recently been employed to reinforce several matrices, including metal filler, ceramic, and
polymer. Carbon nanotubes come in two varieties: single-walled (abbreviated SWCNTs)
and multiwalled (abbreviated MWCNTs), which are composed of several concentric SWC-
NTs. Although MWCNTs are comparatively weaker, both forms are utilized to strengthen
composites [2]. According to Sun et al. [3], the ultimate tensile strength of a SWCNT-nickel
nanocomposite was 320% greater than that of pure nickel, whereas it was 270% stronger
for a MWCNT-nickel nanocomposite. As a result, SWCNTs enhance matrix strength more
successfully than MWCNTs, and they might be a better choice for reinforcement. The uni-
form or random distribution of reinforcement in traditional composites results in uniform
mechanical characteristics across the material. However, because of the uneven distribution
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of reinforcement, functionally graded material will undergo processing that results in a
spatial variance in characteristics. On the basis of this idea, graded distribution strategies
are created for materials reinforced with carbon nanotubes. Zhu et al. [4] analyzed the
natural frequency and bending of composite plates strengthened with CNTs employing the
first-order plate theory to formulate the displacements and the finite element technique to
solve the governing equations. Concurrently, in Alibeigloo [5], the thermo-electric bending
analysis of the rectangular plate reinforced with CNTs integrated with piezoelectric layers
was illustrated, employing the 3D elasticity theory. Sobhy and Radwan [6,7] studied the ef-
fects of the 2D magnetic field and hygrothermal conditions on the bending and buckling of a
viscoelastic sandwich rectangular plate reinforced with CNTs based on a higher-order shear
deformation theory. In addition, Sobhy and Zenkour [8] investigated the magnetic and
humidity effects on the vibration, mechanical buckling, and thermal buckling of viscoelastic
sandwich nanobeams with FG-CNTs face layers embedded in visco-Pasternak foundation.
Ghasemi et al. [9] analyzed the dynamic response of a hybrid laminated nanocomposite
truncated conical shell strengthened with FG graphene platelets and FG-CNTs via a higher-
order shell theory and the differential quadrature method (DQM). Furthermore, Zhao
et al. [10] discussed the buckling temperature of the conical-conical shells reinforced with
CNTs based on the first-order shell theory (FST), von Karman’s nonlinearity (vKN), and
the DQM. Additionally, You et al. [11] employed the FST, vKN, and DQM to elucidate the
stability analysis of FG-CNTs conical-cylindrical shells exposed to axial compressive load,
thermal load, and lateral compressive force. In recent years, numerous studies have focused
on the linear [12–14] and nonlinear [15,16] vibration behavior of structures reinforced with
functionally graded carbon nanotubes.

Fluid-conveying cylindrical shells are vital parts of biological and engineering sys-
tems [17]. Examples include arterial blood flow [18], subsea and underground oil
pipelines [19], steel conduits for a power plant [20], pulmonary airways [21], control
and monitoring tubes, aerospace and power-plant industries, shells used in storage tanks
and heat exchangers, etc. [22]. The interaction between the fluid and the shell structure
makes it essential to comprehend their dynamic properties. A significant problem in many
industrial applications is the fluid-structure interaction. Complex behaviors are produced
when fluid flow alters the mass, stiffness, and damping of the shells. Divergence and
flutter are examples of instability that can happen as flow velocity rises. Studying the
dynamics and enhancing design techniques are crucial to preventing undesired behaviors.
In recent decades, numerous research studies have examined the different behaviors of
the fluid-conveying cylindrical shells, such as [23,24]. Based on the finite element method
(FEM)and the 3D elasticity theory, Zhang et al. [25] predicted the natural frequencies of
cylindrical shells conveying fluid. Based on the Flügge shell theory, the nonlinear model of
the circular cylindrical shells is introduced by [26] to investigate the nonlinear dynamics
response of the clamped-free shells subjected to axial internal flow. Mohammadimehr
and Mehrabi [27] employed Reddy’s shell theory and the DQM to illustrate the effects
of the thermo-mechanical-magnetic loads on the natural frequency of microscale sand-
wich axisymmetric cylindrical shells having CNTs-reinforced face layers and porous core
conveying fluid. The influence of the material length scale parameter and viscoelastic
coefficient on the vibration of cylindrical microshells conveying fluid was demonstrated
by Rashvand et al. [28] based on the modified couple stress theory and the classical shell
theory. The piezoelectric effect on the vibration response of functionally graded (FG) cylin-
drical shells integrated with piezoelectric sheets and subjected to axial internal flow was
studied by Ebrahimi [29]. The study utilized 3D elasticity theory to derive the motion
equations, which were solved using the state-space approach. At the same time, Abdollahi
et al. [30] illustrated the nonlinear vibration of spinning cylindrical shells with different
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rotation speeds conveying incompressible fluid based on the Sanders-–Koiter kinematic
assumptions and Runge–Kutta technique. Further, Al-Furjan et al. [31] utilized the first-
order shear deformable theory to analyze the vibration control of spinning nanocomposite
reinforced cylindrical microshells integrated with two piezoelectric layers and conveying
viscous fluid. Recently, Hoang et al. [32] elucidated the nonlinear vibration of FG cylin-
drical shells carrying incompressible fluid embedded in a non-uniform elastic medium.
The motion equations were derived based on the classical shell theory and von Karman’s
nonlinear relations and then solved via Galerkin and fourth-order Runge-Kutta methods.
However, Sobhy [33] used a higher-order beam theory to investigate the nonlinear bending
and wave propagation in a nanocomposite microtube surrounded by a Kerr substrate
and containing viscous fluid. The nonlinear dynamical responses of the graphene oxide
powder reinforced cylindrical shell carrying incompressible fluid were discussed by Zhang
et al. [34], employing the classical shell theory.

Despite extensive studies on the vibration, buckling, and dynamic behaviors of fluid-
conveying CNT-reinforced structures, critical gaps remain. In particular, the dynamic
post-buckling response of microscale cylindrical shells reinforced with FG-CNTs under
the combined influences of microfluid flow, a Kerr-type elastic foundation, and a two-
dimensional magnetic field has not been previously investigated. Moreover, existing works
often neglect essential microscale effects, such as the material length scale parameter and
the Knudsen number for microfluid dynamics, which are crucial for accurate modeling at
the microscale. The practical significance of this study lies in providing a more compre-
hensive framework for analyzing the stability of advanced microsystems, with potential
applications in biomedical, aerospace, and nano-engineering fields. Consequently, the nov-
elty of the current analysis can be summarized as follows: (a) The transient post-buckling
response of FG-CNTs cylindrical microshells containing flowing-fluid is discussed, account-
ing for asymmetric deformations. (b) The influence of the Lorentz force, induced by the 2D
magnetic field, on the shells and fluid is considered. (c) The sinusoidal shear deformation
shell theory is presented, incorporating the shallowness effect, and the von Karman geo-
metrical nonlinearity is introduced to formulate the strain-displacement relations. (d) The
influence of small-scale effects on microtubes and microfluid is addressed by applying the
modified couple stress theory and accounting for the Knudsen number, respectively. The
effective material properties of the composite shells are determined using the mixture rule,
considering five distributions of CNTs by thickness. The motion equations are constructed
based on Hamilton’s principle. The conducted equations are then solved using Galerkin’s
method to deduce the transient post-buckling path of the composite microshells. A compar-
ison study is conducted between the results obtained and those available in the literature.
Additionally, several examples are presented to illustrate the effects of different parameters
such as the average flow velocity, Knudsen number, Lorentz force, magnetic field direction,
CNTs volume fraction, material parameter, radius-to-thickness ratio, and length-to-radius
ratio on the post-buckling curves.

2. Formulation
Consider a composite cylindrical shell with a middle surface radius a, thickness H, and

length L containing flowing-incompressible fluid as shown in Figure 1. The deformation
of the shell is modeled based on the cylindrical coordinate system (x, θ, z). The microshell
is surrounded by Kerr foundation, which is emulated by Kl , Ks, and Ku corresponding to
lower springs stiffness, shear foundation stiffness, and upper springs stiffness, respectively,
as shown in Figure 2.
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Figure 1. Schematic of the system considered.
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Figure 2. An FG-CNTs reinforced microshell integrated with Kerr foundation.

2.1. Displacement Field

Considering the higher-order shear deformation of the shell and the shallowness term
z/a, the displacement components at a point (x, θ, z) are given as [35,36]:

Vx(x, θ, z, t) = Ux(x, θ, t)− zW0,x + ψ(z)Φx(x, θ, t)

Vθ(x, θ, z, t) =
(

1 +
z
a

)
Uθ(x, θ, t)− z

a
W0,θ + ψ(z)Φθ(x, θ, t)

Vz(x, θ, z, t) = W0(x, θ, t),

(1)



Mathematics 2025, 13, 1518 5 of 27

where Ux, Uθ , and W0 represent the displacement components at z = 0; Φx and Φθ are the
rotations about the x- and θ-axes, and f,i = ∂ f /∂i, i = x, θ, z, t. Additionally, ψ(z) is the
sinusoidal shape function given as

ψ(z) =
H
π

sin
( π

H
z
)

. (2)

2.2. Strain-Displacement Relations

Using von Karman’s model, the strain components associated with the above displace-
ment are expressed as:

ε = ε(0) + zε(1) + ψ(z)ε(2) + ψ′(z)ε(3), ψ′(z) = cos
( π

H
z
)

, (3)

where

ε = {εx εθ εθz εxz εxθ}T ,

ε(0) = {εx εθ 0 0 εxθ}(0)
T

,

ε(1) = {εx εθ εθz 0 εxθ}(1)
T

,

ε(2) = {εx εθ εθz 0 εxθ}(2)
T

,

ε(3) = {0 0 εθz εxz 0}(3)
T

,

(4)

in which

ε
(0)
x = Ux,x +

1
2

W2
0,x, ε

(0)
θ =

1
a

Uθ,θ +
W0

a
+

1
2a2 W2

0,θ ,

ε
(0)
xθ =

1
a

Ux,θ + Uθ,x +
1
a

W0,xW0,θ , ε
(1)
x = −W0,xx,

ε
(1)
θ =

1
a2 Uθ,θ −

1
a2 W0,θθ , ε

(1)
θz =

1
a2 W0,θ −

Uθ

a2 , ε
(1)
xθ =

1
a

Uθ,x −
2
a

W0,xθ ,

ε
(2)
x = Φx,x, ε

(2)
θ =

1
a

Φθ,θ , ε
(2)
θz = −1

a
Φθ , ε

(2)
xθ = Φθ,x +

1
a

Φx,θ ,

ε
(3)
θz = Φθ , ε

(3)
xz = Φx.

(5)

2.3. Rotation and Curvature Tensors

The rotation tensor ϖ is related with the displacement vector V as [37]:

ϖ =
1
2
∇× V. (6)

Substituting Equation (1) into Equation (6) yields

ϖx =
1
a

W0,θ −
Uθ

2a
− 1

2
ψ′Φθ , ϖθ = −W0,x +

1
2

ψ′Φx,

ϖz =
1
2

(
Uθ,x −

1
a

Ux,θ

)
+

1
2a

zUθ,x +
1
2

ψ

(
Φθ,x −

1
a

Φx,θ

)
.

(7)

Concurrently, the symmetric curvature tensor Θ can be expressed as [33,37]:

Θ =
1
2

[
∇ϖ + (∇ϖ)T

]
. (8)

Inserting Equation (7) into Equation (8) yields

Θ = Θ(0) + zΘ(1) + ψΘ(2) + ψ′Θ(3) + ψ′′Θ(4), (9)
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where

Θ = {Θx Θθ Θz Θθz Θxz Θxθ}T ,

Θ(0) = {Θx Θθ Θz Θθz Θxz Θxθ}(0)
T

,

Θ(1) = {0 Θθ 0 Θθz Θxz 0}(1)
T

,

Θ(2) = {0 Θθ 0 Θθz Θxz 0}(2)
T

,

Θ(3) = {Θx Θθ Θz Θθz 0 Θxθ}(3)
T

,

Θ(4) = {0 0 0 Θθz Θxz 0}(4)
T

,

(10)

in which

Θ(0)
x =

1
a

W0,xθ −
1
2a

Uθ,x, Θ(3)
x = −1

2
Φθ,x,

Θ(0)
θ =

1
2a

(
Uθ,x −

1
a

Ux,θ

)
− 1

a
W0,xθ , Θ(1)

θ =
1

2a2 Uθ,x, Θ(2)
θ =

1
2a

(
Φθ,x −

1
a

Φx,θ

)
,

Θ(3)
θ =

1
2a

Φx,θ , Θ(0)
z =

1
2a

Uθ,x, Θ(3)
z =

1
2

(
Φθ,x −

1
a

Φx,θ

)
,

Θ(0)
θz =

1
4a

(
Uθ,xθ −

1
a

Ux,θθ

)
+

1
2a

W0,x, Θ(1)
θz =

1
4a2 Uθ,xθ ,

Θ(2)
θz =

1
4a

(
Φθ,xθ −

1
a

Φx,θθ

)
, Θ(3)

θz = − 1
4a

Φx, Θ(4)
θz =

1
4

Φx,

Θ(0)
xz =

1
4

(
Uθ,xx −

1
a

Ux,xθ

)
, Θ(1)

xz =
1
4a

Uθ,xx, Θ(2)
xz =

1
4

(
Φθ,xx −

1
a

Φx,xθ

)
,

Θ(4)
xz = −1

4
Φθ , Θ(0)

xθ = −1
2

(
W0,xx −

1
a2 W0,θθ

)
− 1

4a2 Uθ,θ ,

Θ(3)
xθ =

1
4

(
Φx,x −

1
a

Φθ,θ

)
.

(11)

2.4. Modified Couple Stress Model

The small-scale effect is taken into consideration by employing the modified couple
stress theory [38]. The modified couple stress theory has two major improvements over the
conventional couple stress theory: the inclusion of a symmetric couple stress tensor and
the participation of just one length scale component. Accordingly, the virtual strain energy
of an element dv can be defined as [38]:

δΛS =
∫

v

(
σδε + mδΘ

)
dv, (12)

where the deviatoric part of the symmetric couple stress tensor m and the stress tensor σ

can be defined as [38]:
m = 2µ2GΘ, σ = Sε, (13)

where µ indicates the length scale parameter, G stands for the shear modulus, and S is the
elastic coefficient matrix, given as:



Mathematics 2025, 13, 1518 7 of 27

S =



S11 S12 0 0 0

S12 S22 0 0 0

0 0 S44 0 0

0 0 0 S55 0

0 0 0 0 S66


, S11 =

Ex

1 − νxθνθx
, S12 =

νxθEθ

1 − νxθνθx
,

S22 =
Eθ

1 − νxθνθx
, S44 = S55 = S66 = G = Gxθ ,

(14)

where Ei, Gij, and νij (i, j = x, θ) are the effective Young’s moduli, shear moduli, and
Poisson’s ratios, respectively, of the FG-CNTs shell that are calculated by the mixture
rule in terms of the matrix Young’s modulus Em, CNT Young’s moduli E cnt

i , matrix shear
modulus Gm, CNT shear moduli Gcnt

i , matrix Poisson’s ratio νm, and CNT Poisson’s ratios
νcnt

ij as [39–41]:

Ex = α1VcntE cnt
x + VmEm, Eθ =

α2E cnt
θ Em

VcntEm + VmE cnt
θ

,

Gxθ =
α3Gcnt

xθ Gm

VcntGm + VmGcnt
xθ

, Gxz = Gθz = Gxθ , Gm =
Em

2(1 + νm)
,

νxθ = V̂cntνcnt
xθ + (1 − V̂cnt)νm, νθx =

νxθEθ

Ex
,

(15)

where αi (i = 1, 2, 3) are the CNT efficiency parameters [42]; Gij (i, j = x, θ, z) are the shear
moduli; Vcnt and Vm are the volume fractions of the CNT and matrix, respectively, which
are related as: Vcnt + Vm = 1. Concurrently, V̂cnt is the uniform volume fraction of the
CNT, which is given in terms of the mass density of the matrix ρm, mass density of the CNT
ρcnt and the mass fraction of the CNT Mcnt as [41]:

V̂cnt =
ρm Mcnt

ρcnt + (ρm − ρcnt)Mcnt . (16)

In addition, the mass density of the FG-CNTs shell is defined as:

ρ = Vcntρcnt + Vmρm. (17)

Five patterns of CNT distributions are investigated in this study, as shown in Figure 3.
The first is the uniform distribution type (UD), and the others are gradually distributed by
thickness. These are denoted as FGV, FGA, FGX, and FGO. Accordingly, the CNTs volume
fraction for the five types is given as [43]:

Vcnt(z) = V̂cnt



1, for UD;

1
2 + z

H , for FGV;

1
2 − z

H , for FGA;

2
∣∣ z

H

∣∣, for FGX;

1 − 2
∣∣ z

H

∣∣, for FGO.

(18)
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Figure 3. Schematic diagrams of five types of CNT distribution.

3. Equations of Motion
Firstly, we deduce the Lorentz force applied to the microshell and the force due to the

magnetic fluid, as shown in the following two subsections.

3.1. Lorentz Force Applied to the Microshell

The present cylindrical microshell is subjected to a magnetic field H = (Hx,Hθ , 0),
where the components of the field are given by Hx = H cos(γ) and Hθ = H sin(γ). Here,
H represents the magnetic field’s magnitude, and γ is the angle between the magnetic
field vector and the positive x-axis. Note that the present study assumes a uniform two-
dimensional magnetic field to simplify the theoretical analysis and focus on fundamental
magnetic effects. In practice, achieving such uniformity at the microscale is difficult due
to field gradients and boundary effects, which may affect structural behavior. Based on
Maxwell’s relations [44–46], the Lorentz force is formulated as:

Lm f = τ(J × H), (19)

where τ is the magnetic permeability and J is the current density, given in terms of the
disturbing vector h of the magnetic field vector as:

J = ∇× h, h = ∇× (V × H). (20)

Substituting Equation (1) into Equation (20), and subsequently into Equation (19), yields
the components of the Lorentz force per unit volume as follows:
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Lm f
x =

τH2
θ

a3

[
a3ψΦx,xx + aψΦx,θθ − azW0,xθθ − a3zW0,xxx + a3Ux,xx + aUx,θθ

]
+

τHxHθ

a3

[
−aψΦθ,θθ − a3ψΦθ,xx + zW0,θθθ + a2zW0,xxθ − (a + z)

(
Uθ,θθ + a2Uθ,xx

)]
,

Lm f
θ =

τHxHθ

a3

[
−aψΦx,θθ − a3ψΦx,xx + azW0,xθθ + a3zW0,xxx − a3Ux,xx − aUx,θθ

]
+

τH2
x

a3

[
aψΦθ,θθ + a3ψΦθ,xx − zW0,θθθ − a2zW0,xxθ + (a + z)

(
Uθ,θθ + a2Uθ,xx

)]
,

Lm f
z =− τHxHθ

a2

[
aψ′Φx,θ + a2ψ′Φθ,x − 4aW0,xθ + aUθ,x

]
+

τH2
x

a2

[
aψ′Φθ,θ − W0,θθ + a2W0,xx + Uθ,θ

]
+

τH2
θ

a2

[
a2ψ′Φx,x + W0,θθ − a2W0,xx

]
.

(21)

3.2. Force Due to the Magnetic Fluid

The shell is assumed to transport a magnetic fluid flowing axisymmetrically. It should
be noted that the current model assumes incompressible and axisymmetric flow to simplify
the fluid-structure interaction analysis [25,27–30,34]. To evaluate the influence of the
magnetic fluid flow on the present structure, the Navier–Stokes equation is applied, as
outlined in [47]:

ρ f DtU = −∇P̄ + η∇2U + L̄m f , (22)

where ρ f is the density of the fluid, Dt = d/dt, U (Ux, 0,Ur) is the fluid velocity, P̄ denotes
the fluid pressure, η is the viscosity of the fluid, and L̄m f is the Lorentz force caused by the
applied magnetic field H to the fluid, which can be expressed as [48]:

L̄m f = κ(U × H)× H, (23)

in which κ represents the magnetic fluid’s electrical conductivity. In the radial direction r,
the Navier–Stokes Equation (22) can be expressed as follows:

ρ f DtUr = −P̄,r + η

(
Ur,rr +

1
a2 Ur,θθ + Ur,xx −

Ur

a2

)
− κH2Ur, (24)

where Ur is defined as follows [49] (note that r is measured from the shell’s center):

Ur = DtW0 = W0,t + ŪxW0,x, (25)

where the mean flow velocity in the x-axis direction with slip boundary conditions is
indicated by Ūx. When Equation (25) is substituted into Equation (24) and the microflow
model [50] is taken into account, the force per unit area is expressed as follows:

F f luid =−A f ρ f

(
W0,tt + 2ξUavW0,xt + ξ2U 2

avW0,xx

)
+A f η

[
W0,xxt +

1
a2 W0,θθt −

1
a2 W0,t

+ ξUav

(
W0,xxx +

1
a2 W0,θθx −

1
a2 W0,x

)]
−A f κH2(W0,t + ξUavW0,x),

(26)
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where A and Uav indicate the fluid’s cross-section area and the average flow velocity under
non-slip conditions; and ξ is the velocity’s correction factor, which is provided in terms of
the Knudsen number Γn as [50,51]:

ξ =
Ūx

Uav
=

1 +
128

3π2
(

1 − 4
s

) [tan−1(4Γ0.4
n )]Γn


[

1 + 4
(

2 − ς

ς

)(
Γn

1 + Γn

)]
, (27)

where 0 < Γn < 0.01 for the continuum flow regime, ς = 0.7 indicates the tangential
moment accommodation and s = −1 for the second-order term of slip conditions.

3.3. Hamilton’s Principle

The motion equations are established from Hamilton’s principle, which depends on
the strain energy ΛS, kinetic energy ΛK, the work performed by the Lorentz force ΛL, and
the work performed by the external forces ΛF. This principle is given as:

∫ t

0
(δΛS + δΛK − δΛL − ΛF)dt = 0, (28)

where
δΛK =

∫
v

V,tt · δVρ(z)dv,

δΛL =
∫

v
Lm f · δVdv,

δΛF =
∫

A

(
RKerr − PxW0,xx −F f luid

)
δW0dA,

(29)

where Px is the axial compressive load and RKerr refers to the distributed reaction of the
Kerr foundation model, given as [52]:

RKerr = KulW0 − Kus

(
W0,xx +

1
a2 W0,θθ

)
,

Kul =
KuKl

Ku + Kl
, Kus =

KuKs

Ku + Kl
.

(30)

Inserting Equations (12) and (29) into Equation (28) with the help of Equations (1), (5),
(11), (13), (21), and (26) leads to the motion equations as:

Nx,x +
1
a

Nxθ,θ −
1

2a2 Bθ,θ +
1

2a2 Bθz,θθ +
1
2a

Bxz,xθ − τHxHθ H
(

Uθ,xx +
1
a2 Uθ,θθ

)
+ τH2

θ H
(

Ux,xx +
1
a2 Ux,θθ

)
= J11Ux,tt − J12W0,xtt + J13Φx,tt,

(31)

Nxθ,x +
1
a

Nθ,θ +
1
a

Mxθ,x +
1
a2 Mθ,θ +

Mθz
a2 − 1

2a
Bx,x +

1
2a

Bθ,x +
1

2a2 Cθ,x

+
1
2a

Bz,x −
1
2a

Bθz,xθ −
1

2a2 Cθz,xθ −
1
2

Bxz,xx −
1
2a

Cxz,xx −
1

2a2 Bxθ,θ

+
τHxHθ

a3

[
−ab13Φx,θθ − a3b13Φx,xx + ab12W0,xθθ + a3b12W0,xxx − a3b11Ux,xx

− ab11Ux,θθ

]
+

τH2
x

a3

[
ab13Φθ,θθ + a3b13Φθ,xx − b12W0,θθθ − a2b12W0,xxθ

+ (ab11 + b12)
(

Uθ,θθ + a2b11Uθ,xx

)]
= J21Uθ,tt −

1
a

J22W0,θtt + J23Φθ,tt,

(32)



Mathematics 2025, 13, 1518 11 of 27

Mx,xx +
2
a

Mxθ,xθ +
1
a2 Mθ,θθ −

Nθ

a
+ (NxW0,x),x +

1
a2 (NθW0,θ),θ

+
1
a
(NxθW0,x),θ +

1
a
(NxθW0,θ),x +

1
a2 Mθz,θ −

1
a

Bx,xθ +
1
a

Bθ,xθ

+
1
a

Bθz,x + Bxθ,xx −
1
a2 Bxθ,θθ

− τHxHθ

a2

[
ab24Φx,θ + a2b24Φθ,x − 4aHW0,xθ + aHUθ,x

]
+

τH2
x

a2

[
ab24Φθ,θ − HW0,θθ + a2HW0,xx + HUθ,θ

]
+

τH2
θ

a2

[
a2b24Φx,x + HW0,θθ − a2HW0,xx

]
+

τH2
θ

a3

[
a3b23Φx,xxx + ab23Φx,xθθ − ab22W0,xxθθ − a3b22W0,xxxx

]
+

τHxHθ

a3

[
− ab23Φθ,xθθ − a3b23Φθ,xxx + b22W0,xθθθ + a2b22W0,xxxθ

− b22

(
Uθ,xθθ + a2Uθ,xxx

)]
+

τHxHθ

a4

[
− ab23Φx,θθθ − a3b23Φx,xxθ

+ ab22W0,xθθθ + a3b22W0,xxxθ

]
+

τH2
x

a4

[
ab23Φθ,θθθ + a3b23Φθ,xxθ

− b22W0,θθθθ − a2b22W0,xxθθ + b22

(
Uθ,θθθ + a2Uθ,xxθ

)]
−F f luid

− PxW0,xx +
KuKl

Ku + Kl
W0 −

KuKs

Ku + Kl

(
W0,xx +

1
a2 W0,θθ

)
= J11W0,tt − J31W0,xxtt − J31

1
a2 W0,θθtt + J32Φx,xtt + J32

1
a

Φθ,θtt

+ J12Ux,xtt + J22
1
a

Uθ,θtt,

(33)

Sx,x +
1
a

Sxθ,θ − Qxz −
1

2a2 Lθ,θ +
1
2a

Fθ,θ −
1
2a

Fz,θ +
1

2a2 Lθz,θθ +
1
2a

Fθz −
1
2

Jθz

+
1
2a

Lxz,xθ +
1
2

Fxθ,x +
τH2

θ

a3

[
a3b33Φx,xx + ab33Φx,θθ − ab23W0,xθθ − a3b23W0,xxx

]
+

τHxHθ

a3

[
−ab33Φθ,θθ − a3b33Φθ,xx + b23W0,θθθ + a2b23W0,xxθ − b23

(
Uθ,θθ + a2Uθ,xx

)]
= J13Ux,tt − J32W0,xtt + J41Φx,tt,

(34)

Sxθ,x +
1
a

Sθ,θ +
1
a

Sθz − Qθz −
1
2

Fx,x +
1
2a

Lθ,x +
1
2

Fz,x −
1
2a

Lθz,xθ +
1
2

Jxz −
1
2

Lxz,xx

− 1
2a

Fxθ,θ +
τHxHθ

a3

[
−ab33Φx,θθ − a3b33Φx,xx + ab23W0,xθθ + a3b23W0,xxx

]
+

τH2
x

a3

[
ab33Φθ,θθ + a3b33Φθ,xx − b23W0,θθθ − a2b23W0,xxθ + b23

(
Uθ,θθ + a2Uθ,xx

)]
= J23Uθ,tt −

1
a

J32W0,θtt + J41Φθ,tt,

(35)

where

Nn =
∫ H/2

−H/2
σndz, n = x, θ, xθ,

{Mn, Sn} =
∫ H/2

−H/2
{z, ψ}σndz, n = x, θ, xθ, θz,

Qn =
∫ H/2

−H/2
ψ′σndz, n = xz, θz,

(36)
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Bn =
∫ H/2

−H/2
mndz, n = x, θ, z, θz, xz, xθ,

Cn =
∫ H/2

−H/2
zmndz, n = θ, θz, xz,

Ln =
∫ H/2

−H/2
ψmndz, n = θ, θz, xz,

Fn =
∫ H/2

−H/2
ψ′mndz, n = x, θ, z, θz, xθ,

In =
∫ H/2

−H/2
ψ′′mndz, n = θz, xz,

(37)

{J11, J12, J13} =
∫ H/2

−H/2
{1, z, ψ}ρdz,

{J21, J22, J23} =
∫ H/2

−H/2

(
1 +

z
a

){(
1 +

z
a

)
, z, ψ

}
ρdz,

{J31, J32, J41} =
∫ H/2

−H/2
{z2, zψ, ψ2}ρdz,

{b11, b12, b13} =
∫ H/2

−H/2

(
1 +

z
a

)
{1, z, ψ}dz,

{b22, b23, b24, b33} =
∫ H/2

−H/2
{z2, zψ, ψ′, ψ2}dz.

(38)

Inserting Equation (13) into Equations (36) and (37) with the aid of Equations (3) and (9)
leads to



Nx

Mx

Sx

Nθ

Mθ

Sθ


=



β
(1)
11 β

(z)
11 β

(ψ)
11 β

(1)
12 β

(z)
12 β

(ψ)
12

β
(z)
11 β

(z2)
11 β

(zψ)
11 β

(z)
12 β

(z2)
12 β

(zψ)
12

β
(ψ)
11 β

(zψ)
11 β

(ψ2)
11 β

(ψ)
12 β

(zψ)
12 β

(ψ2)
12

β
(1)
12 β

(z)
12 β

(ψ)
12 β

(1)
22 β

(z)
22 β

(ψ)
22

β
(z)
12 β

(z2)
12 β

(zψ)
12 β

(z)
22 β

(z2)
22 β

(zψ)
22

β
(ψ)
12 β

(zψ)
12 β

(ψ2)
12 β

(ψ)
22 β

(zψ)
22 β

(ψ2)
22





ε
(0)
x

ε
(1)
x

ε
(2)
x

ε
(0)
θ

ε
(1)
θ

ε
(2)
θ



, (39)


Nxθ

Mxθ

Sxθ

 =


β
(1)
66 β

(z)
66 β

(ψ)
66

β
(z)
66 β

(z2)
66 β

(zψ)
66

β
(ψ)
66 β

(zψ)
66 β

(ψ2)
66




ε
(0)
xθ

ε
(1)
xθ

ε
(2)
xθ

,


Mθz

Sθz

Qθz

 =


β
(z2)
44 β

(zψ)
44 β

(zψ′)
44

β
(zψ)
44 β

(ψ2)
44 β

(ψψ′)
44

β
(zψ′)
44 β

(ψψ′)
44 β

(ψ′2)
44




ε
(1)
θz

ε
(2)
θz

ε
(3)
θz

, Qxz = β
(ψ′2)
44 ε

(3)
xz ,

(40)
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and  Bx

Fx

 =

 χ11 χ14

χ14 χ44

 Θ(0)
x

Θ(3)
x

,



Bθ

Cθ

Lθ

Fθ


=


χ11 χ12 χ13 χ14

χ12 χ22 χ23 χ24

χ13 χ23 χ33 χ34

χ14 χ24 χ34 χ44





Θ(0)
θ

Θ(1)
θ

Θ(2)
θ

Θ(3)
θ


,

 Bz

Fz

 =

 χ11 χ14

χ14 χ44

 Θ(0)
z

Θ(3)
z

,



Bθz

Cθz

Lθz

Fθz

Iθz


=



χ11 χ12 χ13 χ14 χ15

χ12 χ22 χ23 χ24 χ25

χ13 χ23 χ33 χ34 χ35

χ14 χ24 χ34 χ44 χ45

χ15 χ25 χ35 χ45 χ55





Θ(0)
θz

Θ(1)
θz

Θ(2)
θz

Θ(3)
θz

Θ(4)
θz


,



Bxz

Cxz

Lxz

Ixz


=


χ11 χ12 χ13 χ15

χ12 χ22 χ23 χ25

χ13 χ23 χ33 χ35

χ15 χ25 χ35 χ55





Θ(0)
xz

Θ(1)
xz

Θ(2)
xz

Θ(4)
xz


,

 Bxθ

Fxθ

 =

 χ11 χ14

χ14 χ44

 Θ(0)
xθ

Θ(3)
xθ

,

(41)

where

β
(n)
ij =

∫ H/2

−H/2
nSijdz, i, j = 1, 2, 4, 6, n = 1, z, ψ, z2, zψ, ψ2, zψ′, ψψ′, ψ′2,

χ11 χ12 χ13 χ14 χ15

χ12 χ22 χ23 χ24 χ25

χ13 χ23 χ33 χ34 χ35

χ14 χ24 χ34 χ44 χ45

χ15 χ25 χ35 χ45 χ55


=

∫ H/2

−H/2
2µ2G



1 z ψ ψ′ ψ′′

z2 zψ zψ′ zψ′′

ψ2 ψψ′ ψψ′′

ψ′2 ψ′ψ′′

symm. ψ′′2


dz.

(42)

4. Solution Procedure
The nonlinear governing motion Equations (31)–(35) of the fluid-conveying FG-CNTs

reinforced cylindrical microshells are solved under simply-supported boundary conditions.
Therefore, the displacement components can be given as:

{Ux(x, θ, t), Φx(x, θ, t)} = {ux, ϕx} cos(ζx) cos(yθ) exp (Iωt),

{Uθ(x, θ, t), Φθ(x, θ, t)} = {uθ , ϕθ} sin(ζx) sin(yθ) exp (Iωt),

W0(x, θ, t) = w0 sin(ζx) cos(yθ) exp (Iωt),

(43)
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where the functions ux, uθ , ϕx, ϕθ , and w0 are the amplitudes of the displacements, ζ = π/L,
y is the circumferential wave number, I =

√
−1, and ω is the eigenfrequency.

Incorporating Equation (43) into Equations (31)–(35) with the help of Equations (39)–(41)
leads to the nonlinear algebraic equations as:

R11ux + R12uθ + R13w0 + R14ϕx + R15ϕθ + R16w2
0 = 0,

R21ux + R22uθ + R23w0 + R24ϕx + R25ϕθ + R26w2
0 = 0,

R31ux + R32uθ + R33w0 + R34ϕx + R35ϕθ + R36w2
0

+ R37uxw0 + R38uθw0 + R39Φxw0 + R310Φθw0 + R311w3
0 = 0,

R41ux + R42uθ + R43w0 + R44ϕx + R45ϕθ + R46w2
0 = 0,

R51ux + R52uθ + R53w0 + R54ϕx + R55ϕθ + R56w2
0 = 0,

(44)

where the coefficients Rij are defined in Appendix A. By eliminating ux, uθ , ϕx, and ϕθ from
Equation (44), one obtains a single nonlinear governing motion equation as follows:

P1w0 + P2w2
0 + P3w3

0 = 0, (45)

where P1, P2, and P3 are very complicated coefficients, so it is not possible to provide
them here. By solving the nonlinear Equation (45), the buckling load can be obtained as a
function of the transverse amplitude or maximum deflection w0 of the FG-CNT reinforced
cylindrical microshells.

5. Numerical Results
Geometrically nonlinear buckling of fluid-conveying FG-CNTs reinforced cylindrical

microshells is analyzed in the current section. The following nondimensional parameters
are used to explain and discuss the obtained numerical results:

P̄x =
103H
Em Re{Px}, Dm =

H3Em

12[1 − (νm)2]
, M f =

τH3L3H2

Dm
, κ =

τ

H
, µ̄ =

µ

H
,

ū = UavL3

√
A f ρ f

Dm
, A f = π(a − H/2)2.

A polymer matrix (PmPV) enhanced with CNTs makes up the current composite cylin-
drical microshell. At room temperature, the material properties of the CNTs are [4]:
E cnt

x = 5.6466 × 1012Pa, E cnt
θ = 7.080 × 1012Pa, Gcnt

xθ = 1.9445 × 1012Pa, νcnt
xθ = 0.175. In con-

trast, the PmPV’s material characteristics are as follows [53]: νm = 0.34, Em = 2.1 × 109Pa,
ρm = 1.15g/cm3. According to Zhu et al. [4], the efficiency parameters αi (i = 1, 2, 3)
depend on the volume fraction of CNTs as shown in Table 1. Property values of the fluid
flowing through the shell are η = 0.001Pa.s, ρ f = 1g/cm3.

Table 1. The efficiency parameters αi (i = 1, 2, 3) and the volume fraction V̂cnt of the CNTs [4].

V̂ cnt α1 α2 α3

0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.149 1.381 1.381

The present basic formulations and theory are validated by comparing the dimen-
sionless minimum frequency ω∗ of cross-ply cylindrical shells with that obtained by
Khdeir et al. [54] using the classical shell theory (CST), first-order shell theory (FST), and
higher-order shell theory (HST), as shown in Table 2. Note that the material properties
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used in Table 2 have been provided in Ref. [54]. It is clear that the obtained results are
in good agreement with the published ones. Therefore, the formulas provided in the
preceding sections are reliable for analyzing the post-buckling behavior of composite
cylindrical microshells.

Table 2. Comparison of dimensonless minimum frequency (ω∗ = ωL2

100H

√
ρ
E2
) of cross-ply cylindrical

shells (P̄x = 0, E1 = 40E2, Gxθ = Gxz = 0.6E2, Gθz = 0.5E2, νxθ = 0.25, a/H = 5).

Khdeir et al. [54] Present

Lamination L/a HST FST CST

0◦/90◦ 1 0.0804 0.0791 0.0866 0.0918
2 0.1566 0.1552 0.1630 0.1692

0◦/90◦/0◦ 1 0.1097 0.1004 0.1479 0.1078
2 0.1717 0.1779 0.2073 0.1960

0◦/90◦ . . . 1 0.0984 0.0982 0.1235 0.1024
10 layers 2 0.1900 0.1899 0.1958 0.1856

Figure 4 depicts the post-buckling behavior of fluid-conveying UD-CNTs reinforced
cylindrical microshells for different values of the material length scale parameter µ̄ versus
the maximum deflection w0, magnetic field parameter M f , and time t. It is noted that
the post-buckling path comes down with increases in the deflection and the material
parameters. This means that the microshell can no longer carry more loads as the deflection
and the material parameter increase because the shells become weaker. In addition, the
post-buckling load increases significantly with the magnetic field parameter, confirming
that the applied magnetic field enhances structural stiffness. When the magnetic field
is neglected (M f = 0), the material parameter may have no effect on the post-buckling
behavior. Furthermore, as the magnetic parameter (M f ) increases, the influence of the
material parameter becomes more pronounced. Figure 4c shows the transient variation
of the post-buckling path over time, revealing a periodic response. The amplitude of the
oscillations may be the same for all values of the material parameter.

In Figure 5, influences of the magnetic field parameter M f on the post-buckling path
for the UD-CNTs reinforced cylindrical microshells conveying fluid with the variation
of the maximum deflection w0, length-to-radius ratio L/a, and time t are investigated.
It is evident that the post-buckling resistance significantly increases with the increase in
the magnetic field parameter M f , because the presence of the magnetic field enhances
the strength of the shell. Moreover, the post-buckling curves decrease gradually as the
length-to-radius ratio L/a increases, because longer shells become weaker and thereby
cannot carry more loads. The reinforcing effect of the magnetic field remains evident
even for slender geometries. Figure 5c presents the time response of P̄x, indicating that the
magnetic field has no effect on the amplitude of the oscillations.

Figure 6 explains the effects of the mean flow velocity ū on the post-buckling path for
the UD-CNTs reinforced cylindrical microshells conveying fluid with the variation of the
maximum deflection w0, radius-to-thickness ratio a/H, and time t. It is noted that higher
ū values correspond to significantly greater load-carrying capacity, confirming that fluid
flow has a stabilizing effect on the post-buckled shell. It is observed that the post-buckling
curves for thin shells become closer to each other, indicating that the mean flow velocity
ū loses its influence on the post-buckling behavior of the thin shells. Figure 6c presents
the time-dependent response of the post-buckling path, revealing periodic oscillations
whose baseline increases with ū. This indicates that the fluid flow not only improves static
strength but also dynamically supports the structure under time-varying conditions.

In Figure 7, the post-buckling behavior of microfluid-conveying UD-CNTs cylindrical
microshells with the variation of the maximum deflection w0 and length-to-radius ratio
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L/a for different values of the Knudsen number Γ is depicted. The increase in the Knudsen
number enhances the effects of the fluid on the shell; therefore, the greater the Knudsen
number, the higher the post-buckling strength. Furthermore, the post-buckling path
decreases with increasing the length-to-radius ratio L/a. In addition, the Knudsen number
may lose its influence on longer shells.

Effects of the elastic foundation parameters Kl , Ks, and Ku on the post-buckling path
for the UD-CNTs reinforced cylindrical shells with or without magnetic field are presented
in Figure 8. The surrounding foundation represents a normal pressure on the shell’s outer
surface. Consequently, a greater elastic foundation stiffness leads to a decrease in the shell
stiffness. Therefore, the post-buckling curves come down with increases in the elastic
foundation parameters. It is also noted that the presence of the magnetic field nullifies the
effect of Kerr foundations on the post-buckling strength.

Figure 9 displays the post-buckling behavior of microfluid-conveying cylindrical
microshells versus radius-to-thickness ratio a/H for different values of the CNT volume
fraction V̂cnt and various CNT distributions. In all patterns, the increment in the radius-to-
thickness a/H results in a notable decrease in the post-buckling load, indicating that more
slender shells exhibit lower post-buckling strength. Since CNTs enhance the stiffness of
the composite shell, a higher CNT volume fraction results in greater post-buckling strength.
The UD-CNT type is capable of carrying more loads compared to other types, confirming
that uniform dispersion of CNTs is more effective in enhancing post-buckling resistance. In
contrast, FGO (Figure 9e) demonstrates the lowest post-buckling performance.
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Figure 4. Post-buckling behavior of microfluid-conveying UD-CNTs cylindrical microshells with
the variation of (a) the maximum deflection w0, (b) magnetic field parameter M f , and (c) time t for
different values of the material length scale parameter µ̄ (t = 1 s).
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For more explanation of the present analysis, the nonlinear maximum deflection time
response of microfluid-conveying UD-CNTs cylindrical microshells for various values of
the axial compressive load P̄x, the magnetic field parameter M f , the mean flow velocity ū,
and the material length scale parameter µ̄ is investigated in Figure 10. It is found that the
nonlinear deflection increases as the compressive load and the material parameters increase,
because the shell becomes weaker. The opposite occurs when increasing the magnetic
parameter and the mean flow velocity. As M f increases, the maximum deflection w0

decreases. This suggests that a stronger magnetic field enhances system stability. Further,
increasing the mean flow velocity ū reduces the maximum deflection. This is due to the
normal pressure exerted by the internal fluid on the inner wall of the shell, which provides
a stabilizing effect and increases the shell’s resistance to deformation.
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Figure 5. Post-buckling behavior of microfluid-conveying UD-CNTs cylindrical microshells with the
variation of (a) the maximum deflection w0, (b) length-to-radius ratio L/a, and (c) time t for different
values of the magnetic field parameter M f (t = 1 s, a/H = 15).
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Figure 6. Post-buckling behavior of microfluid-conveying UD-CNTs cylindrical microshells with
the variation of (a) the maximum deflection w0, (b) radius-to-thickness ratio a/H, and (c) time t for
different values of the mean flow velocity ū (t = 1 s, a/H = 15).
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Figure 7. Post-buckling behavior of microfluid-conveying UD-CNTs cylindrical microshells with the
variation of (a) the maximum deflection w0 and (b) length-to-radius ratio L/a for different values of
the Knudsen number Γ (a/H = 10) (t = 1 s).
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Figure 8. Post-buckling behavior of UD-CNTs cylindrical shells with the variation of the radius-to-
thickness ratio a/H for different values of the Kerr foundation parameters Kl , Ks, and Ku (a) without
magnetic field (M f = 0) and (b) with magnetic field (M f = 1) (µ̄ = ū = 0, w0 = 0.00005).
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Figure 9. Cont.
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Figure 9. Post-buckling behavior of microfluid-conveying cylindrical microshells with various CNT
distributions (a) UD, (b) FGV, (c) FGA, (d) FGX, and (e) FGO for different values of the CNT volume
fraction V̂cnt (L/a = 20, M f = 0, w0 = 0.4).
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Figure 10. Nonlinear time response of the maximum deflection of microfluid-conveying UD-CNT
cylindrical microshells for different values of (a) the axial compressive load P̄x, (b) the magnetic field
parameter M f , (c) the mean flow velocity ū, and (d) the material length scale parameter µ̄.
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6. Conclusions
For the first time, the dynamic post-buckling behavior of microfluid-conveying FG-

CNT-reinforced cylindrical microshells, surrounded by three-parameter Kerr foundations
and subjected to an axial compressive load and a 2D magnetic field, is investigated. CNTs
are distributed across the shell thickness according to five distribution types. Microscale
effects on the shells and the fluid are analyzed by considering the modified couple stress
theory and including the slip boundary condition, respectively. The governing motion
equations are modeled based on the sinusoidal shear deformation theory and Hamilton’s
principle, containing Lorentz magnetic force and fluid-structure interaction. The Navier-
Stokes equation is employed to model the external force between the magnetic fluid and the
microshell. The motion equations are solved by applying the Galerkin method to draw the
post-buckling curves. The obtained results are validated against published literature, show-
ing good agreement. Additionally, several numerical examples are introduced to explain
the influences of the magnetic field parameter, mean flow velocity, material length scale
parameter, length-to-radius ratio, radius-to-thickness ratio, Knudsen number, Kerr founda-
tion parameters, and CNT volume fraction on the dynamic post-buckling behavior of the
microfluid-conveying FG-CNT-reinforced cylindrical microshells. It can be concluded that:

• The strength of the microshells may be enhanced by increasing the mean flow velocity,
magnetic field parameter, Knudsen number, and CNT volume fraction, leading to an
increment in the post-buckling paths.

• In contrast, an increase in the radius-to-thickness ratio, length-to-radius ratio, deflec-
tion, material length scale parameter, and Kerr foundation parameters results in a
reduction in post-buckling strength.

• Moreover, the nonlinear dynamic deflection increases as the compressive load and
material parameter increase, while a severe reduction in the deflection occurs by
increasing the magnetic parameter and mean flow velocity.

• In the absence of the magnetic field, the material length scale parameter and Kerr
foundation have no influence on the post-buckling behavior.

• The theoretical insights developed here have potential applications in the design of
microscale systems, including MEMS/NEMS devices, flexible microfluidic pipelines,
and biomedical microtubes, where understanding the combined effects of mechanical,
fluidic, and magnetic loading is critical for optimizing performance and ensuring
structural stability.
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c14 =
∫ 2π

0

∫ L

0
cos2(ζx) sin(ζx) cos(yθ) sin2(yθ)dxdθ,
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c15 =
∫ 2π

0

∫ L

0
cos2(ζx) sin(ζx) cos3(yθ)dxdθ,

c21 =
∫ 2π

0

∫ L

0
sin(ζx) cos(yθ) sin2(yθ)dxdθ,

c22 =
∫ 2π

0

∫ L

0
sin2(ζx) sin2(yθ)dxdθ,

c23 =
∫ 2π

0

∫ L

0
cos2(ζx) sin(ζx) cos(yθ) sin2(yθ)dxdθ,

c24 =
∫ 2π

0

∫ L

0
sin3(ζx) cos(yθ) sin2(yθ)dxdθ,

c31 =
∫ 2π

0

∫ L

0
sin2(ζx) cos2(yθ)dxdθ,

c32 =
∫ 2π

0

∫ L

0
cos(ζx) sin(ζx) cos(yθ) sin(yθ)dxdθ,

c33 =
∫ 2π

0

∫ L

0
sin3(ζx) cos(yθ)dxdθ,

c34 =
∫ 2π

0

∫ L

0
cos2(ζx) sin(ζx) cos(yθ)dxdθ,

c35 =
∫ 2π

0

∫ L

0
cos2(ζx) sin(ζx) cos3(yθ)dxdθ,

c36 =
∫ 2π

0

∫ L

0
sin3(ζx) cos3(yθ)dxdθ,

c37 =
∫ 2π

0

∫ L

0
sin4(ζx) cos2(yθ) sin2(yθ)dxdθ,

c38 =
∫ 2π

0

∫ L

0
sin2(ζx) cos2(yθ) sin2(yθ)dxdθ,

c39 =
∫ 2π

0

∫ L

0
cos2(ζx) sin2(ζx) cos4(yθ)dxdθ,

c41 =
∫ 2π

0

∫ L

0
cos(ζx) sin(ζx) cos2(yθ)dxdθ,

c42 =
∫ 2π

0

∫ L

0
sin(ζx) cos3(yθ)dxdθ,

c43 =
∫ 2π

0

∫ L

0
sin(ζx) cos(yθ) sin2(yθ)dxdθ,

c44 =
∫ 2π

0

∫ L

0
cos2(ζx) sin2(ζx) cos2(yθ)dxdθ,

(A2)
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