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Abstract: Due to access to the source data during the transfer phase, conventional domain
adaptation works have recently raised safety and privacy concerns. More research attention
thus shifts to a more practical setting known as source-data-free domain adaptation (SFDA).
The new challenge is how to obtain reliable semantic supervision in the absence of source
domain training data and the labels on the target domain. To that end, in this work, we
introduce a novel Gradual Geometry-Guided Knowledge Distillation (G2KD) approach for
SFDA. Specifically, to address the lack of supervision, we used local geometry of data to
construct a more credible probability distribution over the potential categories, termed
geometry-guided knowledge. Then, knowledge distillation was adopted to integrate this
extra information for boosting the adaptation. More specifically, first, we constructed a
neighborhood geometry for any target data using a similarity comparison on the whole
target dataset. Second, based on pre-obtained semantic estimation by clustering, we mined
soft semantic representations expressing the geometry-guided knowledge by semantic
fusion. Third, using the soften labels, we performed knowledge distillation regulated
by the new objective. Considering the unsupervised setting of SFDA, in addition to the
distillation loss and student loss, we introduced a mixed entropy regulator that minimized
the entropy of individual data as well as maximized the mutual entropy with augmentation
data to utilize neighbor relation. Our contribution is that, through local geometry discovery
with semantic representation and self-knowledge distillation, the semantic information
hidden in the local structures is transformed to effective semantic self-supervision. Also,
our knowledge distillation works in a gradual way that is helpful to capture the dynamic
variations in the local geometry, mitigating the previous guidance degradation and devia-
tion at the same time. Extensive experiments on five challenging benchmarks confirmed
the state-of-the-art performance of our method.

Keywords: domain adaptation; source-data-free; geometry-guided; gradual knowledge
distillation; object recognition

MSC: 68T45

1. Introduction
Unsupervised domain adaptation (UDA) performs an adaptive classification from the

source domain to a different but related target domain. In this setting, the labeled source
data and unlabeled target data are both available during the whole transfer phase. So,
we can explicitly align the two domains by well-established domain alignment, such as
adversarial learning [1] and metric learning [2].
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Due to the recent increasing demands of information security and privacy protection,
accessing the source data becomes more acute. As a result, in many real scenarios, adapting
a model (e.g., the source model) pre-trained on the source data to the unlabeled target
domain becomes a natural requirement and solution. For example, in medical image
diagnosis applications, some works try to transfer the U-Net [3] or V-Net [4], e.g., transfer
the source model, pre-trained on images containing lung cancer, to the task of chest organ
segmentation for surgery planning. In these cases, during the transfer process, these lung
cancer images are unavailable for access owing to patient information protection, whilst
the architecture and parameters of the source model are both accessible.

In machine learning, the necessity of using the source data in UDA is also ques-
tioned [5–7]. With this background, the source-data-free domain adaptation (SFDA) prob-
lem, with access to only a source model (pre-trained on the source domain) and the target
domain during adaptation, has attracted an increasing amount of research attention [8–11].

The key to solving SFDA is to mine adequate and accurate semantic supervision to
relieve the lack of semantic supervision caused by both the absences of the source domain
and labels on the target domain, thus converting SFDA to a supervised scenario despite
the mined supervision being noisy. Compared with the early feature-based work such
as subspace alignment [6], recent end-to-end methods have shown an advantage on this
topic. According to the type difference of the mined semantic supervision, we divide these
end-to-end approaches into two groups. The first group [9,12] faked a source domain as
implicit supervision using adversarial learning, where the pre-trained source model was
used as a domain classifier. Although the faked data partly bypass the unavailability of
the source domain, these low-quality generated data cannot provide sufficient credible
semantic information like real source data. The faking operation will additionally lead to the
negative transfer problem. Therefore, many works tend to mine the semantic supervision
from the target domain, as conducted in the second group [13–15]. This kind of method
constructed the supervision, such as pseudo-labels and augmentation data, to facilitate
entropy regularization. Regarding geometry, these methods essentially perform clustering
in the feature space under the regulation of semantic supervision mined from the target
domain. However, the supervision mining in these methods only focuses on individual
data; the implicit knowledge hidden in the local geometry of target data has not been
sufficiently mined and utilized.

Most recently, knowledge distillation was applied regarding SFDA [16–18], and the
adaptation was modeled as a knowledge transfer from the pre-trained source model
(teacher model). These methods provided a natural solution for SFDA that is more in line
with our cognitive experience. However, the existing methods did not carefully design the
knowledge distillation skeleton to fit SFDA. First, the fixed source model is only in charge of
predicting the semantic labels (Figure 1a), as conducted in [16,17]. The semantic supervision
generated in this static way is also frozen during the whole transfer phase such that the
power of the semantic guidance will gradually weaken, namely the semantic guidance
degradation. Second, a dynamic tracking model, e.g., momentum network [18], was taken
as the teacher model for conforming to the composition of a classic knowledge distillation
framework (Figure 1b). Although this scheme solves the first problem above, the teacher
model cannot well represent the semantic information to be transferred, namely semantic
deviation, due to the semantic noise caused by the inherent discrepancy between the teacher
model and the student model. Third, under the knowledge distillation framework, how to
achieve better SFDA by exploiting the local geometry of target data is still an open problem.

Aiming at the limitations mentioned above, we develop a novel knowledge-distillation-
based method for SFDA named Gradual Geometry-Guided Knowledge Distillation (G2KD). At
the global level, G2KD slices the whole adaptation into a sequence of (N) stages/epochs,
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as shown in Figure 1c. There are two reasons for adopting this gradual strategy. First, it
can resist the aforementioned semantic guidance degradation. Second, due to the model
updating after each epoch, the data features change correspondingly, leading to variations
in the local structure. Therefore, we need to construct the local structure for each epoch
to realize knowledge distillation by this gradual strategy. At the epoch-level, inspired by
the self-distillation methods [19,20], G2KD adopts the self-guided strategy to minimize the
aforementioned semantic deviation. Specifically, the student model Mm shares the same
structure with the teacher model Mm−1 and is initiated by Mm−1 at the beginning of the
epoch. After that, for utilizing the local geometry, we adopt geometry-guided knowledge
distillation (G2KD) to train Mm. As shown in the right side of Figure 1c, G2KD works
in a “refining–distilling” manner. Firstly, G2KD mines the geometry-guided knowledge
by building local geometry of the neighborhood for any target data. Then, semantic
fusion converts it to soft semantic supervision based on semantic estimation using k-means
clustering and a teacher model’s output (refining). Secondly, G2KD performs knowledge
distillation. In particular, we introduce an entropy loss with neighbor context for meeting
the unsupervised requirement of SFDA (distilling).
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Figure 1. Comparing different knowledge-distillation-based SFDA frameworks. (a) Using a fixed
source model as the teacher with the limitation that the semantic guidance will gradually weaken (i.e.,
guidance degradation) [16,17]. (b) Using a dynamical tracking model as the teacher [18]. The semantic
noise would progressively amplify by the parameter updating strategy for tracking, hampering
the distillation effect. (c) Our G2KD overcoming both limitations: At the global level, it trains N
intermediate models to snapshot the semantics variation for guidance degradation mitigation in an
epoch-wise manner. Second, at the local level, we adopt a self-distillation strategy (using the previous
epoch model as the teacher) for providing more credible guidance.

Essentially, G2KD provides an implicit domain aligning approach without reliance
on the source domain training data, as assumed in UDA, but only the need to access
the pre-trained source model. To be concrete, the epoch-wise adaptation at the global
level converts the large domain shift reduction, between the source domain (implicitly
represented by the source model) and the target domain, into several successive easy
tasks with a small shift. Furthermore, at the local (per-epoch) level, by integrating the
local structure information based on the most discriminative up-to-date features (Mm−1),
the obtained geometry-guided knowledge is more credible/accurate than the original
outputs of Mm−1. Empowered by the guidance of them, the performance of Mm can be
enhanced further.

Our contributions cover the following three areas.
(1) We develop a novel gradual knowledge distillation framework G2KD for SFDA,

exploiting the geometry-guided knowledge, i.e., the self-supervision dynamically mined
from the target data’s local geometry, and a new entropy-regularized knowledge distillation
method, G2KD. Unlike the existing distillation frameworks, it mitigates the problems of
guidance degradation and guidance deviation.

(2) We propose a generation method for geometry-guided knowledge.
The data neighborhood, discovered by similarity comparison, is taken as the local

geometry in our approach. Through semantic fusion based on semantic evaluation pre-
obtained by both clustering and model outputs, the knowledge is generated.
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(3) We carry out extensive experiments on four challenging datasets. The experiments
show that our method achieves state-of-the-art results. In addition to the ablation study,
we perform a careful investigation for analysis.

The remainder of the paper is organized as follows. Section 2 introduces the related
work. Section 3 details the proposed method, followed by the experimental results and
analyses in Section 4. Section 5 comprises the conclusion.

2. Related Work
2.1. Unsupervised Domain Adaptation

For UDA, the key is to reduce the domain drift. Since the source and target data are
accessible during the transfer phase, probability matching becomes the main idea to solve
this problem. Based on whether to use a deep learning algorithm, the current work in UDA
can be divided into two categories: (1) deep-learning-based and (2) non-deep-learning-
based. In the first category, researchers rely on techniques such as metric learning to reduce
domain drift [2,21,22]. In these methods, an embedding space with a unified probability
distribution was learnt by minimizing certain statistical measures, e.g., MMD (maximum
mean discrepancy) [23], which were used to evaluate the discrepancy of the domains.
In addition, adversarial learning has been another popular framework for its capability
of aligning the probabilities of two different distributions [1,24,25]. The second category
reduces the drift in diverse manners. From the geometric point of view, Gopalan et al. [26],
Gong et al. [27], and Caseiro et al. [28] modeled the transfer process from the source domain
to the target one by geodesic flow on a manifold of data. Focusing on energy, Tang et al. [29]
developed an energy-distribution-based classifier by which confidence target data are
detected. Pan et al. [30] and Zhang et al. [31] used the geometric relation between data
at the global and nearest-neighbor scales, respectively. Chen et al. [32] introduced a style
and semantic memory mechanism to address the domain generalization problem. In all
the aforementioned methods, the source data are indispensable as labeled samples were
used to explicitly formulate domain knowledge (e.g., probability, geometric structure, or
energy). When the labeled data in the source domain are not available, these traditional
UDA methods fail.

2.2. Source-Data-Free Domain Adaptation

The current solutions for this issue take one of three approaches. One focuses on
mining transferable factors that are suitable for both domains. Tang et al. [33] supposed
that a sample and its exemplar classifier (SVM) satisfy a certain mapping relationship.
Following this idea, this method learnt the mapping on the source domain and predicted the
classifier for each target sample to perform an individual classification. Tanwisuth et al. [34]
mined transferable prototypes to boost the model adaptation. The second is concerned
with converting model adaptation without source data to the classic UDA setting by faking
a source domain. Li et al. [9] incorporated a conditional generative adversarial net to
explore the potential of unlabeled target data. Du et al. [35] used source-hypothesis-based
target data splitting to form the pseudo-source domain data. Tian et al. [11] combined
source prototypes and Gaussian noise to generate a pseudo-source domain. The third
performs self-training with a pre-trained source model to avoid the effects caused by the
absence of a source domain and the label information of the target domain. Liang et al. [13]
developed a general framework to implement an implicit alignment from the target data to
the probability distribution of the source domain. In this method, information maximization
and pseudo-labels were used to supervise self-training. Lao et al. [7] proposed a multi-
hypothesis version. Yang et al. [15] performed a bi-alignment between the two groups
where a classifier trained on the confidence group is used as self-supervision. All the
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methods achieved impressive results to some extent, but they ignored the fact that the
essence of model adaptation in SFDA is a kind of knowledge extraction and transfer.

2.3. Self-Distillation Methods

In the traditional knowledge distillation framework, knowledge is transferred from
the teacher network to the student network [36,37]. The teacher network often has been
pre-trained on a large deep model, and the student network needs to be guided by the
teacher network [38]. There is a special case in knowledge distillation. When the stu-
dent network and the teacher network are the same model, we term it self-knowledge
distillation (SKD) [39–42]. According to training characteristics, we can divide SKD into
real-time self-knowledge distillation (RSKD) and progressive self-knowledge distillation
(PSKD). Specifically, RSKD approaches focus on mining real-time knowledge, namely
the knowledge from the current model to be trained, to conduct knowledge distillation.
Zhang et al. [39] took the deep output of the entire neural network as real-time semantic
knowledge to regulate the distillation for shallow network components. Yun et al. [40]
proposed a class-wise self-knowledge distillation method that softens over-fitting pre-
dictions and reduces intra-class variation. To this purpose, the intra-class samples are
used as the real-time knowledge for the distillation. PSKD methods achieve knowledge
distillation by using the prediction from the history model as the knowledge for distilla-
tion. Yang et al. [41] proposed snapshot distillation, which extracts teacher knowledge
from earlier epochs in the same generation to guide the later epoch of student learning.
To further distill the knowledge in the deep neural network itself, Kim et al. [42] used
the prediction of the model itself as teacher knowledge to enhance the generalization of
the deep neural network instead of any other ways to augment the architecture or tune
the hyper-parameters carefully. Combined with the above methods, we noticed that the
previous method is not suitable for SFUDA as ground truth is required for all samples.
Also, these methods did not put the knowledge hidden in the local geometry structure
between data to good use.

3. Methodology
This section first formulates the SFDA problem and then presents the overview of

G2KD. Following that, we present the components of our method in detail, respectively.

3.1. Source-Data-Free Domain Adaptation Problem Formulation

Given two different but related domains, i.e., source domain S and target domain T ,
S contains ns labeled samples, while T has n unlabeled data. Both labeled and unlabeled
samples share the same K categories. Let Xs = {xs

i }
ns
i=1 and Ys = {ys

i }
ns
i=1 be the source

samples and the corresponding labels, where ys
i is the label of xs

i . Similarly, we denote
the target samples and their labels by Xt = {xi}n

i=1 and Yt = {yi}n
i=1, respectively. Con-

ventional UDA intends to conduct a K-way classification on the target domain, and the
labeled source data and the unlabeled target data are both available as the cross-domain
transfer process. In contrast, SFDA tries to build a target model ft : Xt → Yt for the same
classification task, whilst only Xt and a source model fs : Xs → Ys pre-obtained on the
source domain are available during the whole transfer process.

Remark 1. In conventional UDA, the domain shift is expressed by the data from the two domains
explicitly. In SFDA, as above, the source probability distribution is presented (parameterized) to
the source model implicitly such that the shift is reflected in the classification accuracy of the source
model on the target domain. Also, SFDA is a “white-box” case; that is, the pre-trained source model
is accessible during the adaptation phase, and details, such as architecture and weight parameters, are
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known. In case the source model only outputs prediction and its details are absent, it is formulated
to the topic named “black-box” source-data-free domain adaptation [43,44].

3.2. Approach Overview

This paper presents SFDA as a model adaptation consisting of sequential sub-transfers,
as presented in Figure 1. Specifically, the whole adaptation from fs to ft is sliced to N
epochs and learns an intermediate model in each epoch such that the domain shift might
be reduced smoothly since the sequential sub-transfers can capture the dynamics in the
adaptation process. Formally, we give this progressive process a simple form presented by

Mm−1
G2KD−−−→ Mm, m = 1, 2, · · · , N,

with M0 = fs and MN = ft,
(1)

where N is the maximal training epoch number, and notation A G2KD−−−→ B denotes a single
sub-transfer regulated by the G2KD method from model A to model B.

Without loss of generality, Figure 2 depicts any sub-transfer driven by G2KD,

i.e., Mm−1
G2KD−−−→ Mm. We can see that the sub-transfer contains two steps. Firstly, we

initialize the current Mm by Mm−1, which is trained in the last epoch and fixed during
Mm training. Following this step, we train Mm by G2KD. In this design, Mm is the stu-
dent model, while Mm−1 is the teacher model. The transfer learning for Mm is driven
by G2KD regularization (Figure 2b) consisting of three regulators: the entropy loss Lent,
distillation loss Ldis, and student loss Lstu. In the entropy loss, except for classic entropy
minimization [45], we integrate the neighbor context of input instance. Another important
component is the geometry-guided knowledge block (Figure 2a), which plays a central role
in our distillation scheme. It provides the soft target and soft pseudo-label to supervise
the distillation loss and student loss, respectively. Knowledge mining is achieved by local
geometry discovery, which outputs the neighborhood geometry for the input instance.
The followed knowledge representation transforms this knowledge into two supervision
aspects, including a soft target and a soft pseudo-label. To this end, we perform semantic
clustering and fusion based on the deep features and final outputs mapped by the teacher
model Mm−1, as shown in Figure 2c. In the following, we present these components
in detail.
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Figure 2. An overview of sub-transfer driven by G2KD. At the beginning of a specific epoch,
the student model Mm is initialized by the pre-trained teacher model Mm−1. After that, given an
input instance xi, (a) the geometry-guided knowledge module mines the knowledge by discovering
local geometry over the target dataset for xi and then represents it to a corresponding soft supervision
pair, as illustrated in (c), including soft target ōi (Equation (3)) and soft pseudo-label l̄i (Equation (6)).
During training, xi is feed-forwarded into the student model Mm to obtain the soft output p̂i and
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prediction pi. Combining with the presented geometry-guided knowledge (the soft supervision
pair), (b) we perform the geometry-guided knowledge distillation. This is driven by the G2KD
regularization (Equation (12)), consisting of an entropy loss Lent, a distillation loss Ldis, and a student
loss Lstu.

3.3. Structure of Intermediate Model Mm

To account for classification in SFDA, the source model fs is divided into a feature
extractor and a classifier, whose details are known according to the SFDA setting. In
order to conduct the chain-like training starting with fs, formulated by Equation (1), in the
epoch-wise adaptation process of G2KD, all intermediate models {Mm}N

m=1 have the same
structure as fs. Specifically, we use a deep network to specify any intermediate model Mm;
Mm also consists of a feature extractor em(·; θm) and a classifier cm(·; ψm). Thus, Mm can be
parameterized to fm = cm ◦ em(·; θm, ψm), where {θm, ψm} collects the model parameters.

3.4. Geometry-Guided Knowledge

In this section, we first introduce the method to discover neighborhood representing
the geometry-guided knowledge using the teacher model Mm−1. Then, we present the
semantic information extraction method to represent the mined knowledge regulating our
knowledge distillation.

Knowledge mining. As mentioned above, we deem the local geometric relationship of
any target data to be the knowledge. To implement this insight, we propose local geometry
of the neighborhood to portray this relationship. The feature extractor in the teacher model
maps all target samples {xi}n

i=1 to deep features {z̄i}n
i=1, denoted by Z̄t collectively, where

z̄i = em−1(xi; θm−1). We extract the knowledge from this deep feature space. Figure 3
presents the composition of this local structure, whose edge is marked by dotted line. The
green circle located in the center stands for a feature sample of any target data, i.e., z̄i. The
orange circles stand for D feature samples on the edge of the neighborhood, i.e., {z̄i

j}D
j=1. In

practice, we use the cosine similarity in the feature space to identify these neighbor samples
{z̄i

j}D
j=1. The similarities between the center sample and the edge samples are represented

by the length of solid lines, i.e., {di
j}D

j=1.

Obviously, if the constructing information Ii = {(z̄i
j, di

j)}D
j=1 is given, we can defini-

tively determine the neighborhood of z̄i. We specify the neighborhood constructing in-
formation of any target sample xi by a simple strategy as follows. We first perform a
similarity comparison of xi over the whole target dataset in the deep space and obtain a
similarity measure set A =

{
di
∣∣di = φ(z̄i, z̄j), z̄j ∈ Z̄t

}
, where function φ(x1, x2) calculates

the cosine similarity of x1 and x2. After that, we choose D feature samples closest to z̄i

and the corresponding distance (the similarity measure value) to form the neighborhood
structure. This operation can be formulated by

Ii =
{(

z̄i
j, di

j

)∣∣∣z̄i
j ∈ Z̄t, di

j ∈ A, j ∈ topk(A, D)
}

, (2)

where function topk(X , m) returns the indices of elements ranking in the first m in set X .
Knowledge representing. By the above discovery method, we mine the knowledge

from the teacher model. However, this knowledge cannot directly support the knowledge
distillation. We therefore need to convert it to semantic information compatible with
knowledge distillation learning. Corresponding to classic knowledge distillation, we
propose (1) soft target and (2) soft pseudo-label to supervise the distillation loss and the
student loss for the student model. The generation methods of them are presented in the
remainder of this sub-section.
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Figure 3. Illustration of knowledge mining. (a) The neighborhood geometry of a specific target
sample (zi) is taken as the knowledge. (b) By a simple semantic fusion on this local structure, a target
sample of TV wrongly predicted as Oven can be corrected.

(1) Soft target. Unlike the classic distillation method that directly takes the teacher
model’s output as the knowledge to guide the student learning, we use the soft target
building on the constructed neighborhood to supervise the distillation part. Suppose p̄i
and {p̄i

j}D
j=1 are the probability vectors of z̄i and {z̄i

j}D
j=1, respectively, under the mapping

of softmax(cm−1(·, ψm−1)). Equation (3) formulates our construction procedure.

ōi = p̄i +
D

∑
j=1

di
j p̄

i
j. (3)

(2) Soft pseudo-label. In classic knowledge distillation, the student loss is used
to regulate the supervision learning on the given ground truth. However, due to the
unavailable truth labels in SFDA, we use pseudo-labels instead. Moreover, we soften
pseudo-labels to enhance knowledge transfer by absorbing the semantic information hidden
in the neighborhood. To this end, we first extract essential semantic representation through
cluster-based classification, the same as [13], and then perform semantic fusion based on
the discovered local geometry. This process includes the following three steps.

(1) Weighted k-means clustering. For the deep features {z̄i}n
i=1, the teacher model

Mm−1 predicts, after the Softmax operation, the probability vectors {p̄i}n
i=1, where

p̄i = softmax(cm−1(z̄i, ψm−1)). We find the k-th cluster centroid by Equation (4), where p̄i,k

is the k-th element of vector p̄i.

νk =
∑nt

i=1 p̄i,k z̄i

∑nt
i=1 p̄i,k

. (4)

(2) Semantic extraction. We obtain the hard pseudo-labels of all feature samples
constructing the neighborhood, including z̄i and {z̄i

j}D
j=1, using max-similarity-based clas-

sification formulated by Equation (5), where φ(·, ·) is also a cosine similarity function, and
D is the number of neighbor features.
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ȳi = arg max
k

φ(z̄i, νk),

ȳi
j = arg max

k
φ(z̄i

j, νk), j = 1, 2, · · · , D.
(5)

(3) Semantic fusion. Let l̄i be the soft pseudo-label of any target data xt
i ; we formulate

its generation by Equation (6), where l̄i,k is the k-th element of l̄i, I[·] is the function of the
indicator, {di

j}D
j=1 is pre-obtained as we model adaptation knowledge via the neighborhood

geometry, and K is the number of categories shared by the source and target domains.

l̄i,k = I[k = ȳi] +
D

∑
j=1

K

∑
k=1

di
jI
[
k = ȳi

j

]
. (6)

3.5. Geometry-Guided Knowledge Distillation Regularization

Our knowledge distillation is a particular case of self-distillation since, at the begin-
ning of each training epoch, we use the historical model pre-trained in the latest epoch to
accomplish knowledge mining in the current epoch. Its objective also consists of two com-
ponents, the distillation loss and the student loss, as in most previous work on knowledge
distillation. However, compared with this other work, our regularization builds on the
semantic information mined from the geometry-guided knowledge.

I. Entropy regulator with neighbor context
Entropy-based regularization is widely used in unsupervised classification scenar-

ios [46,47], leading to the aggregation of samples without semantic supervision. However,
this aggregation only relying on model’s prediction will amplify the prediction errors
in a positive feedback way. Therefore, the single use of entropy minimization is always
regulated further. In this work, we develop entropy minimization with neighbor relation,
focusing on utilizing geometry-based semantic context. In the absence of real supervision
in the SFDA setting, the semantic relations between these neighbor samples are not reliable.
To bypass this limitation, we take the augmentation data with a slight transformation as
the neighbor. Thus, we can use the category consistency constraint on the data before and
after augmentation to enhance feature discrimination. To this end, in addition to the classic
entropy item, we introduce another entropy regulator [48], which maximizes the mutual
information entropy between the input instance and its augmentation data.

During the m-th training epoch, given any input instance xi and its augmentation data
x′i, obtained by rotating xi with a small angle selected from [−δ, δ] randomly, Mm converts
xi and x′i to probability vectors pi and p′

i over all classes, respectively. The proposed entropy
loss on the instance xi can be expressed by

Le = H(pi)− αI
(

pi, p′
i
)
. (7)

where H(pi) = −∑K
k=1 pi,k log pi,k is the entropy measure; I(·, ·) is the mutual information

measure [49] whose computation is the same as [48]; α is a trade-off hyper-parameter. In this
equation, the first term is the classic entropy minimization loss to regulate the individual
data. The second term introduces the semantic constraint in the augmentation-based
neighbor context for discriminative features.

II. Knowledge distillation regulator
With the notation mentioned above, corresponding to the input instance xi, its logit is

ri, which is mapped through the student model. Using the temperature Softmax formulated
by Equation (8) where T > 0 is the temperature scaling parameter, we map ri to the soft
target p′

i.
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p′i,k =
exp (qi,k/T)

∑K
j=1 exp (qi,j/T)

. (8)

Combining the soft target in Equation (3), we express the distillation loss in the form
of the Kullback–Leibler (KL) divergence

Ldis = KL
(
ōi||p′

i
)

= − 1
n

n

∑
i=1

K

∑
k=1

ōi,k log
ōi,k

p′i,k
.

(9)

Combining the soft pseudo-label in Equation (6), we express the student loss by
Equation (10), where ϱk =

1
nt

∑nt
i=1 pi,k is a mean in the k-th dimension over all target data.

In this loss, the first term in cross-entropy form is similar to the classic student loss used
in the traditional knowledge distillation framework. The difference between them is that
we replace the ground truth by our constructed soft pseudo-label. Due to the errors in the
pseudo-labels, the first regularization cannot guide semantic learning absolutely correctly.
To relieve the negative impact from the pseudo-labels, like [13,50,51], we introduce the
category balance loss as the second regularization term. The β and γ are hyper-parameters.

Lstu = −β
1
n

n

∑
i=1

K

∑
k=1

l̄i,k log pi,k + γ
K

∑
k=1

ϱk log ϱk. (10)

Thus, we have the following loss with knowledge-distillation-like structure.

Lkd = Ldis + Lstu. (11)

Based on the regularizers represented in Equations (7) and (11), we have our final
objective for the G2KD method

min
{θm ,ψm}

LG2KD = Lent + Lkd. (12)

3.6. Model Training

Algorithm 1 summarizes the training overview for the model adaptation from fs to ft

based on G2KD.

Algorithm 1 Overall training of G2KD

Input: The trained source model fs, target data Xt, max epoch number N, iteration number
of each epoch Ie.
Output: The target model ft = MN .

1: Let Mm−1 = M0 = fs.
2: for epoch-index = 1 to N do
3: Initialize the student model Mm by the trained teacher model Mm−1, i.e., {θm, ψm} =

{θm−1, ψm−1}.
4: Refine geometry-guided knowledge, i.e., local geometry, by teacher model Mm−1

according to Equation (2).
5: for iter-index = 1 to Ie do
6: Sample a mini-batch from Xt.
7: Generate soft target for this batch by Equation (3).
8: Generate soft pseudo-label for this batch by Equation (6).
9: Update {θm, ψm}+= ∆LG2KD, where the objective is represented by Equation (12).

10: end for
11: end for
12: return: MN .
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4. Experiments and Analyses
This section first provides the experimental settings, including the dataset introduction,

details on implementation, and the baseline for comparison. After that, experimental results
on four benchmarks are presented, followed by an analysis and ablation study, respectively.

4.1. Datasets

In this paper, we evaluate G2KD on four widely used benchmarks, i.e., Office-31,
Office-Home, VisDA and DomainNet. Among them, Office-31 and VisDA are only used
for the task of vanilla closed-set domain adaptation, whilst Office-Home and DomainNet
are adopted for both vanilla closed-set domain adaptation tasks and multi-source-domain
adaptation tasks.

Office-31 [52]. Office-31 is a small-scale dataset that is widely used in visual domain
adaptation including three domains, i.e., Amazon (A), Webcam (W), and Dslr (D), all of
which are taken from real-world objects in various office environments. The dataset has
4652 images of 31 categories in total. Images in (A) are online e-commerce pictures. (W)
and (D) consist of low-resolution and high-resolution pictures.

Office-Home [53]. Office-Home is a medium-scale dataset that is mainly used for
domain adaptation, containing 15,000 images belonging to 65 categories from working or
family environments. The dataset has four distinct domains, i.e., artistic images (Ar), clip
art (Cl), product images (Pr), and real-world images (Rw).

VisDA [54]. VisDA is a challenging large-scale dataset with 12 types of synthetic to
real transfer recognition tasks. The source domain contains 152,000 synthetic images, while
the target domain has 55,000 real object images from Microsoft COCO.

DomainNet [55]. DomainNet is the most challenging large-scale dataset, with 0.6 mil-
lion images of 345 classes from 6 domains of different image styles: clip art (C), infograph (I),
painting (P), quickdraw (Q), real (R), and sketch (S).

4.2. Implementation Details

Network structure. We design and implement our network architecture based on
Pytorch. We can divide the above datasets into two types, vanilla closed-domain adap-
tation and multi-source-domain adaptation, for the vanilla closed-set domain adaptation
task. In our model, the feature extractor contains a heavy-weight deep architecture and
a compression layer consisting of a batch-normalization layer and a full-connect layer
with a size of 2048 × 256. Specifically, for the deep architecture, like [2,18,56], we use
ResNet-50 pre-trained on ImageNet as the feature extractor in the experiments on Office-31,
Office-Home, and DomainNet. At the same time, on VisDA, we adopt ResNet-101 to
replace ResNet-50 used in the methods without the VIT module, whilst methods with
VIT, i.e., TDA, SHOT + VIT, and G2KD + VIT, still keep ResNet-50 as the backbone. The
classifier consists of a weight-normalization layer and a full-connect layer with a size of
256 × K, in which K differs from one dataset to another.

Source model training. For all evaluation datasets, the source model fs was pre-
trained with the standard protocol [7,8,13,15]. We split the labeled source data into two
parts of 90%:10% for model pre-training and validation. We set the training epochs on
Office-31, Office-Home, VisDA, and DomainNet to 100, 50, 10, and 20, respectively.

Parameter settings. For Office-31, Office-Home, and DomainNet, we set the learning
rate and epochs to 0.01 and 15, respectively; for VisDA, the learning rate is set to 0.001
and the same epochs. For hyper-parameters, we set δ = 10, D = 4, α = 0.1, β = 0.05, and
γ = 0.8. Additionally, the batch size for all tasks is set to 64. All the experiments were run
on a single GPU of NVIDIA RTX TITAN.
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4.3. Competitors

To verify the effectiveness of our method, we select 24 competing methods in three
groups, as shown below.

(1) The first group includes two deep models, i.e., ResNet-50 and ResNet-101 [57]. They
are used to initiate the feature extractor of the source model.

(2) The second group includes 12 current state-of-the-art UDA methods with access
to the source data. They are CDAN [2], SWD [58], DMRL [59], BSP [60], TN [61],
TPN [22], IA [62], BNM [63], MCC [64], A2LP [31], CGDM [65], CaCo [66], SUDA [67],
SImpAI50 [68], CMSDA [69], DRT [70], and STEM [71].

(3) The third group includes 10 current state-of-the-art SFDA methods. They are
SFDA [10], 3C-GAN [9], SHOT [13], BAIT [15], HMI [7], PCT [34], GPGA [8], AAA [12],
PS [35], VDM [11], DECISION [72], NRC [73], and GKD [74].

To extensively evaluate G2KD, we further introduce two variants: G2KD++ and
G2KD + ViT. Specifically, G2KD++ is an enhanced version with semi-supervised learn-
ing (MixMatch) [75], whilst SHOT + ViT is a feature-empowered version with a VIT
module [76]. For comparison, SHOT++ [77], SHOT + ViT, and TDA [18] are adopted as the
baselines, where SHOT++ and SHOT + ViT are implemented in the same way to G2KD++
and G2KD + ViT, respectively. In practice, these methods with ViT, SHOT + ViT, TDA, and
G2KD+ViT implement the feature extractor using ResNet50 + ViT instead of ResNet50 (on
Office-31, Office-Home, and DomainNet) and ResNet101 (on VisDA), adopted in SHOT and
G2KD. We inject the transformer layer, similar to [18], between the ResNet-50 architecture
and the compression layer.

4.4. Quantitative Results

Vanilla closed-set domain adaptation. Tables 1–3 present the experimental results of
the object recognition. On the Office-31 dataset (see Table 1), among these methods without
extending, namely saving SHOT++, TDA, and SHOT+VIT, G2KD obtains the best results
on the tasks A→D and W→D. Compared with the previous best method, GPGA and AAA,
G2KD improves 0.1% on average due to the gap of 1.3% on task W→A, along with slight
improvement on other tasks. For the methods with MixMatch, G2KD++ beats SHOT++
on all tasks, improving by 1.0% in average accuracy. For the ViT methods, G2KD + ViT
obtains the best results in half tasks. In average accuracy, G2KD + ViT improves by 0.2% as
opposed to the second-best method, SHOT + ViT.

On the Office-Home dataset (see Table 2), in the method group without MixMatch and
ViT, G2KD obtains the best results on half tasks and improves 0.3% in average accuracy
compared with the second-best method, NRC and GKD. When MixMatch and ViT are
introduced, the performance of our method further improves. G2KD++ surpasses SHOT++
in 8 out of 12 tasks, whilst G2KD + ViT achieves the best results in 10 out of 12 tasks.
Correspondingly, G2KD++ and G2KD + VIT improve the average accuracy by 0.2% and
0.9%, respectively, over the second-best method, SHOT++ and SHOT + VIT.

On the VisDA dataset (see Table 3), G2KD achieves the best results in three classes,
“skrbrd” and “train’,’ and beats the second-best method, VDM and NRC, by a 0.3% im-
provement on average. With semi-supervised learning, G2KD++ obtains the best results on
8 out of 12 tasks compared to SHOT++, leading to 0.5% increase in average accuracy. As
for the ViT-based methods, the advantages of our method become more evident. G2KD +
ViT ranks first in average accuracy, with the best results regarding 10 out of 12 classes. It
improves by 3.8% in average accuracy compared to the second-best method, SHOT + ViT.
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Table 1. Classification accuracies (%) on the Office-31 dataset for vanilla closed-set DA based on
ResNet50 backbone. SF means source-data-free, blue bold means best results without both MixMatch
and ViT, and green and orange bold mean best results empowered by MixMatch and ViT, respectively.

Method/Task SF A→D A→W D→A D→W W→A W→D Avg.

ResNet50 [57] ✗ 68.9 68.4 62.5 96.7 60.7 99.3 76.1
CDAN [2] ✗ 92.9 94.1 71.0 98.6 69.3 100.0 87.7
BSP [60] ✗ 93.0 93.3 73.6 98.2 72.6 100.0 88.5
TN [61] ✗ 94.0 95.0 73.4 98.7 74.2 100.0 89.3
DMRL [59] ✗ 93.4 90.8 73.0 99.0 71.2 100.0 87.9
IA [62] ✗ 92.1 90.3 75.3 98.7 74.9 99.8 88.8
BNM [63] ✗ 90.3 91.5 70.9 98.5 71.6 100.0 87.1
MCC [64] ✗ 95.6 95.4 72.6 98.6 73.9 100.0 89.4
A2LP [31] ✗ 87.8 87.7 75.8 98.1 75.9 98.1 87.4
CaCo [66] ✗ 91.7 89.7 73.1 98.4 72.8 100.0 87.6
SUDA [67] ✗ 91.2 90.8 72.2 98.7 71.4 100.0 87.4

SFDA [10] ✓ 92.2 91.1 71.0 98.2 71.2 99.5 87.2
3C-GAN [9] ✓ 92.7 93.7 75.3 98.5 77.8 99.8 89.6
SHOT [13] ✓ 93.9 91.3 74.1 98.2 74.6 100.0 88.7
BAIT [15] ✓ 92.0 94.6 74.6 98.1 75.2 100.0 89.1
HMI [7] ✓ 94.4 94.0 73.7 98.9 75.9 99.8 89.5
PCT [34] ✓ – – – – – – 88.4
CPGA [8] ✓ 94.4 94.1 76.0 98.4 76.6 98.4 89.9
AAA [12] ✓ 95.6 94.2 75.6 98.1 76.0 99.8 89.9
VDM [11] ✓ 94.1 93.2 75.8 98.0 77.1 100.0 89.7
NRC [73] ✓ 96.0 90.8 75.3 99.0 75.0 100.0 89.4
GKD [74] ✓ 94.6 91.6 75.1 98.7 75.1 100.0 89.2

Source-model-only ✓ 79.9 75.9 58.7 94.5 63.6 98.4 78.5
G2KD (ours) ✓ 96.1 94.3 75.5 98.6 75.3 100.0 90.0

SHOT++ [77] ✓ 95.2 91.2 74.7 98.6 75.4 100.0 89.2
G2KD++ (ours) ✓ 96.7 94.5 76.0 98.7 75.7 100.0 90.2

TDA [18] ✓ 97.2 95.0 73.7 99.3 79.3 99.6 90.7
SHOT + ViT ✓ 98.4 96.4 80.9 98.3 83.5 100.0 93.0
G2KD + ViT (ours) ✓ 98.2 95.4 81.9 99.1 84.6 99.8 93.2

Table 2. Classification accuracies (%) on the Office-Home dataset for vanilla closed-set DA based on
ResNet50 backbone. SF means source-data-free, blue bold means best results without both MixMatch
and ViT, and green and orange bold mean best results empowered by MixMatch and ViT, respectively.

Method/Task SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 [57] ✗ 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
CDAN [2] ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [60] ✗ 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
TN [61] ✗ 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
IA [62] ✗ 56.0 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
BNM [63] ✗ 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

SFDA [10] ✓ 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
SHOT [13] ✓ 56.6 78.0 80.6 68.4 78.1 79.4 68.0 54.3 82.2 74.3 58.7 84.5 71.8
BAIT [15] ✓ 57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6
HMI [7] ✓ 57.8 76.7 81.9 67.1 78.8 78.8 66.6 55.5 82.4 73.6 59.7 84.0 71.9
PCT [34] ✓ – – – – – – – – – – – – 71.0
CPGA [8] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
AAA [12] ✓ 56.7 78.3 82.1 66.4 78.5 79.4 67.6 53.5 81.6 74.5 58.4 84.1 71.8
PS [35] ✓ 57.8 77.3 81.2 68.4 76.9 78.1 67.8 57.3 82.1 75.2 59.1 83.4 72.1
VDM [11] ✓ 59.3 75.3 78.3 67.6 76.0 75.9 68.8 57.7 79.6 74.0 61.1 83.6 71.4
NRC [73] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
GKD [74] ✓ 56.5 78.2 81.8 68.7 78.9 79.1 67.6 54.8 82.6 74.4 58.5 84.8 72.2
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Table 2. Cont.

Method/Task SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source-model-only ✓ 44.3 67.0 73.7 52.5 62.5 64.6 51.5 40.6 72.0 65.6 46.4 72.2 59.4
G2KD (ours) ✓ 56.9 79.2 81.6 68.2 79.5 80.1 68.0 56.2 82.4 74.5 59.3 84.6 72.5

SHOT++ [77] ✓ 57.3 78.9 81.5 69.4 79.7 80.6 68.4 55.1 82.5 75.2 60.1 84.9 72.8
G2KD++ (ours) ✓ 57.4 79.8 82.3 68.9 80.2 80.6 68.1 56.6 82.5 74.8 59.4 84.9 73.0

TDA [18] ✓ 67.5 83.3 85.9 74.0 83.8 84.4 77.0 68.0 87.0 80.5 69.9 90.0 79.3
SHOT + ViT ✓ 71.2 87.2 87.4 79.1 87.8 87.6 80.0 70.6 88.7 82.1 72.4 91.1 82.1
G2KD + ViT (ours) ✓ 72.8 87.9 88.4 80.1 88.3 88.8 81.1 71.9 89.2 82.4 73.9 90.7 83.0

Table 3. Classification accuracies (%) on the VisDA dataset for vanilla closed-set DA. SF means
source-data-free, blue bold means best results without both MixMatch and ViT, and green and orange
bold mean best results empowered by MixMatch and ViT, respectively. The methods with ViT adopt
the backbone of ResNet50, whilst other methods use the ResNet101 backbone.

Method/Class SF Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Per-
Class

ResNet-101 [57] ✗ 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN [2] ✗ 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BSP [60] ✗ 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [58] ✗ 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
TPN [22] ✗ 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4
IA [62] ✗ - - - - - - - - - - - - 75.8
DMRL [59] ✗ - - - - - - - - - - - - 75.5
A2LP [31] ✗ - - - - - - - - - - - - 82.7
MCC [64] ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
CaCo [66] ✗ 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
SUDA [67] ✗ 88.3 79.3 66.2 64.7 87.4 80.1 85.9 78.3 86.3 87.5 78.8 74.5 79.8
CGDM [65] ✗ 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3

SFDA [10] ✓ 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
SHOT [13] ✓ 95.0 87.4 81.0 57.6 93.9 94.0 79.5 80.4 90.9 89.9 85.9 57.4 82.7
3C-GAN [9] ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
BAIT [15] ✓ 93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7
HMI [7] ✓ - - - - - - - - - - - - 82.4
CPGA [8] ✓ 94.8 83.6 79.7 65.1 92.5 94.7 90.1 82.4 88.8 88.0 88.9 60.1 84.1
AAA [12] ✓ 94.4 85.9 74.9 60.2 96.0 93.5 87.8 80.8 90.2 92.0 86.6 68.3 84.2
PS [35] ✓ 95.3 86.2 82.3 61.6 93.3 95.7 86.7 80.4 91.6 90.9 86.0 59.5 84.1
VDM [11] ✓ 96.9 89.1 79.1 66.5 95.7 96.8 85.4 83.3 96.0 86.6 89.5 56.3 85.1
NRC [73] ✗ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 90.7 94.8 94.1 90.4 59.7 85.1
GKD [74] ✗ 95.3 87.6 81.7 58.1 93.9 94.0 80.0 80.0 91.2 91.0 86.9 56.1 83.0

Source-model-only ✓ 74.9 18.4 48.4 68.6 70.0 7.0 85.3 33.2 81.4 33.6 86.6 8.0 51.2
G2KD (ours) ✓ 96.0 89.1 83.5 65.6 95.0 96.0 86.9 82.4 92.2 92.2 90.8 54.9 85.4

SHOT++ [77] ✓ 97.2 87.6 87.1 75.2 96.5 97.8 92.1 84.4 96.9 89.7 93.7 36.4 86.2
G2KD++ (ours) ✓ 97.3 88.5 89.8 74.9 97.4 98.4 91.7 79.6 96.3 91.9 93.9 40.6 86.7

TDA [18] ✓ 96.6 90.6 86.3 45.1 93.1 96.1 70.7 54.4 85.8 92.2 93.0 51.7 79.6
SHOT + ViT ✓ 97.5 91.6 86.2 46.8 96.7 92.0 76.3 72.7 94.7 94.8 92.8 54.2 83.0
G2KD + ViT (ours) ✓ 97.8 93.3 91.8 61.4 98.1 97.1 87.5 73.4 96.8 97.1 94.3 53.3 86.8

From Table 1 to Table 3, the extensive versions of G2KD, i.e., G2KD++ and G2KD + VIT,
defeat other methods, including G2KD. It indicates that both semi-supervised learning
and stronger features can boost our method further. From Office-31 to VisDA, G2KD++
surpasses G2KD by 0.7% on average, whilst SHOT++ surpasses SHOT by 1.7% on average.
In contrast, on the same three datasets, both G2KD + ViT and SHOT + ViT beat G2KD and
SHOT by 5.0% on average. These results show that enhancing feature extraction is a better
choice for elevating G2KD compared with semi-supervised learning.

On the most challenging large-scale dataset, Domain-Net (see Table 4), the advantage
of G2KD is further extended. Compared with the second-best method, CGDM, G2KD
improves by 6.8% in average accuracy over the whole 30 tasks.

Multi-source-domain adaptation. As reported in the left side of Table 5, on the
DomainNet dataset, G2KD has a 7.9% gap compared with the best UDA method, STEM.
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Note that STEM is specially designed for the multi-source-domain adaptation task, with
access to labeled source data, whilst G2KD adopts the intuitive combination strategy of
source models as in [55]. However, for these SFDA methods, G2KD obtains the best
results for 4 out of 6 tasks and improves by 2.9% over SHOT and 0.4% over DECISION.
As DECISION is also proposed for multi-source-domain adaptation, the smaller gap on
G2KD is sensible. As reported in the right side of Table 5, on the Office-Home dataset, the
gap between G2KD and the best UDA method, CMSDA, is 1.1%. Compared to these SFDA
methods, G2KD obtains the best results on 3 out of 4 transfer tasks, achieving the best
performance of 75.5% in average accuracy. These results indicate that G2KD is competitive
regarding multi-source-domain adaptation despite no specialized design involved.

Table 4. Classification accuracies (%) on the Domain-Net dataset for vanilla closed-set DA. Blue
bold means best result. Works marked with “*” are source-data-free domain adaptation methods.
In the six sub-tables, each row reports the adaptation results from one source domain to the other five
target domains.

CDAN C I P Q R S Avg. BNM C I P Q R S Avg. SWD C I P Q R S Avg.

C – 13.5 28.3 9.3 43.8 30.2 25.0 C – 12.1 33.1 6.2 50.8 40.2 28.5 C – 14.7 31.9 10.1 45.3 36.5 27.7
I 18.9 – 21.4 1.9 36.3 21.3 20.0 I 26.6 – 28.5 2.4 38.5 18.1 22.8 I 22.9 – 24.2 2.5 33.2 21.3 20.0
P 29.6 14.4 – 4.1 45.2 27.4 24.2 P 39.9 12.4 – 3.4 54.5 36.2 29.2 P 33.6 15.3 – 4.4 46.1 30.7 26.0
Q 11.8 1.2 4.0 – 9.4 9.5 7.2 Q 17.8 1.0 3.6 – 9.2 8.3 8.0 Q 15.5 2.2 6.4 – 11.1 10.2 9.1
R 36.4 18.3 40.9 3.4 – 24.6 24.7 R 48.6 13.2 49.7 3.6 – 33.9 29.8 R 41.2 18.1 44.2 4.6 – 31.6 27.9
S 38.2 14.7 33.9 7.0 36.6 – 26.1 S 54.9 12.8 42.3 5.4 51.3 – 33.3 S 44.2 15.2 37.3 10.3 44.7 – 30.3

Avg. 27.0 12.4 25.7 5.1 34.3 22.6 21.2 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3 Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6

CGDM C I P Q R S Avg. SHOT * C I P Q R S Avg. G2KD * C I P Q R S Avg.

C – 16.9 35.3 10.8 53.5 36.9 30.7 C – 16.3 42.4 14.4 48.0 27.9 29.8 C – 17.8 45.5 16.0 65.5 47.7 38.3
I 27.8 – 28.2 4.4 48.2 22.5 26.2 I 26.0 – 25.5 5.9 43.6 16.4 23.5 I 46.7 – 42.8 4.8 62.3 36.3 38.6
P 37.7 14.5 – 4.6 59.4 33.5 30.0 P 32.3 7.7 – 7.3 48.0 24.5 24.0 P 55.5 19.1 – 7.6 66.6 44.2 38.6
Q 14.9 1.5 6.2 – 10.9 10.2 8.7 Q 20.6 2.0 6.0 – 5.9 12.3 9.3 Q 18.1 1.4 6.8 – 5.6 13.0 9.0
R 49.4 20.8 47.2 4.8 – 38.2 32.0 R 57.0 20.7 49.5 5.9 – 43.3 35.3 R 59.6 21.5 51.9 9.5 – 45.5 37.6
S 50.1 16.5 43.7 11.1 55.6 – 35.4 S 57.4 16.7 43.9 16.1 60.2 – 38.9 S 60.1 17.4 47.8 18.0 64.9 – 41.6

Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg. 38.7 12.6 33.5 9.9 41.1 24.9 26.8 Avg. 48.0 15.5 39.0 11.2 53.0 37.1 34.0

Table 5. Classification accuracies (%) on the DomainNet and Office-Home datasets for multi-source
UDA. SF means source-data-free; blue, orange bold mean the best results under the UDA and SFUDA
settings, respectively. R denotes the other 3 domains.

Method/Task SF
DomainNet OfficeHome

R →C R →I R →P R →Q R →R R →S Avg. R →Ar R →Cl R →Pr R →Rw Avg.

SImpAI50 [68] ✗ 66.4 26.5 56.6 18.9 68.0 55.5 48.6 70.8 56.3 80.2 81.5 72.2
CMSDA [69] ✗ 70.9 26.5 57.5 21.3 68.1 59.4 50.4 71.5 67.7 84.1 82.9 76.6
DRT [70] ✗ 71.0 31.6 61.0 12.3 71.4 60.7 51.3 – – – – –
STEM [71] ✗ 72.0 28.2 61.5 25.7 72.6 60.2 53.4 – – – – –

Source-combine ✓ 59.1 22.3 50.4 10.3 65.7 47.9 42.6 66.6 50.6 78.5 80.5 69.1
SHOT [13] ✓ 56.8 20.4 49.5 14.6 59.2 37.4 39.7 72.9 59.3 84.0 83.3 74.9
DECISION [72] ✓ 61.5 21.6 54.6 18.9 67.5 51.0 45.9 74.5 59.4 84.4 83.6 75.5

G2KD (ours) ✓ 62.7 22.6 52.8 16.8 69.1 49.0 45.5 73.5 59.8 84.7 84.1 75.5

4.5. Further Analysis

Confusion matrices. To show that our method is category-balanced, we draw the
confusion matrices based on the 31-way classification results of symmetrical tasks W→A
and A→W. Figure 4 provides the confusion matrices of the source model and G2KD. As
shown in Figure 4a,b, on task A→W, G2KD is much more accurate than the source model
only on all categories. Regarding task W→A, as shown in Figure 4c,d, G2KD has better
results, and the improvements are scattered over all categories. We also observe that G2KD
improves significantly in some hard categories on the two tasks. For example, for the fifth
category calculator on task A→W, G2KD improves the accuracy from 48.0% to 100.0%.
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For the 13th category bookcase on task W→A, G2KD improves the accuracy from 46.0%
to 80.0%.

Feature visualization. For intuitively using the tool of t-SNE [78], we provide a
feature analysis that visualizes the 31-way classification results of task W→A on Office-31.
Figure 5a,b present the cluster distribution in the deep feature space defined by function
em(·; θm), i.e., the feature extractor. Our method apparently leads to an implicit alignment
from the target domain to the source domain. Figure 5c,d present distribution details.
After model adaptation, the target data in the deep feature space satisfy a distribution with
evident semantic meaning.

Grad-CAM visualization. To explain why our method works, we conduct a visualiza-
tion analysis from the perspective of attention using the gradient-weighted class activation
map (Grad-CAM) method [79]. As shown in the first row of Figure 6, we present some
original images randomly selected from Office-31 and provide their Grad-CAM images
from the source model and our method in the remaining two rows. As we are using the
source model, we cannot clearly observe the attention phenomenon. For the projector,
the active area representing attention is weak. For the bookcase, the red area representing
strong attention covers the whole image. These attention patterns do not always lead to
good results. In contrast, based on our method, attention occurs and focuses on the key
components of these objects.
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Figure 4. Confusion matrices for 31-way classification tasks W→A and A→W on the Office-31 dataset.
Specifically, (a,b) present the results of the source model and G2KD in task A→W; (c,d) present the
results of the source model and G2KD in task W→A, respectively.

(a) (b) (c) (d)
Figure 5. Feature visualizations for task W→A on the Office-31 dataset. (a,b) Feature alignments
by the source model and G2KD, respectively; (c,d) are semantic clustering by the source model and
G2KD. In (a,b), red circles denote the features of the absent source data, and blue circles denote the
features of the target data. In (c,d), for better category illustration, all 31 categories in each domain
are selected, and a different color denotes a different category.

Geometry-guided knowledge visualization. For our method, the constructed
geometry-guided knowledge plays a central role. To show the working mechanism of
it, we visualize the proposed neighborhood modeling the knowledge in Figure 7. From
the misclassified images on the three datasets for object recognition, we randomly choose
15 example images, as shown in the first row of Figure 7, and arrange the samples in their
neighborhood in the other rows. It emerges that most of the neighborhood samples have the
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same categories as the corresponding original images. Thus, these neighborhood samples
can provide comprehensive semantic information to correct the wrong classification on
these original images.

monitor projector letter tray bookcase pen

Figure 6. Typical Grad-CAM visualization on the Office-31 dataset. The first row presents the original
example images. The second and third rows present the results of the source model only and of our
method, respectively.

knife bicycle motocycle train carbike calendar TV candles toothbrushprojector back_pack laptop
desk 

computer bottle

Figure 7. Visualization of neighborhood representing the geometry-guided knowledge on the three
datasets for object recognition task. The left, middle, and right parts are randomly selected from
Office-31, Office-Home, and VisDA, respectively. The first row presents the misclassified example
images. The other rows show the samples in the neighborhood modeling the knowledge (the red
squares mark the samples whose categories are different from the original images, i.e., the failure
cases). The distance to the original images of these samples from the second row to the fifth row
gradually increases.

We implement the correction mentioned above by the semantic fusion formulated
in Equation (3) and (6). Here, we plot the classification accuracies of soft pseudo-labels
on Office-31 during the training phase in Figure 8. As a comparison, we also present the
classification accuracies of pseudo-labels without the semantic fusion and the classification
accuracy of pseudo-labels of the teacher model. For clarity, we denote the three methods as
SPL, PL, and TPL, respectively. On all six adaptation tasks on Office-31, SPL consistently
demonstrates superior performance compared to PL and TPL. This accuracy gap in Figure 8
also explains the performance decrease caused by canceling the soft pseudo-label that we
discussed in the ablation study (see the fourth row and the last row in Table 6).
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Table 6. Results of ablation study for the effects of geometry-guided knowledge. Blue bold means
best result.

Methods/Datasets Office-31 Office-Home VisDA

Source model only 78.5 59.4 51.2

G2KD with Lent + Lraw
dis + Lraw

stu 88.9 71.5 82.1
G2KD with Lent + Lraw

dis + Lstu 89.6 71.9 83.0
G2KD with Lent + Ldis + Lraw

stu 89.2 72.3 84.4

G2KD with standard k-means 88.1 71.0 82.3

G2KD 90.0 72.5 85.4

Training resource demands. In order to more objectively evaluate the required
training resources, we selected three representative SFDA methods, SHOT, AaD, and NRC,
as comparison baselines. Experimental comparisons were conducted on the Ar → Cl
migration task of the Office-Home dataset under the same test conditions, and the relevant
results are shown in Table 7. Despite the need to recalculate the neighborhood geometry
and perform clustering and semantic fusion operations at each stage, the experimental
results show that our method remains within a reasonable range in terms of memory usage
and training time per epoch, and the computational overhead is controllable.

Table 7. Comparison of training resource demands (per iter.) on Ar→Cl in Office-Home. Blue bold
means best result.

# Item/Method SHOT [13] AaD [80] NRC [73] G2KD

1 GPU memory consumption ↓ (G) 7.868 9.622 9.851 7.638
2 Training times ↓ (s) 0.407 0.547 0.491 0.484

Sensitivity to hyper-parameters. In G2KD, D is the neighborhood size, and α in Le

(Equation (7)) is the trade-off parameters. We test their sensitivity of performance on the
symmetric transfer tasks Cl→Ar and Ar→Cl in Office-Home. Specifically, as shown in
Figure 9, the performance achieves the best result as D takes an intermediate value. A
smaller value leads to insufficient information, whilst a larger value introduces more noise.
The results are consistent with our expectations. As for α, it is seen that our method is
highly robust to its settings.
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Figure 8. The accuracy comparison of SPLs (soft pseudo-labels), PLs (pseudo-labels),
and TPLs (teacher pseudo-labels) during model adaptation on the Office-31 dataset. The blue,
red, and green curves stand for the accuracies of SPLs, PLs, and TPLs, respectively.
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Figure 9. Sensitivity of hyper-parameters D and α, respectively.

4.6. Ablation Study

In this part, we isolate the effect of the critical components in G2KD. These components
include (1) the gradual distillation strategy, (2) the geometry-guided knowledge, and (3) the
regularization losses in our objective.

Effect of gradual distillation strategy. As noted, for G2KD, the teacher model IntMm−1

provides the supervision for the distillation, i.e., soft target ōi in Ldis and soft pseudo-label
l̄i in Lstu. To verify the effect of the gradual distillation strategy, we cancel this strategy from
the training process by imposing a replacement operation on the supervision. Specifically,
for a supervision, ōi or l̄i, we generate it by the source model fs, then fix it during the whole
adaptation phase. In this way, we have three evaluation cases, as reported in Table 8.

As shown in the first row in Table 8, when both ōi and l̄i are replaced, there is large gap
of 14.3% compared to the full version shown in the fourth row. As shown in the following
two rows, when ōi or l̄i is replaced, the average accuracy has evident improvement (increase
by 10.4% at least). The comparison indicates that the gradual distillation strategy has a
great influence on the final result. This progressive process can well capture the dynamics
of data geometric structure during the transfer phase.

Table 8. Ablation study for the gradual distillation strategy on VisDA. ⟨s⟩ denotes the supervision
used in Ldis and Lstu; i.e., soft target ōi and soft pseudo-label l̄i are generated by the source model fs.
⟨t⟩ means the supervision is generated by the teacher model Mm−1. Blue bold means best result.

Lent Ldis Lstu Per-Class

✓ ⟨s⟩ ⟨s⟩ 71.1
✓ ⟨s⟩ ⟨t⟩ 81.5
✓ ⟨t⟩ ⟨s⟩ 83.4
✓ ⟨t⟩ ⟨t⟩ 85.4

Effects of geometry-guided knowledge. G2KD takes the soft target and the soft
pseudo-label, based on geometry-guided knowledge, to regulate the distillation loss Ldis

and the student loss Lstu, respectively. To present the advantages of introducing geometry-
guided knowledge, we use the raw information without the semantic fusion as the supervi-
sion. Correspondingly, we rewrite the two knowledge distillation losses as the following
raw form.

Lraw
dis = KL

(
p̄i||p

′
i
)
,

Lraw
stu =−β

1
n

nt

∑
i=1

K

∑
k=1

lt
i,k log φk(x̃

t
im)+γ

K

∑
k=1

ϱk log ϱk.
(13)

where p̄i and lt
i,k = I[k = ȳi] are the raw target and the raw pseudo-label, respectively, and

the other notations are the same as the ones in Equations (9) and (10). Here, we present
three primary cases to evaluate the geometry-guided knowledge effect. The first is G2KD
without the soft target where we replace Ldis with Lraw

dis , while the second is G2KD without
the soft pseudo-label where we replace Lstu with Lraw

stu . The third is G2KD without both soft
target and soft pseudo-label. Also, we evaluate the three component losses in our objective
LG2KD, i.e., Lent, Ldis, and Lstu.
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Table 6 reports the ablation study results. Comparing the results in the last row
with the results from the second row to fourth row, we observe that geometry-guided
knowledge can lead to evident improvement on the three datasets. G2KD with geometry-
guided knowledge beats the three G2KD variations without geometry-guided knowledge.
This comparison indicates the importance of the geometry-guided knowledge distillation
that this paper develops. In the fifth row, G2KD with standard k-means refers to applying
standard k-means clustering without the weighting mechanism described in Equation (4).
It is seen that standard k-means leads to noticeable drops on all three datasets, confirming
the effect of our weighting strategy.

Effects of regularization losses. We adopt an incremental way to evaluate these losses.
We take the variation method trained by only Lent as baseline and then add losses Ldis

and Lstu one by one. As shown in Table 9, the objective combining Lent with Ldis or Lstu

obtains much better results than merely using Lent as the objective. We achieve the best
results on the three datasets when Lent, Ldis, and Lstu work simultaneously. These ablation
results show that our losses positively affect the final performance.

Table 9. Results of ablation study for the effects of regularization losses. Blue bold means best result.

Lent Ldis Lstu Office-31 Office-Home VisDA

✓ ✗ ✗ 83.9 61.1 80.5
✓ ✓ ✗ 85.7 68.9 81.6
✓ ✗ ✓ 88.3 71.1 84.3
✓ ✓ ✓ 90.0 72.5 85.4

5. Conclusions
This paper proposes a new self-supervised learning method, G2KD, which solves

SFDA by Gradual Geometry-Guided Knowledge Distillation. This method offers a different
perspective for the challenging SFDA problem. Specifically, to bypass the absence of the
source data, we perform self-learning on the target domain via mix-entropy minimization,
which absorbs neighbor context. At the same time, we perform geometry-guided knowl-
edge distillation, in which we construct a neighborhood geometry to model the knowledge
and use it to guide the distillation. Experiments on four challenging benchmarks indicate
that our method achieves state-of-the-art performance.
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