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Abstract: The max-cut problem is a well-known topic in combinatorial optimization, with a
wide range of practical applications. Given its NP-hard nature, heuristic approaches—such
as genetic algorithms, tabu search, and harmony search—have been extensively employed.
Recent research has demonstrated that harmony search can outperform genetic algorithms
by effectively avoiding redundant searches, a strategy similar to tabu search. In this study,
we propose a modified genetic algorithm that integrates tabu search to enhance solution
quality. By preventing repeated exploration of previously visited solutions, the proposed
method significantly improves the efficiency of traditional genetic algorithms and achieves
performance levels comparable to harmony search. The experimental results confirm that
the proposed algorithm outperforms standard genetic algorithms on the max-cut problem.
This work demonstrates the effectiveness of combining tabu search with genetic algorithms
and offers valuable insights into the enhancement of heuristic optimization techniques.
The novelty of our approach lies in integrating solution-level tabu constraints directly into
the genetic algorithm’s population dynamics, enabling redundancy prevention without
additional memory overhead, a strategy not previously explored in the proposed hybrids.

Keywords: genetic algorithm; tabu search; max-cut problem; hybrid metaheuristics;
redundant search prevention; combinatorial optimization

MSC: 68T20; 68W50; 90C27

1. Introduction

The max-cut problem is a fundamental problem in combinatorial optimization. For-
mally, given an undirected graph G = (V,E), where V is the set of vertices and E is the
set of edges, the objective is to partition the vertex set V into two disjoint subsets S and
V'\ S such that the number (or total weight) of edges crossing between the two subsets is
maximized. This leads to the definition of the cut value:

cut(S) = )

(u,v)€E
ueS,veEV\S

w(u,v),

where w(u,v) denotes the weight of the edge (u,v). In the case of unweighted graphs,
w(u,v) = 1 for all edges. The goal is to find a subset S C V that maximizes cut(S). Figure 1
illustrates an example of a graph with 10 vertices and 14 edges, and how different partitions
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lead to different cut sizes. As the figure shows, selecting an optimal partition significantly
impacts the overall cut value. The max-cut problem is classified as NP-hard [1,2], which
implies that no known polynomial-time algorithm can solve all instances optimally. Due
to this computational difficulty, a wide variety of heuristic and metaheuristic approaches
have been proposed to find high-quality approximate solutions efficiently. The problem
has practical significance in many areas [3], such as VLSI design, statistical physics (e.g.,
the Ising model [4]), network design, and clustering tasks in machine learning.

Notable techniques include simulated annealing [5-7], genetic algorithms (GAs) [8-10],
harmony search (HS) [11], and tabu search (TS) [6,12,13]. In addition to these methods,
other metaheuristic frameworks such as scatter search [14], estimation of distribution
algorithms (EDAs) [15], particle swarm optimization combined with EDAs [16], and ant
colony optimization [17] have been extensively studied for solving the max-cut problem.
These approaches have demonstrated effectiveness, particularly for large-scale instances
where exact methods become computationally impractical. Beyond metaheuristics, neural
network-based approaches have also been explored as alternative strategies for tackling
the max-cut problem [18]. Notably, the discrete Hopfield neural network [19] leverages
neural dynamics to iteratively refine solution quality. These machine learning-inspired
techniques introduce a different paradigm compared to traditional metaheuristics, focusing
on adaptive optimization processes.

| cuty

Size of cut; = 4

-~

~
cut,

Size of cut, = 10

V=10 & |E| = 14 i

Figure 1. An illustrative example of the max-cut problem on a graph with 10 vertices and 14 edges.
The figure demonstrates how different vertex partitions (cuts) result in different cut sizes. The ob-
jective of the max-cut problem is to find the partition that maximizes the number of edges crossing
between the two subsets.

While metaheuristics and neural network-based methods provide effective heuristics
for large-scale instances, exact and combinatorial optimization approaches remain crucial for
obtaining optimal solutions or strong theoretical bounds. Research in this area has examined
branch-and-bound techniques [20] and exact algorithms, particularly in sparse graphs [21].
Moreover, semidefinite programming relaxations [20,22,23] have been widely applied to
derive strong upper bounds. Notably, rank-two relaxation heuristics [24] and polyhedral
cut-and-price methods [23] have been proposed to improve computational efficiency.

Among the various metaheuristic approaches, recent studies have particularly high-
lighted the effectiveness of the harmony search (HS) algorithm in solving the max-cut
problem. A study by Kim et al. [11] demonstrated that the HS algorithm outperforms
GAs in solving the max-cut problem. One of the key features of HS is its mechanism for
generating initial solutions in a way that avoids redundancy, preventing the algorithm
from repeatedly exploring the same solutions. This characteristic is similar to the strategy
employed by TS, which avoids revisiting previously explored solutions by maintaining a
memory structure known as the tabu list. In our interpretation, this feature enables HS to
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utilize the search space more effectively and potentially improve the quality of solutions.
In contrast, while GA maintains diversity among candidate solutions, it may still suffer
from repeatedly exploring similar regions in the solution space, which can lead to inef-
ficiencies. To address this, we propose a new approach to enhance GA performance by
incorporating key aspects of HS’s search strategy.

In this study, we introduce a novel hybrid algorithm that combines GA and TS to
improve GA’s performance and introduce a search behavior similar to that of HS. By in-
tegrating TS’s exploration constraint mechanisms into GA, we aim to mitigate the issue
of redundant solution exploration and improve the overall efficiency of the search pro-
cess. In addition, we compare the performance of the proposed algorithm with that of
conventional GA and HS to demonstrate its effectiveness. Through this comparison, we try
to establish that the combination of GA and TS not only outperforms GA alone, but also
shares similarities with HS in terms of search behavior.

This study makes three key contributions. First, we propose a novel GATS algorithm
that incorporates the constraints of TS to improve the search efficiency of GA and prevent
repetitive exploration of solutions. Second, we empirically validate that GATS outperforms
conventional GA in solving the max-cut problem while maintaining competitive perfor-
mance with HS. Third, based on previous research showing HS’s superiority over GA, we
analyze how GATS exhibits similar search behavior to HS and discuss the implications of
this within the broader context of recent trends in metaheuristic algorithms.

The structure of the paper is as follows. Section 2 reviews recent research, discussing
existing algorithms for the max-cut problem and recent research trends. In Section 3, we
introduce the genetic algorithms used in this study. Section 4 details the proposed GATS
algorithm, including its design and integration strategy. Section 5 presents experimental
results, comparing the performance of GATS with that of conventional GA and HS. Finally,
Section 6 provides a summary of the main findings and outlines potential directions for
future work.

2. Recent Work

Opver the past decade, extensive research has been conducted on the max-cut problem,
leading to the development of various algorithmic approaches, ranging from classical
optimization techniques to advanced machine learning-based methods.

One prominent line of research focuses on classical optimization approaches. The Goe-
mans—-Williamson algorithm [25], based on semidefinite programming (SDP), remains one
of the most influential methods for the max-cut problem. Building on this, Rodriguez-
Fernandez et al. [26] explored whether replacing the random vector selection in this al-
gorithm with clustering techniques such as k-means and k-medoids could yield better
graph partitions. Mohades and Kahaei [27] took a different approach by reformulating the
max-cut problem as an unconstrained optimization problem on a Riemannian manifold and
applying a Riemannian gradient-based optimization algorithm. Meanwhile, Chen et al. [28]
analyzed the limitations of local algorithms in large random hypergraphs, demonstrating
that such methods struggle to find near-optimal max-cuts due to the overlap gap property.
More recently, Kadhim and Al-jilawi [29] compared numerical SDP solvers—including
bundle, interior point, and augmented Lagrangian methods—and reported that the bundle
method achieved the fastest convergence on large benchmark instances.

Another significant research direction has focused on heuristic and metaheuristic
methods for efficiently solving the max-cut problem. Wu et al. [30] introduced a hybrid
evolutionary algorithm incorporating tabu search with a distance-and-quality-based solu-
tion combination operator and neighborhood-based search strategies. Lin and Zhu [31]
proposed a memetic algorithm that integrates local search, a novel crossover operator,
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and a population update mechanism designed to balance solution quality and diversity.
Similarly, Zeng et al. [32] improved upon this approach by employing edge-state learning
instead of vertex-position-based methods to enhance solution quality.

Various population-based heuristics have also been explored. Kim et al. [11] com-
pared the harmony search algorithm with genetic algorithms, concluding that the former
achieved superior results with fewer parameters and greater efficiency. In a related study,
Kim et al. [33] proposed an incremental genetic algorithm that gradually expanded sub-
problems by adding edges or vertices in a structured manner. Soares and Aratjo [34]
further extended the genetic algorithm approach by integrating tabu search and optimality
cuts, demonstrating their effectiveness in enhancing solution quality. Wang et al. [35]
took a different perspective by classifying and refining greedy heuristics. Their relation
tree-based framework categorized algorithms into vertex-oriented Prim-class approaches
(e.g., Sahni-Gonzalez [36] variants) and edge-oriented Kruskal-class methods (e.g., edge
contraction and its refinements). Chen et al. [37] introduced a hybrid binary artificial bee
colony algorithm that combined surjection mapping with local search to improve solution
efficiency. Sevi¢ et al. [38] introduced a learning-based fixed-set search (FSS) metaheuristic,
which extracts common substructures from high-quality solutions and reuses them to guide
new solution construction, outperforming traditional GRASP-based methods.

Recently, machine learning-based approaches have gained traction in solving the
max-cut problem. Gu and Yang [18] pioneered the use of a pointer network-based model
trained with supervised learning to tackle the problem. They later extended this work [39]
by incorporating reinforcement learning strategies, making the approach more effective
for large-scale instances. Yao et al. [40] investigated the performance of graph neural
networks (GNNs) on the max-cut problem, showing that GNNs performed comparably to
semidefinite relaxation but were outperformed by extremal optimization. Jin and Liu [41]
proposed a physics-inspired method that formulated the max-cut problem as an Ising
system, using the Hamiltonian of this system as a loss function to train a recurrent neural
network for approximating the ground-state transition distribution. Garmendia et al. [42]
further examined neural methods in combinatorial optimization, highlighting both the
generalization potential of neural models trained on diverse graphs and the computational
limitations that still prevent them from matching the reliability of traditional solvers.

Additionally, Gao [43] proposed a randomized fuzzy logic-based algorithm for com-
puting local max-cuts in RP time, demonstrating significantly faster performance com-
pared to IBM CPLEX solvers, especially on signed graphs with non-PSD Laplacians. Is-
lam et al. [44] also developed a Harris Hawk Optimization (HHO) variant for max-cut,
with additional operators like crossover, mutation, and repair to enhance both exploration
and exploitation capabilities.

Finally, several recent studies have focused on experimental comparisons of different
max-cut algorithms. Mirka and Williamson [45] conducted a comparative study of max-cut
approximation algorithms, finding that spectral methods were significantly faster while
often achieving results comparable to those of semidefinite programming. In addition,
Kang et al. [46] demonstrated a neuromorphic hardware-based spiking Boltzmann machine
that solves max-cut problems using probabilistic sampling and parallelism in phase-change
memory circuits.

More recently, quantum computing-based approaches have been proposed as a promis-
ing direction for solving the max-cut problem. The quantum approximate optimization
algorithm (QAOA) [47] utilizes quantum circuits to approximate near-optimal cuts and has
shown potential in benchmark settings. Hybrid methods combining QAOA with classical
pre- and post-processing have also demonstrated scalability on large graphs [48]. Further-
more, quantum GAs that integrate Grover search with divide-and-conquer evolutionary
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strategies have been introduced and shown to outperform classical heuristics in specific
instances [49]. These advances illustrate the growing relevance of quantum-enhanced
optimization techniques in combinatorial problems like max-cut. These developments
suggest that quantum-enhanced algorithms may become increasingly viable for tackling
NP-hard problems like max-cut, especially as quantum hardware and software continue
to evolve.

These diverse research efforts illustrate the continuous advancements in max-cut
problem solving, with developments spanning classical optimization techniques, heuristic
and metaheuristic approaches, emerging machine learning-driven methodologies, and now,
quantum computing paradigms. These collective advances underline a continued effort
to improve both the efficiency and exploratory capability of max-cut solvers. However,
population-based heuristics such as GAs still suffer from redundant exploration. This moti-
vates our proposed method, GATS (genetic algorithm with tabu search), which introduces
solution-level tabu constraints to prevent revisiting previously explored solutions, inspired
by mechanisms used in both TS and HS. As demonstrated in subsequent sections, GATS
offers improved performance while maintaining computational efficiency.

3. Genetic Algorithms

Genetic algorithms (GAs) [50], as a representative technique of evolutionary computa-
tion [51], are widely used in combinatorial optimization problems such as graph partition-
ing [52-54]. They have also been extensively applied to the max-cut problem [8-11]. In this
section, we introduce the GA used by Seo et al. [10] and propose an improved GA.

3.1. Generational Model

We now summarize the approach to the max-cut problem proposed by Seo et al. [10],
where they consider two chromosome-encoding strategies for representing solutions to the
max-cut problem:

e Vertex-based encoding: Each chromosome is a binary string of length | V|, where each
gene corresponds to a vertex in the graph G = (V, E). A gene value of 0 indicates that
the corresponding vertex belongs to subset S, and 1 indicates it belongs to V' \ S. This
encoding allows for simple and intuitive computation of the cut size by counting the
number of edges crossing between the two subsets.

e Edge-set encoding based on a spanning tree: As proposed by Seo et al. [10], this
encoding represents each solution as a binary string of length |V| — 1, corresponding
to a subset of edges from a predefined spanning tree of the graph. Each gene indicates
whether the corresponding edge in the tree is included in the cut set. This representa-
tion enables structured exploration of the cut space by leveraging the properties of
spanning trees.

These encoding methods serve as the basis for the genetic algorithms described in the
following sections.

Seo et al. utilized a generational GA with the framework illustrated in Algorithm 1
and parameter settings detailed in Table 1. The algorithm employs tournament selection
to choose candidate chromosomes, followed by one-point crossover and random bit-wise
mutation. For implementation, Seo et al. [10] used Open Beagle [55] in combination with the
Boost Graph Library (http:/ /boost.org). Each execution of the genetic algorithm generates
approximately 10,000 candidate solutions.
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Table 1. Configuration of the generational genetic algorithm as described by Seo et al. [10].

Parameter Value

Encoding Vertex- or edge-set based

Length of run, T 100 generations

Population size, N 100

Crossover rate, p. 0.9

Mutation rate, p, 0.1

Tournament size, t 7

Replacement A generational model where offspring

with higher fitness replace their parents

An elitism mechanism that retains
Elitism superior individuals by replacing weaker
ones

Algorithm 1 Pseudo-code of the generational genetic algorithm proposed by Seo et al. [10]

Randomly generate N solutions s;,i =1,2,...,N
repeat
fork=1to N/2do
Tournament selection of parents si, and sy, from the population
(02k—1,0k) < one-point-crossover sk, , sx,) with probability p.
091 < bit-wise mutation of 0,;_1 with probability p,,
0ok < bit-wise mutation of 0y with probability p;,
end for
Replace the population with offspring 01,05, . .., 0N, keeping the fittest individuals
until when the predefined number T of generations is completed
return the most optimal solution discovered

_ =
=)

3.2. Steady-State Model

We developed a new GA aimed at improving upon the approach described in
Section 3.1, utilizing a steady-state GA framework, as illustrated in Algorithm 2. Each
chromosome represents a partition (S, V'\ S) of a given graph G = (V, E) and consists of
|V| genes, where each gene corresponds to a vertex in G. A gene is assigned a value of 0 if
the corresponding vertex belongs to S, and 1 otherwise. This encoding method follows the
vertex-based encoding strategy used in [10]. Each solution (chromosome) in our algorithm
is represented by a binary vector:

x = (x1,%2,...,Xy|) € {0,1}VI

where x; = 0 indicates that vertex v; belongs to subset S, and x; = 1 indicates membership
in V'\ S. The fitness of a solution x is evaluated by the total number of edges crossing the
partition, formally defined as

f(x) = Z O(xy # xv)

(u,0)€E

where 4(-) is the indicator function, returning 1 if the edge (1, v) connects two nodes in
different subsets, and 0 otherwise. This formulation directly corresponds to the cut size of
the solution.

The crossover operator used is uniform crossover, which creates offspring by ran-
domly selecting each gene from one of the two parent chromosomes with equal probability.
Mutation is applied bit-wise with a fixed probability p,,, flipping each gene independently.
The algorithm starts by initializing a population of N = 50 randomly generated chromo-
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somes. The fitness of each chromosome is determined by its cut size, and parent selection
is performed randomly. A crossover operation generates two offspring by recombining
genetic material from two parent chromosomes. We employ uniform crossover [56] and
apply random bit-wise mutation. Once the offspring are generated, the GA replaces the
least fit individual in the population with the fitter offspring. The algorithm runs for a
fixed number of generations, denoted as T. Through experimentation, we found that
setting T = 5000 results in execution times comparable to those of the method proposed
by Seo et al. [10]. Over the course of each GA execution, approximately 10,000 candidate
solutions are generated, following a Genitor-style replacement strategy [57].

Algorithm 2 Pseudo-code of our steady-state genetic algorithm

1: Randomly generate N solutions s;, i =1,2,..., N

2: repeat

3:  Randomly choose parents p; and p; from the population

(01,02) 4 uniform-crossover(py, p2)

01 + bit-wise mutation of 01 with probability p;,

07 < bit-wise mutation of 0, with probability p;,

o « fitter of 01 and 0y

8:  Replace the least fit member of the entire population with offspring o
9: until when the predefined number T of generations is completed

10: return the most optimal solution discovered

4. Proposed Algorithm
4.1. Overview of the Proposed Algorithm

Tabu search (TS), introduced by Glover [58], is a metaheuristic originally developed for
operations research. It explores the solution space by iteratively modifying a single current
solution. In each iteration, neighboring solutions are generated and evaluated. The best
candidate not marked as tabu—or one that meets an aspiration criterion—is selected as the
next current solution. The tabu list prevents cycling by restricting recently visited solutions.
This process continues until a stopping condition is met, typically when no improvement is
observed over several iterations.

The proposed method, genetic algorithm with tabu search (GATS), aims to enhance
the performance of standard genetic algorithms (GAs) by integrating tabu search (TS) to
prevent redundant exploration. Unlike conventional GAs, which often revisit previously
explored solutions, GATS incorporates a tabu mechanism to enhance search efficiency and
preserve solution diversity.

The memory mechanism in tabu search can assist a GA in escaping local minima
and progressing toward a near-optimal solution. For combining GA with TS, we regard
the population of GA as a tabu list. In this case, a solution obtained by crossover and
mutation of GA is accepted only if it is not in the population. If the same solution already
exists in the population, the solution is discarded and another solution is generated by
applying crossover and mutation again. In this manner, we can design GA for exploring
the solution space beyond local optimality and the GA combined with TS is expected to
show improved performance.

4.2. Implementation of the Proposed Algorithm

The GATS framework follows the standard GA structure but incorporates tabu con-
straints at key stages. To formally describe the tabu mechanism, let the tabu list be de-
noted by

£ c {01}Vl
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which stores recently accepted solutions. A newly generated candidate solution Xpew is
accepted into the population only if

Xnew & L

After acceptance, the tabu list is updated to include xpew, and the worst element is removed
if |£| exceeds the predefined size |L|. This maintains a fixed-size short-term memory that
promotes exploration by avoiding repeated evaluations of the same solutions.

The algorithm starts with an initial population of solutions, each representing a
potential max-cut partition. Parent selection follows a steady-state GA approach, using
uniform crossover and random bit-wise mutation. However, instead of allowing duplicate
solutions, a tabu list is maintained to track previously explored solutions. If a newly
generated solution exists in the tabu list, it is discarded, and the search continues. This
ensures that the search space is explored more effectively, reducing premature convergence.
To detect duplicate solutions, the current implementation uses full-solution comparison.
Although effective, this can be computationally demanding for large graphs. In future work,
we plan to adopt a hash-based representation to improve scalability and performance.

Algorithm 3 shows the pseudo-code of the proposed algorithm combining GA with
TS. The framework of the algorithm is almost the same as that of the steady-state GA
introduced in Section 3.2. The algorithm employs vertex-based binary encoding [10],
as outlined in Section 3.2. It starts by generating a population of 50 random chromosomes.
These chromosomes are evaluated by calculating their cut sizes, and a given number of
them are used to form a tabu list. For each generation, two chromosomes are selected
randomly, and two new offspring are created using uniform crossover and random bit-wise
mutation. If the fitter offspring is not in the tabu list, the GA replaces the least fit member
of the entire population with the fitter offspring. However, if the fitter offspring is in the
tabu list, it is simply discarded and the next generation begins. Note that the generation
count increases regardless of whether a newly generated offspring is accepted or rejected.
This design ensures consistent iteration control but may result in generations where no
population update occurs.

Algorithm 3 Pseudo-code of our genetic algorithm combined with tabu search

1: Randomly generate N solutions s;, i =1,2,..., N
2: Add the generated random |L| solutions to tabu list L
3: repeat

4:  Randomly choose parents p; and p, from the population
5. (01,02) < uniform-crossover(pi, p2)
6: 01 < bit-wise mutation of 0; with probability p,,
7: 0 < bit-wise mutation of 0p with probability p,,
8: 0 <« fitter of 01 and 0y
9.  if offspring o ¢ L then

10: w < the least fit member of the population

11: Replace w with o in the population

12: if w € L then

13: Remove w from the tabu list L

14: else

15: Remove the worst one from the tabu list L

16: end if

17: Add offspring o to the tabu list L

18:  endif

19: until when the predefined number T of generations is completed
20: return the most optimal solution discovered
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4.3. Comparison with Traditional GA-TS Hybrids

A key distinction between the proposed GATS approach and existing hybridizations
of GA with TS lies in how the tabu list is managed. While some recent studies have
proposed hybrid GA-TS algorithms for the max-cut problem, they typically apply tabu
mechanisms at the component or move level, such as tracking vertex-level changes. In con-
trast, our approach employs solution-level memory constraints, which, to the best of our
knowledge, have not been extensively explored in the recent literature. Traditional GA-TS
hybrids typically apply tabu constraints at the vertex level, tracking individual vertex
movements to prevent cycling back to recently explored local optima [13,30,34]. While
this method effectively improves local search performance, it does not prevent GA from
generating redundant solutions at the global solution level, leading to inefficiencies in
broader exploration.

In contrast, our proposed GATS (genetic algorithm with tabu search) integrates tabu
search at the solution level, treating the GA population itself (or a part of it) as an im-
plicit tabu list. This ensures that redundant solutions are eliminated at the crossover
and mutation stages, thereby maintaining search diversity and improving overall effi-
ciency. By restricting the reproduction of previously visited solutions, GATS achieves better
exploration-exploitation balance compared to conventional GA-TS hybrids.

Although GATS is rooted in the GA framework, its solution-level memory mechanism
strategically aligns it with the exploration behavior of harmony search (HS), rather than
conventional GA-TS hybrids. Harmony search [59] maintains a memory structure that
prevents redundant solution generation, ensuring continuous exploration of new regions.
Similarly, GATS enforces solution-level constraints within GA’s evolutionary process, pro-
moting a more structured and effective search. This distinction is crucial, as it allows GATS
to avoid unnecessary recomputation while maintaining population diversity, ultimately
leading to superior performance in combinatorial optimization problems.

In sum, unlike traditional GA-TS hybrid methods that apply tabu constraints at a
local level—such as tracking recent moves of individual vertices—the proposed GATS
algorithm operates at the global solution level by treating the entire population (or a part
of it) as an implicit tabu list. This global-level constraint reduces redundancy and sustains
diversity, avoiding the need for additional memory structures required in conventional TS.
As a result, GATS ensures a broader exploration of the solution space while avoiding the
complexity of managing explicit memory structures as typically required in conventional
TS mechanisms.

This population-as-memory mechanism distinguishes GATS as a novel hybridization
framework, streamlining memory usage and enhancing search breadth. The effectiveness of
this approach is further validated in Section 5 through experimental comparisons with HS.

This mechanism enables the algorithm to maintain diversity within the population by
preventing the reintroduction of recently explored solutions, which could otherwise lead to
premature convergence.

To better position the proposed GATS method within the context of existing ap-
proaches, we compare it with representative studies that have addressed solution dupli-
cation in GAs. Several prior studies have proposed methods to mitigate redundancy and
improve diversity. For example, Mumford [60] introduced a replacement strategy in a
steady-state multi-objective evolutionary algorithm that explicitly rejects phenotypically
duplicate offspring from entering the population. Raidl and Hu [61] proposed a complete
archive for binary-encoded GAs, utilizing a trie-based structure that stores all evaluated
solutions and transforms revisited candidates into similar but unvisited ones using a con-
trolled perturbation process. Additionally, Wang et al. [62] proposed a nonrevisiting genetic
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algorithm based on a binary space partitioning (BSP) tree that not only records visited
regions but also guides the search through multiple regions to avoid local optima.

Compared to these approaches, the GATS algorithm employs a fixed-length, solution-
level tabu list that maintains a short-term memory of recently accepted solutions. This
list is maintained separately from the population and is used to restrict the reinsertion of
previously accepted individuals. Unlike trie-based or BSP-based global memory structures
that require additional transformation logic or landscape modeling, our approach imposes
a lightweight, recency-based avoidance strategy that integrates seamlessly with steady-
state GA dynamics. Thus, while GATS shares the overarching goal of avoiding duplicate
solutions and maintaining diversity, its implementation reflects a distinct balance between
simplicity and effectiveness. In this sense, it represents a pragmatic hybridization of
GA and TS principles, incorporating short-term memory without incurring significant
computational overhead.

5. Experiments

All experiments were implemented in C and conducted on an Ubuntu 16.04.7 Linux
system using a 2.8 GHz Intel i5 CPU. To ensure reproducibility, fixed random seeds were
used in every run.

5.1. Test Graphs

We conducted experiments using 31 benchmark graphs commonly referenced in
the literature [10,11,52,63]. These graphs represent different structural types and can be
described as follows:

e Gn.p: A randomly generated graph consisting of n vertices, where each edge is
included with probability p. For example, G1000.01 denotes a random graph with
1,000 vertices and an edge probability of 0.01.

e Und: A geometric random graph with n vertices, where the expected degree of
each vertex is d. As an example, U500.10 represents a geometric random graph with
500 vertices and an expected degree of 10.

*  bregn.b: A 3-regular random graph with n vertices, constructed so that the optimal
bisection size is close to b with high probability, which increases as n becomes larger.

e catmn: A caterpillar graph with n vertices, where each node on the main spine is
connected to six additional nodes. The variant rcat.n represents a modified caterpillar
graph with n vertices, where each node along the spine has approximately /7 legs.

e gridn.b: A grid graph with n vertices, where the minimum cut size is b. The variant
w-gridn.b denotes a modified version with additional edges connecting opposite
boundaries, forming a wrapped grid.

5.2. Determination of Tabu List Size

Selecting an appropriate size for the tabu list plays a critical role in guiding short-term
search behavior [64], particularly when integrated with GAs. An overly small tabu list may
allow repeated visits to previously explored solutions, while an excessively large list may
overly restrict exploration and hinder convergence.

To determine the optimal size, we evaluated various tabu list sizes ranging from
small to large values. The performance was assessed using the average of the percentage
difference ratio, defined as 100 x (best — output)/best, where best is the best solution found
across all experiments for a given graph, and output is the average solution obtained from
30 runs of the algorithm. Lower values indicate better performance.

As shown in Table 2, the smallest average difference ratio was achieved when the
tabu list size was set to 5. This indicates that a size of 5 provides the most effective
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balance between promoting exploration and avoiding redundant searches. In contrast,
performance gradually deteriorates as the tabu list size increases beyond this point. This
can be attributed to excessive restriction in solution acceptance, which may reduce diversity
in the search space.

Based on these findings, we adopted a tabu list size of 5 as the default configuration in
our proposed GATS algorithm.

Table 2. Impact of tabu list size on solution quality (average of percentage difference ratio).

Tabu List Size (|L|) Average % Difference Ratio *
2 3.23

3 3.08

4 3.14

5 3.07

10 3.13

15 3.27

20 3.38

25 3.50

30 3.65

35 3.73

40 3.89

45 4.03

50 412

0: when a tabu list is not used 4.40

* The percentage difference ratio is calculated as 100 x (best — output)/best (%), where best is the highest cut value
obtained among all runs, and output is the average result of 30 runs. Lower values indicate better performance.
Bold text highlights the best-performing result.

5.3. Comparison of Genetic Algorithms

In this subsection, we compare the performance of different GA variants applied to
the max-cut problem, including the generational genetic algorithm (GGA) proposed by
Seo et al. [10], our steady-state genetic algorithm (SGA), and our hybrid approach incorpo-
rating tabu search (GATS). To evaluate their effectiveness, we conducted experiments using
benchmark graph instances, running each algorithm 30 times per instance and computing
the average and standard deviation of the cut sizes. Table 3 compares their performance,
where a multi-start algorithm (MSA) generates 10,000 random cuts and returns the best.
The results indicate that SGA consistently outperforms GGA in our experiments, suggest-
ing that the steady-state approach may be more effective than the generational model
in maintaining solution quality under the given settings. Furthermore, GATS achieves
superior results compared to SGA, highlighting the benefits of integrating tabu search to
prevent redundant exploration and enhance search efficiency.

To confirm the statistical significance of these findings, we performed one-tailed
t-tests comparing the results of GGA, SGA, and GATS. The p-values indicate that the
improvements from GGA to SGA and from SGA to GATS are statistically significant,
reinforcing the conclusion that our modifications lead to meaningful performance gains.
Additionally, we analyzed computational efficiency and found that GATS maintains a
runtime comparable to SGA while significantly improving solution quality. This suggests
that incorporating tabu search does not introduce excessive computational overhead,
making GATS a viable alternative to conventional GAs.
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Table 3. Cut sizes and runtime comparison among four algorithms.
Multi-Start GGA [10] SGA GATS

Graph Algorithm Vertex Edge Set

Ave SD Time * Ave SD Ave SD Ave SD Time * p-Value ! Ave SD Time * p-Value 2
G500.005 360.7 3.5 0.2 375.0 3.7 392.1 3.2 519.9 6.2 03 91x107% 519.0 6.7 0.3 3.0x 1071
G500.01 680.0 6.4 0.3 700.1 4.5 708.1 5.7 926.4 10.1 03 43x107% 931.8 9.2 0.4 1.8 x 1072
G500.02 1274.0 7.5 0.4 1303.1 7.2 1295.7 7.5 1635.0 14.1 04 1.0x104 1643.0 135 0.5 1.7 x 1072
G500.04 2695.3 9.9 0.7 2747.9 10.0 2722.2 12.1 3249.3 20.5 07 32x10% 3263.1 19.3 0.7 59 x 1073
G1000.005 13444 7.5 0.6 1373.4 8.4 1383.6 54 1873.7 12.9 07 34x107% 1884.5 139 0.7 2.0x1073
G1000.01 2669.1 111 0.9 2711.0 8.5 2702.0 7.8 3453.4 19.1 09 11x10™% 3472.0 20.6 1.0 51x107*
G1000.02 5247.0 11.8 15 5307.4 10.9 5280.5 15.2 6367.4 28.6 14 12x107¥ 6398.5 26.8 1.5 7.5 %1073
U500.05 702.9 4.9 0.3 597.2 3.6 606.3 3.8 847.0 6.9 0.3 22x10°% 850.2 6.7 0.4 3.8 x 1072
U500.10 1259.7 5.7 0.4 1276.1 4.8 1283.8 6.5 1466.9 9.8 04 11x10°% 1474.0 9.5 0.5 38x1073
U500.20 2381.4 7.9 0.7 2410.2 5.7 2407 .4 54 2691.5 14.8 07 14x107% 2705.6 13.0 0.7 23 x107%
U500.40 4538.4 7.1 1.1 4575.6 7.1 4563.2 8.2 5060.4 25.4 11 56x107% 5077.8 23.8 1.1 5.1 %1073
U1000.05 1286.4 6.6 0.6 1309.0 7.6 1324.9 4.6 1601.9 8.2 0.7 58x107% 1605.5 9.4 07  62x1072
U1000.20 4834.1 10.8 14 4877.9 104 4871.1 10.6 5490.9 24.8 14 99x10% 5516.3 20.7 1.5 82x107°
U1000.40 9223.8 144 2.3 9292.5 12.2 9261.0 8.8 10,216.6 35.6 22 23x107# 10,263.3 36.3 2.3 1.1 x 1075
breg500.12 428.1 4.0 0.2 445.4 4.8 461.8 3.3 635.1 6.7 03 65x10% 634.1 5.6 0.3 2.6 x 1071
breg500.16 429.2 4.6 0.2 444.5 3.4 462.5 4.7 635.7 6.2 03 26x107% 637.6 6.9 0.3 1.3 x 107!
breg500.20 428.1 3.0 0.2 4449 4.6 461.2 4.3 635.4 6.5 03 22x107% 636.9 6.4 0.3 19 x 107!
cat.352 210.6 2.5 0.1 224.1 2.9 242.7 2.8 334.2 3.1 02 53x107% 3334 2.9 0.2 1.7 x 107!
cat.702 401.7 3.6 0.3 419.0 3.3 446.2 3.9 666.3 5.0 03 38x107% 666.2 5.0 0.4 46x1071
cat.1052 587.1 4.1 0.4 606.8 5.0 644.9 5.6 992.8 5.6 05 37x107% 996.0 6.1 0.6 2.1 %1072
cat.5252 2764.9 11.8 2.3 2804.5 10.0 2891.2 10.2 4057.0 18.8 28 59x107% 4073.4 19.9 3.2 13 %1073
rcat.134 89.0 2.1 0.1 99.4 15 106.1 1.5 129.12 1.6 01 13x10732 128.9 15 01 3.0x1071
rcat.554 321.8 4.1 0.2 339.0 3.1 360.2 2.5 543.5 2.3 02 7.0x107% 543.1 2.3 0.3 3.0 x 1071
rcat.994 555.8 3.7 0.4 5779 5.2 611.3 4.7 974.2 3.3 05 6.1x1075 976.4 3.1 0.5 5.1 %1073
rcat.5114 2694.0 9.5 2.1 2736.6 10.3 2817.6 9.7 4155.9 17.6 25 13x1075 4198.7 19.7 29 32x10710
grid100.10 116.9 2.7 0.1 145.1 2.6 146.8 19 153.4 6.4 01 39x107% 161.79 8.3 0.1 6.8 x 1075
grid500.21 536.0 4.0 0.3 582.1 4.6 594.5 5.4 803.4 14.4 03 6.7x107% 815.6 15.8 0.3 19x10°3
grid1000.20 1050.1 5.3 0.5 1113.8 9.0 1133.2 7.0 1610.9 214 06 12x1074 1621.1 20.9 0.7 3.6 x 1072
w-grid100.20 128.4 34 0.1 130.1 2.4 133.7 1.8 164.3 7.0 0.1 53x102 173.0 12.5 0.1 12 %1073
w-grid500.42 559.4 3.6 0.3 556.9 4.3 571.7 6.0 828.1 16.5 03 81x10°% 835.4 18.5 0.3 6.1 x 1072
w-grid1000.40 1087.9 7.0 0.5 1075.5 5.6 1096.3 5.1 1641.7 22.5 0.6 43x10™% 1653.7 21.9 0.7 2.3 x 1072

Results from 30 runs. (Ave: average cut size. SD: standard deviation). * Average execution time in seconds using a 2.8 GHz Intel i5 CPU. ! A one-tailed ¢-test was used to assess whether
the generational GA [10] performs equivalently to the SGA. 2 A one-tailed t-test was used to evaluate whether SGA and GATS produce equivalent results. Bold text highlights the

best-performing result in each row.
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Overall, the comparison reveals a clear performance hierarchy among the tested
methods, where GGA is outperformed by SGA, which in turn is outperformed by GATS.
The steady-state approach in SGA contributes to better convergence, while the integration
of TS in GATS further refines the search process by mitigating local optima entrapment.
These results confirm that our proposed hybrid method effectively balances exploration
and exploitation, leading to a more robust optimization strategy for the max-cut prob-
lem. Overall, the performance ranking of the methods can be summarized as follows:
MSA < GGA < SGA < GATS, where “A < B” means that B significantly outperforms A.

5.4. Analysis of Crossover Operator Impact

To better understand the source of performance improvement in the proposed steady-
state genetic algorithm (SGA), we conducted a decomposition analysis, comparing the
contribution of the evolutionary scheme and the crossover operator separately. While
GGA employs a generational model with one-point crossover, the proposed SGA uses a
steady-state model with uniform crossover.

To isolate the effect of the crossover operator, we implemented a variant of SGA that
adopts one-point crossover instead of uniform crossover. Figure 2 presents the compar-
ative improvement rates across 31 benchmark instances: the yellow bars represent the
improvement of SGA (with uniform crossover) over GGA, while the orange bars indicate
the improvement achieved solely by switching from one-point to uniform crossover within
the SGA framework.

As shown in the figure, uniform crossover contributes significantly to the overall per-
formance gain in many instances. In particular, instances such as prcart.994, pcart.1052,
and rcat.554 show that more than one-fourth of the total improvement comes from the
crossover operator alone. These results suggest that both the steady-state scheme and the

choice of crossover operator play important and complementary roles in enhancing the
effectiveness of the algorithm.

70 Improvement of SGA over GGA
mmm Improvement of uniform xover over 1-pt xover in SGA

60

o
=)

N
o
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w
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G500.02
G500.04

G1000.005

G1000.01

G1000.02
U500.05
U500.10
U500.20
U500.40

U1000.05
U1000.20
U1000.40
breg500.12
breg500.16
breg500.20
cat.352
cat.702
cat.1052
cat.5252
rcat.134
rcat.554
rcat.994
rcat.5114
grid100.10
grid500.21
grid1000.20
w-grid100.20
w-grid500.42
w-grid1000.40
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Figure 2. Comparative improvement analysis showing the contribution of steady-state evolution
and uniform crossover. Yellow bars indicate the improvement of SGA over GGA, while orange bars
indicate the performance gain due to the use of uniform crossover over one-point crossover in SGA.

5.5. Convergence Analysis

To further investigate the convergence behavior of the proposed GATS algorithm, we
compared its performance against SGA over generations. Specifically, we measured the
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average cut size of the entire population at each generation for two representative graph
instances: G1000.005 and U1000.05.

Figures 3 and 4 present the convergence curves for these instances. As shown in the
plots, GATS not only achieves higher average cut sizes throughout the evolution process
but also exhibits more stable convergence than SGA. These results support the claim that
the integration of a solution-level tabu list in GATS not only improves population diversity
but also contributes to more efficient and effective convergence.

G1000.005
1900 T T 1
o GGA —— |
1800 GATS 7

1700

1600

1500

Average cut size

1400

1300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1200

Generation

Figure 3. Convergence behavior on instance G1000.005: average cut size over generations.

U1000.05

1700 T I

1600 - S ———

1500 - / N

1400 / .

1300 / .

Average cut size

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Generation

Figure 4. Convergence behavior on instance U1000. 05: average cut size over generations.

5.6. Comparison with Harmony Search

In this subsection, we analyze the results presented in Table 4, which compare the
performance of GATS and HS. The results indicate that the two algorithms exhibit generally
similar performance, with only minor differences in most cases. The average cut sizes
obtained by GATS and HS are comparable across various test graphs, and the standard
deviations remain consistently close, suggesting that GATS effectively incorporates the
advantages of TS while maintaining search behavior similar to HS.

However, certain test instances reveal notable performance differences between the
two algorithms. In particular, HS significantly outperforms GATS in specific graphs such
as cat.5252 and rcat.5114. For these cases, HS achieves substantially larger cut sizes,
indicating that its search strategy is more effective for these graph structures. On the
other hand, GATS performs slightly better than HS in a few instances, such as G1000.01
and breg500. 12, though the differences in these cases are relatively small. The statistical
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significance analysis further supports these observations. While the majority of test cases
yield p-values greater than 0.1, suggesting that the differences between the two algorithms
are not statistically significant, certain cases, including cat.5252 and rcat.5114, exhibit
extremely low p-values, confirming that HS significantly outperforms GATS for these
specific graphs. Conversely, in cases where GATS shows marginally better results, such as
G1000.01, the difference is relatively minor but still noticeable.

Another important aspect to consider is the execution time of the two algorithms.
The results indicate that GATS and HS require nearly identical computation times, implying
that the introduction of TS in GATS does not impose additional computational overhead.
This suggests that while TS effectively prevents redundant solution exploration, it achieves
this without compromising efficiency.

Table 4. Performance comparison of the proposed method and harmony search.

GATS HS
Graph Ave SD Time * Ave SD Time * p-Value !
G500.005 519.0 6.7 0.3 521.3 6.6 03 93x1072
G500.01 931.8 9.2 0.4 933.1 11.6 04 32x1071
G500.02 1643.0 13.5 0.5 1642.1 16.2 05 41x107!
G500.04 3263.1 19.3 0.7 3259.3 19.5 07 23x1071
(G1000.005 1884.5 13.9 0.7 1883.6 14.2 08 4.0x107!
G1000.01 3472.0 20.6 1.0 3460.7 21.3 1.0 21x10°2
G1000.02 6398.5 26.8 1.5 6402.5 24.4 15 27x107!
U500.05 850.2 6.7 0.4 852.2 6.9 04 13x1071!
U500.10 1474.0 9.5 0.5 1473.0 8.5 05 33x1071
U500.20 2705.6 13.0 0.7 2704.5 10.3 07 36x1071
U500.40 5077.8 23.8 1.1 5086.3 22.9 11 82x1072
U1000.05 1605.5 9.4 0.7 1604.4 9.1 08 32x1071
U1000.20 5516.3 20.7 1.5 5509.9 21.7 15 12x1071!
U1000.40 10,263.3 36.3 23 10,2515 36.0 23 11x107!
breg500.12 634.1 5.6 0.3 636.5 4.0 03 3.1x102
breg500.16 637.6 6.9 0.3 639.2 6.0 03 17x1071
breg500.20 636.9 6.4 0.3 636.6 6.2 03 43x1071
cat.352 333.4 29 0.2 335.2 3.1 02 12x1072
cat.702 666.2 5.0 0.4 666.9 4.8 04 29x1071
cat.1052 996.0 6.1 0.6 997.2 4.7 06 20x1071
cat.5252 4073.4 19.9 3.2 4309.5 23.8 23 38x10%
rcat.134 128.9 1.5 0.1 130.0 1.4 01 24x1073
rcat.554 543.1 2.3 0.3 542.8 25 03 32x1071!
rcat.994 976.4 3.1 0.5 978.3 34 05 14x1072
rcat.5114 4198.7 19.7 29 4479.1 18.4 20 3.0x10752
grid100.10 161.79 8.3 0.1 164.3 7.1 01 11x1071!
grid500.21 815.6 15.8 0.3 811.0 16.1 03 13x1071!
grid1000.20 1621.1 20.9 0.7 1622.8 25.7 07 39x101
w-grid100.20 173.0 12.5 0.1 171.0 95 01 24x1071!
w-grid500.42 835.4 185 0.3 842.1 23.2 03 1.1x1071!
w-grid1000.40 1653.7 21.9 0.7 1651.8 23.7 07 37x1071

Results from 30 runs. (Ave: average cut size. SD: standard deviation). * Average execution time in seconds using a
2.8 GHz Intel i5 CPU. ! A one-tailed t-test was used to assess whether GATS and HS yield equivalent results. Bold
text highlights the best-performing result in each row.

In sum, the comparison between GATS and HS demonstrates that the two algorithms
achieve similar performance, with HS exhibiting an advantage in certain graph instances
and GATS performing slightly better in others. The negligible computational cost of
integrating TS in GATS further reinforces its practical utility. These findings indicate that
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GATS serves as an effective alternative to HS while maintaining the strengths of GA-
based search strategies. Future research could further explore the underlying reasons why
HS outperforms GATS in certain cases and investigate potential hybrid approaches that
incorporate additional features of HS into GATS to enhance its overall performance.

The results from Section 5 collectively demonstrate that GATS not only enhances GA
performance but also provides a competitive alternative to HS across a range of graph types.

To further illustrate the performance differences among the algorithms, we present
a bar chart in Figure 5. This visualization complements the numerical results shown in
Tables 3 and 4, allowing for a more intuitive comparison. As seen in the figure, the GATS
and HS algorithms consistently outperform GGA and SGA across most benchmark in-
stances, with HS showing a noticeable advantage in some specific cases (e.g., cat.5252,
rcat.5114).
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Figure 5. Bar chart comparing the average cut sizes achieved by four algorithms (GGA, SGA, GATS,
and HS) across all benchmark graph instances. This visualization complements the tabulated results
and illustrates the relative performance more clearly.

In particular, HS appears to perform better than GATS in instances such as cat . 5252
and rcat.5114. One possible reason is that HS generates new solutions by combining
components from multiple existing solutions (i.e., a multi-parent mechanism), which may
allow for more flexible exploration compared to the two-parent crossover in GA. This
approach could be more effective for certain graph structures, such as tree-like graphs,
where diverse component mixing helps escape local optima. These observations suggest
that the recombination strategy in GATS may be less suited to specific topologies.

6. Conclusions and Future Work

This study proposed a hybrid genetic algorithm that incorporates tabu search (GATS)
to improve the performance of GAs in solving the max-cut problem. By integrating
TS, the proposed method effectively mitigates redundant exploration, leading to a more
efficient search process. The experimental results confirm that GATS outperforms the
standard GAs while exhibiting search behavior similar to harmony search (HS). This
suggests that mitigating repetitive searches via tabu mechanisms contributes to more
effective combinatorial optimization.
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The findings of this study highlight the potential of combining GAs with TS to improve
search efficiency. The results indicate that this approach can serve as an alternative to HS,
which has been shown to be effective in previous studies. Furthermore, the similarities in
search strategies between GATS and HS suggest that such hybridization may bridge the
performance gap between various heuristic methods and provide a unified framework for
efficient combinatorial optimization.

Unlike previous GA-TS hybrids, the proposed GATS method applies tabu constraints
at the solution level, effectively balancing exploration and exploitation by discarding
previously visited solutions at the generation stage. This novel mechanism contributes to
improved performance without increasing computational complexity.

Future Research Directions

While the proposed method demonstrates promising performance improvements,
several aspects can be explored in future research:

*  Theoretical analysis of GATS efficiency: While the empirical results validate the
effectiveness of GATS, a more rigorous theoretical analysis is required to explain
why the method performs better than standard GAs. Future work could analyze the
impact of tabu constraints on exploration efficiency and convergence properties using
mathematical models.

¢ Diversity maintenance and search space coverage: The tabu list in GATS prevents
redundant solutions, but its effect on search space coverage and genetic diversity
has not been explicitly measured. Future studies could investigate the diversity
preservation mechanisms of GATS using entropy-based or distribution-based metrics.
Additionally, visualizing search trajectory patterns could provide further insights into
how GATS explores the solution space differently compared to traditional GAs.

*  Performance on different graph structures: While the proposed algorithm has been
tested on a variety of benchmark graphs, further experiments on larger or structurally
different graph types, such as real-world network graphs, could enhance our under-
standing of its generalizability. In particular, cases where HS significantly outperforms
GATS, such as cat.5252 and rcat . 5114, require a deeper analysis to identify potential
limitations of the current approach.

¢ Comparisons with other metaheuristic techniques: Future work could explore hy-
bridizing GATS with other metaheuristic algorithms [65] beyond HS. Techniques such
as simulated annealing or reinforcement learning-based search strategies could be
incorporated to enhance adaptability and convergence efficiency. Evaluating how
these hybrid approaches perform against state-of-the-art heuristics would provide
valuable insights.

e Computational complexity and optimization: Although GATS does not introduce sig-
nificant computational overhead, further optimization of the algorithm could improve
its scalability for large-scale instances. Investigating more efficient tabu list manage-
ment strategies or parallelized implementations could enhance runtime efficiency
while maintaining solution quality. Additionally, future studies could explore combin-
ing GATS with reinforcement learning-guided selection mechanisms to dynamically
adapt tabu constraints during the search.

By addressing these research directions, future work can further refine the effective-
ness of hybrid GAs in solving combinatorial optimization problems and extend their
applicability to broader domains.
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Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic algorithm

HS Harmony search

TS Tabu search

EDA  Estimation of distribution algorithms
GNN  Graph neural network

MSA  Multi-start algorithm

GGA  Generational GA

SGA  Steady-state GA

GATS GA combined with TS
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