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Abstract: This paper presents a genetic algorithm-based methodology to address the
Site-Specific Management Zone (SSMZ) delineation problem. A SSMZ is a subregion of
a field that is homogeneous with respect to a soil or crop property, enabling farmers to
apply customized management strategies for optimizing resource use. The algorithm
generates optimized field partitions using rectangular zones, applicable to both regular
and irregularly shaped fields. To the best of our knowledge, the Genetic Algorithm for
Zone Delineation (GAZD) is the first approach to handle the rectangular SSMZ delineation
problem in irregular-shaped lands without introducing non-real data. The algorithm’s
performance is compared with an exact solution based on integer linear programming.
Experimental tests conducted on real-field and generated irregular-shaped instances show
that while the GAZD requires longer execution times than the exact approach, it proves to
be functional and robust in solving the SSMZ problem. Furthermore, the GAZD offers a set
of “good enough” solutions that can be evaluated for feasibility and practical convenience,
making it a valuable tool for decision-making processes. Moreover, strategies such as
implementation in a compiled language and parallel processing can be used to improve
the execution time performance of the algorithm.

Keywords: genetic algorithms; management zone delineation; operations research;
agriculture

MSC: 90-08; 90C10; 90B80; 90C59; 68W50

1. Introduction
In modern agriculture, crop and soil properties are collected, processed, and analyzed

both temporally and spatially, integrating additional information to support decision-
making. By addressing variability within agricultural systems, it is possible to improve
resource efficiency, productivity, profitability, and the sustainability of agricultural produc-
tion. Data retrieved by soil sampling, drone and satellite imagery, remote sensors, raster
data, and other information technologies are used to gather information about issues such
as heterogeneity of chemical and physical soil properties, crop development, and climate
variability. This information can be used as inputs to decision support systems to assist
farmers in decisions such as targeted specific water and nutrient needs, yield prediction,
and crop harvest management.
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Site-Specific Management Zones (SSMZs) are defined as areas within a field that
share similar characteristics, identified using data from sources such as soil sampling,
remote sensing, or yield monitoring. By dividing fields into these zones, farmers can
implement customized management strategies, optimizing the application of resources like
fertilizers, water, and seeds. This targeted approach reduces waste, enhances productivity,
and supports sustainable farming practices by addressing the unique needs of each zone.
Several methods have been proposed to address the management zone delineation problem.
Clustering techniques based on information such as soil properties, yield maps, historical
seasonal data, and combined factors have been widely studied [1–12]. These approaches
often result in irregularly shaped zones, which can hinder their practical implementation
by farmers.

To overcome this limitation, several models for delineating rectangular and orthogonal
management zones have been proposed using mathematical programming, heuristic, and
metaheuristic techniques. Rectangular and orthogonal partitions are generally more com-
patible with agricultural machinery, improving their functionality in practice. Such models
typically define field partitions based on agricultural field data, an objective function, e.g.,
minimizing the number of zones or minimizing the sum of variances within the zones,
subject to a required homogeneity index.

For instance, in [13], a binary integer linear programming (BILP) model was proposed
for delineating rectangular and homogeneous management zones, minimizing the sum of
variances for a soil property. Albornoz et al. [14] introduced a bi-objective mixed-integer
linear programming model to simultaneously minimize the number of management zones
and maximize the relative homogeneity of the partition. Later, Albornoz et al. [15] pre-
sented a robust mixed-integer optimization model that considers the spatial and temporal
variability of vegetation or soil indices, combining it with a column generation algorithm
for solving the model. Additionally, more recently Albornoz et al. [16] developed a linear
binary integer program for integrated zoning and crop planning with adjacency constraints,
solved using a decomposition-based heuristic. Integrated approaches for the delineation
of rectangular management zones in crop planning problems under both deterministic
and uncertain conditions were proposed in [17] and [18], respectively. Finally, orthogonal
management zone delineation is approached using a greedy heuristics algorithm in [19]
and estimation of distribution algorithms in [20,21].

Initially, the aforementioned models require as input a dataset that describes the
variability of a property across a rectangular field, i.e., soil or crop property values obtained
from equidistant samples. Each of these equidistant samples characterize small square area
units, defining a perfect grid within the rectangular fields. When fields are not rectangular
(i.e., when samples and their respective area units do not form a perfect grid), equidistant
dummy samples are introduced to complete the rectangular shape of the field. The handling
of property values for these dummy samples varies among authors. For instance, authors
in [13,14] assigned to dummy samples high property values, relative to real samples. This
approach ensures that dummy samples are grouped separately from real samples, allowing
them to be excluded from the final partition afterwards. Conversely, Velasco et al. [20]
assigned dummy samples the value of their nearest neighboring sample. This method
prevents the formation of management zones composed solely of dummy samples, which
are also removed from the final field partition. The risk with these approaches for handling
irregularly shaped fields is that the insertion of arbitrary values to inexistent samples alter
the agricultural field description and has an impact in global and local descriptors, such
as the total variance of the field and the internal variance of zones containing dummy
samples involved in the optimization process. In these cases, the distortion in the field
description becomes accentuated as the number of dummy samples increases. The objective
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of this paper is to present a new methodology based on genetic algorithms to approach
the rectangular management zone delineation problem, in both rectangular and irregularly
shaped agricultural field, using only real sample data.

The remainder of this article is organized as follows: Section 2 presents Materials and
Methods, including a general description of the genetic algorithm, and the benchmark
algorithm and instances used to evaluate the performance. Section 3 describes and discusses
the experimental results. Conclusions and recommendations are presented in Section 4.

2. Materials and Methods
2.1. Mathematical Description

The SSMZ delineation problem requires as input the description of the variability of a
soil or crop property across the agricultural field. This information may be provided by
procedures such as soil sampling or analysis of drone or satellite imagery. These data are
used to produce field partitions according to an optimization objective and constraints.
The goal of the proposed Genetic Algorithm for Zone Delineation (GAZD) is to find
partitions having the minimum number of exclusively rectangular zones while achieving
an homogeneity requirement. In this study, relative variance is used as the homogeneity
criterion, as it has been demonstrated to be a reliable index for evaluating the efficiency of
zoning methods [10]. Relative variance ranges between 0 and 1, with values exceeding 0.5
ensuring homogeneous partitions [13].

For the GAZD, the description of the heterogeneity of a property is provided by a set
of equidistant samples defining a rectangular instance bounded by the leftmost, rightmost,
uppermost, and bottommost samples. This rectangular instance is divided into rectangular
area units (AUs), which may or may not contain a sample. Each AU is identified by its
position (row, column) within a rectangular grid. The entire instance is represented as a
matrix, where sampled AUs are represented by the value of the measured property and
non-sampled AU by zero. The former are considered available for the SSMZ delineation
problem and the latter excluded. Figure 1a shows an example of an irregularly shaped
agricultural field characterized by 26 samples. The value of each sample is represented by
the letter “S” with a subindex. Figure 1b shows the field divided by a grid of 35 AUs, and
Figure 1c shows the corresponding field matrix.

Figure 1. Example of irregularly shaped field. (a) Samples, (b) Division in AUs, (c) Field matrix.
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We let R be the set of AUs dividing a land instance according to

R = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} (1)

where m and n are the number of rows and columns of the grid, respectively, and (i, j) is
the position of the AU. The AUs characterized by the value of a sample are comprised in
the subset Q (Q ⊆ R).

A candidate solution for the SSMZ delineation problem having N zones is represented
by x in (2):

x = {z1, z2, . . . zN} (2)

where all zones in the solution are rectangular:

zk = {(i, j)|imin,k ≤ i ≤ imax,k, jmin,k ≤ j ≤ jmax,k} f or k = 1, 2 . . . N (3)

The objective function of the combinatorial optimization problem is defined by

min f (x) = |x| = N (4)

s.t. ∪N
k=1 zk = Q (5)

zk ∩ zl = ∅ ∀k ̸= l (6)

(
1 − ∑k∈N(nk − 1)σ2

k
σ2

T(|Q| − N)

)
≥ α (7)

Constraint (5) corresponds to complete coverage of uniquely sampled area units,
(6) corresponds to zone disjunction. Finally, Constraint (7) refers to the homogeneity
requirement: the relative variance of the partition (left hand of the equation) must be
equal or superior to a required value (right hand of the equation). The relative variance is
calculated using the total variance of the set of sampled AUs σ2

T , the variance of each zone
of the partition σ2

k , the number of sampled AUs in each zone nk, the number of sampled
AUs |Q|, and the number of zones N.

2.2. Genetic Algorithms

Genetic algorithms, introduced in [22], are optimization and search techniques inspired
by the principles of natural selection and evolution. They belong to the broader category of
evolutionary algorithms particularly effective for solving complex problems, such as non-
convex problems, problems with discontinuities, problems having huge search space, and
problems with multiple and conflicting objectives. In genetic algorithms, potential solutions
to a problem are encoded and represented as individuals in a population. These individuals
evolve over successive generations. The evolution is guided by genetic operators such
as selection, crossover, and mutation, which mimic biological processes. The goal of
the evolution process is to iteratively improve the population to find the best or near-
optimal solution to the given problem. The process begins with the generation of an initial
population of solutions, typically created randomly. Each solution is evaluated using a
fitness function, which measures how well it satisfies the objective of the problem. Solutions
with higher fitness have a greater chance of being selected as “parents” to create a new
generation by means of genetic operators. Through crossover, parents exchange information
to create offspring, while mutation introduces random changes to maintain diversity and
avoid premature convergence. This iterative process continues until a termination condition
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is met, such as reaching a predefined number of generations or achieving a satisfactory
fitness level.

2.3. Genetic Algorithm for Rectangular Management Zone Delineation
2.3.1. General Description of GAZD

The algorithm’s main inputs include the field matrix, the maximum and minimum
number of zones a solution can have, the minimum zone size in terms of area units (AUs),
the minimum relative variance required for a solution, the size of the initial population, the
number of crossovers and mutations per generation, and the total number of generations
in the evolutionary process.

Figure 2 provides an overview of the key stages of the GAZD. The process begins
with the generation of an initial population of diverse field partitions, each containing a
number of zones within the specified bounds and with a minimum zone size meeting or
exceeding the defined threshold. Each solution is initially evaluated based on its relative
variance. Solutions meeting or exceeding the required relative variance are selected for
ranking, where they are ordered based on the number of zones. Solutions with fewer zones
receive higher rankings and are more likely to be chosen during parent selection.

Figure 2. General scheme of the Genetic Algorithm for Zone Delineation (GAZD).

The selected parents then undergo genetic operations to create a new generation of so-
lutions. These operations include crossover (information exchange between two solutions)
and mutation (modifications to a single solution), producing new offspring. The resulting
generation is evaluated following the same steps: pre-selection based on relative variance,
ranking, and parent selection. The selected parents generate the next generation through
further genetic operations. This iterative process continues until the specified number of
generations is reached. Throughout the evolutionary process, a record of selected solu-
tions is maintained. The final output consists of all selected solutions generated during
the process.
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2.3.2. Genotype and Phenotype

Solutions are encoded as lists of sub-lists. Each sub-list corresponds to a rectangular
zone and contains information about the area units (AUs) that comprise it. The top-level
list represents the partition of the agricultural field, with its length indicating the number
of zones in the partition. In the genotype representation, the elements of the sub-lists are
the positions (i, j) of the area units included in each zone. In the phenotype representation,
the elements are the corresponding sample values. Figure 3 illustrates an example of a field
partition into 8 zones. Both the genotype and phenotype are represented as 8 sub-lists, each
corresponding to a single zone. The genotype lists contain the positions of the AUs in a
compact index notation for matrix positions, while the phenotype lists contain the sample
values, denoted by S with a subscript.

Figure 3. Genotype and phenotype representation.

2.3.3. Initial Population

The initial population consists of a list of randomly generated solutions. The procedure
to construct an aleatory solution begins by defining the number of zones in which the
agricultural field is divided. This number is randomly chosen within the predetermined
minimum and maximum bounds. Next, for each zone, a randomly selected AU is used to
initialize it. The initialization is followed by an iterative zone expansion routine in which a
search and selection process of available neighbor AUs for potential horizontal or vertical
rectangular expansion takes place. This process occurs alternately for the set of zones and
ends when the available AUs run out. The construction process of aleatory solutions is
repeated as many times as the number of individuals required by the initial population. The
size of the initial population and the bounds for the minimum and maximum number of
zones are closely tied to the diversity of the initial population. High diversity is particularly
beneficial when the problem demands elevated levels of homogeneity, such as achieving
a high value of relative variance. The initial population size must ensure the inclusion of
viable solutions that can serve as a foundation for the evolutionary process.

2.3.4. Fitness Function, Ranking, and Parent Selection

Solutions are evaluated according to two criteria: their relative variance and the
number of zones. Only solutions with a relative variance equal to or greater than the
required threshold are selected as potential parents for generating the next generation.
Once selected, these candidate parents are ranked based on their number of zones, which
serves as the fitness function, with solutions having fewer zones ranked higher than
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those with more zones. A rank-based selection probability method is employed to choose
solutions for the genetic operations stage, with higher-ranked solutions having a greater
probability of being selected.

2.3.5. Genetic Operations

Crossovers and mutations of the selected parents are used to generate a new generation
of solutions. In crossovers, a new solution is created by recombining a “donor” solution
with a “recipient” solution. A randomly selected zone from the donor is inserted into a
copy of the recipient solution. Overlapping zones in the recipient copy may reconfigure
into smaller zones. If they cannot reconfigure while maintaining a rectangular shape, they
disappear, leaving their AUs available to be absorbed by neighboring zones or incorporated
into new zones.

Mutations are conducted by expanding or contracting a randomly selected zone of a
parent solution. The contraction or expansion is made while assuring a final rectangular
shape. Both operation may lead to a reconfiguration process where some AUs are left
available to be absorbed by neighboring zones or to create a new zone. Expanding a
zone leads to a similar reconfiguration problem as in the crossovers. Overlapped existent
zones by the expanded one may disappear if they cannot be adapted to a smaller size and
rectangular shape.

2.3.6. Solution Space

When the model reaches the predetermined number of iterations, it outputs a com-
pilation of the selected solutions—those that satisfied the homogeneity constraint in each
generation—over the entire evolutionary process. Each solution is documented with its
genotype, phenotype, relative variance, and additional details such as the generation it
belongs to and its ranking position. Data files containing this information are generated and
subsequently imported into a software application specifically designed for the interactive
exploration of the solution space. This software provides interactive visualizations of the
solutions and the evolution process, enabling users to evaluate the suitability of different
solutions and analyze the development of the evolutionary process.

2.4. Test Materials
2.4.1. Benchmark Algorithm

GAZD’s performance is compared to a BILP model based on [13], using two real-field
case studies and one involving irregularly shaped generated instances.

2.4.2. Real-Field Instances

Two real case studies are used to evaluate the algorithm performance. The first is a real-
field instance presented in [13], called “Quilaco”. This is used to make a first comparison
between the BILP and the GAZD performances. This instance represents an agricultural
field divided into 42 AUs, 40 of which are characterized by soil samples. These soil samples
provide data on chemical properties such as organic matter, pH, phosphorus, and the sum
of bases. The two unsampled AUs are incorporated into the BILP analysis using dummy
samples, while they are excluded from the GAZD analysis. The performance data for the
BILP model on this instance is sourced from [20]. The GAZD experiments were conducted
on a 2020 MacBook Pro with 16 GB of 3733 MHz RAM and a 2 GHz quad-core Intel Core
i5 processor, running macOS 13.6. The GAZD was implemented on Phyton 3.12.1 with
tcl/tk 8.6.13.

The second real case corresponds to a set of 12 rectangular-shaped instances used
in [15]. The instances were extracted from a set of NDVI vegetation index samples from
a table grape field during the 2014–2015 season in Los Andes, a commune in Valparaíso,
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Chile. This index can be used to predict crop yields and delineate harvest management
zones. Instances 1 to 11 are subsets of Instance 12. The size of the instances ranges from 42
to 380 samples. Instances 1–6 are used to complement the comparative with the BILP, and
the larger instances (7–12) are used to extend the scalability analysis of the GAZD in terms
of execution time. The experiments were conducted by running both algorithms on the
aforementioned system. For the BILP model, the AMPL algebraic modeling language was
used, with CPLEX 22.1.1 as the optimization solver.

2.4.3. Irregularly Shaped Generated Instances

To evaluate GAZD’s performance in the SSMZ delineation problem for irregularly
shaped instances, modified versions of real Instances 4, 5, and 6 were used as inputs. The
irregularly shaped versions were created by excluding samples from the originals. Figure 4
shows the modified versions, where sampled AUs are represented by green squares and
unsampled AUs (corresponding to excluded samples) by gray squares. Notice that original
and modified instances contain the same amount of AUs and their difference strive in
the number of sampled AUs. The modified instances contain 67, 87, and 103 sampled
AUs (Figure 4a–c). The shape irregularities in all modified instances can be described
as a diagonal border on the upper right side and an orthogonal border on the lower left
side. Additionally, modified Instance 6 features internal irregularities, forming a square
zone of non-disposable AUs for agricultural use. The tests were conducted on the same
computational system mentioned in the previous section.

Figure 4. Irregularly shaped instances. (a) Modified instance 4, (b) Modified instance 5, (c) Modified
instance 6. Sampled AUs are in green.

3. Experimental Results and Discussion
3.1. Algorithm Paramater Tuning

Several tests were conducted to assess the algorithm’s sensitivity to input parameters,
such as initial population size, the share of genetic operations, and the number of evolution-
ary iterations. Based on these tests, reference values were established and later refined for
each optimization case through additional experiments to enhance the algorithm’s tuning.
The minimum and maximum number of zones allowed in a field partition—Nmin and
Nmax in Figure 2—were set to one and the number of sampled AUs, respectively, for each
optimization case.

3.1.1. Initial Population Size

The evolutionary process can only occur if the initial population includes solutions
that meet the homogeneity requirements. Therefore, the population size must be large
enough to ensure sufficient diversity, including individuals with a relative variance equal
to or greater than the required threshold. The appropriate size of the initial population
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is influenced by instance characteristics such as heterogeneity and size. To evaluate the
impact of these factors, tests were conducted for the different study cases. These tests
involved varying the initial population size, assessing the percentage of successful iteration
starts over a fixed number of trials, and analyzing the effects of changing homogeneity
requirements and instance sizes.

Table 1 shows how the initial population size required for a successful start of the
evolutionary process depends on the relative variance (RV) requirement for organic matter
and pH properties in the “Quilaco” instance. For organic matter, the required population
size increases as the RV requirement grows, with a more pronounced rise when the RV
meets 0.9. In contrast, for pH, a small population size is sufficient to initiate the optimization
process. This difference is related to the heterogeneity of the properties within the instance:
the total variance of organic matter (4.45) is significantly higher than that of pH (0.012).

Table 1. Initial population for “Quilaco” organic matter (OM) and soil acidity (pH) properties.

Relative Variance 0.1 0.3 0.5 0.7 0.9

OM 10 10 30 30 230

pH 10 10 10 10 20

Table 2 shows how the instance size affects the initial population size in the group of
Instance 1 to 12 for a relative variance requirement of 0.9. The figure shows a non-linear
relationship between both parameters consisting of a first phase (Instances 1 to 5), where
the size of the initial population increases as the number of sample increases, and a second
phase (Instances 6 to 12), where the population size decreases and stabilizes as the number
of samples grows. In the first phase (smaller instances), as the instance size increases,
the size of the population increases. This is because in smaller instances, the random
solutions tend to create more smaller zones—zones that group fewer samples—resulting
in greater heterogeneity between zones and lower relative variance. To achieve a high
relative variance, more aleatory solutions are necessary due to this increased variability. In
the second phase (for larger instances), the required number of solutions decreases as the
instance size grows. This is because in larger instances, the random solutions tend to create
larger zones that group more samples, leading to greater homogeneity and a higher relative
variance. As the number of zones decreases, fewer solutions are needed to achieve a high
relative variance. The transition between these two phases suggests a critical point, where
spatial averaging starts to dominate, making homogeneous solutions easier to obtain.

Table 2. Initial population vs. Instance size. Instances 1 to 12.

Instance 1 2 3 4 5 6 7 8 9 10 11 12

Number of Samples 42 60 80 100 120 140 180 220 260 300 340 380

Size of Initial
population 40 90 90 110 140 120 50 30 10 10 10 10

3.1.2. Mutation and Crossover Share

The influence of genetic operations was investigated by applying different propor-
tions of mutations and crossovers to various optimization cases. Over a fixed number
of genetic operations—defined as the size of the new generations in the evolutionary
process—seven mutation–crossover shares (0–100%, 20–80%, 40–60%, 50–50%, 60–40%,
80–20%, and 100–0%) were tested. Each optimization test was repeated a fixed number of
times, allowing for the collection of the minimal, maximal, and average best solutions from
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the set of optimizations. Additionally, optimal solutions were calculated using the BILP
model for each case.

Figure 5 presents the GAZD results for Instance 1 and Figure 6 presents results for
Instance 4, both under a relative variance requirement of 0.9. For each mutation–crossover
share, the figures display the minimal, average, and maximal values from the set of
executions. The BILP optimal solution is 13 zones for Instance 1 and 31 zones for Instance 4.

As shown, the absence of mutations leads to convergence toward local optima, result-
ing in significant deviations of the GAZD results from the global optimum and a wider
range of variation around it. A mutation share of 40% or higher leads to solutions that
approach the global optimum and reduces variability around it.

Figure 5. Influence of mutation and crossover rates on optimization performance. Instance 1. Rv = 0.9. The red
lines represent the average best solution, while the black lines indicate its range of variation across 25 executions.

Figure 6. Influence of mutation and crossover rates on optimization performance. Instance 4. Rv = 0.9. The red
lines represent the average best solution, while the black lines indicate its range of variation across 25 executions.

3.1.3. Finalization Criterion

The end of the optimization process is determined by the number of iterations of the
evolution process. This directly affects the possibilities to converge to a local or global
optimal. As in the initial population size case, the appropriate setting of this parameter
may be affected by characteristics of the study case such as the size of the instance and
heterogeneity. To determine the appropriate number of generations for each optimization
case, different values of the finalization criterion were tested. Figures 7 and 8 shows the
evolution profile for Instances 3 and 6 under a relative variance requirement of 0.7. The
figures display the best solutions—measured by the number of zones—across generations.
Reaching solutions with fewer zones requires more iterations for Instance 6 (140 sam-
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ples) than for Instance 3 (89 samples). As instance size increases, so does the number of
generations needed to achieve solutions with fewer zones.

Figure 7. Number of generations. Instance 3. Rv = 0.7.

Figure 8. Number of generations. Instance 6. Rv = 0.7.

3.2. “Quilaco” Instance

The genetic algorithm was evaluated using the real-field instance “Quilaco” described
in Section 2.4. Table 3 presents the experimental results comparing the GAZD approach
with the BILP model. For each property, relative variance values ranging from 0.5 to 1 were
used to test the algorithms, resulting in a total of 24 optimization cases. The first column
lists the chemical soil properties: organic matter (OM), pH, phosphorus (P), and sum of
bases (SB). The second column specifies the homogeneity level of the management zones,
represented by the required relative variance. Column 3 shows the optimal solution, in
terms of the number of zones, obtained by the BILP model. Columns 4–6 present the results
for the genetic algorithm, reporting the minimum, average, and maximum number of zones
among the best solutions found across 50 independent runs of the algorithm. The color-
highlighted results indicate cases where the GAZD achieved outcomes equal to or better
than those of the BILP. As the two algorithms were executed on different computers for
this test, execution times are not included in the table, nor is a direct comparison provided.
However, time performance is briefly discussed at the end of the section to provide an
overview of the differences.

Within each property optimization set, the GAZD exhibited a consistent relationship
between the homogeneity constraint and the number of zones: as the relative variance
requirement increases, the number of zones in the partitions also tends to increase. The
range, i.e., the difference between the maximum and minimum number of zones in the best
solutions, varies between zero and five.
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Table 3. Comparison of BILP and AG-SSMZ Results for “Quilaco” instance. Highlighted results show
cases where GAZD matched or outperformed BILP.

BILP AG-SSMZSoil
Property

Relative
Variance Zones Min. Avg. Max.

1 40 40 40 40
0.9 20 20 21.44 23

OM 0.8 17 17 18.34 21
0.7 14 14 15.1 17
0.6 11 11 12.28 15
0.5 9 8 9.86 12
1 24 22 23.02 25

0.9 17 16 18.02 21
pH 0.8 10 12 13.56 16

0.7 7 9 10.14 12
0.6 5 7 7.74 10
0.5 4 5 6.28 8
1 33 33 33 33

0.9 9 11 12.1 14
P 0.8 5 7 7.8 10

0.7 3 5 5.66 8
0.6 3 4 4 4
0.5 3 4 4 4
1 40 40 40 40

0.9 20 19 20.84 23
SB 0.8 16 16 17.48 20

0.7 12 12 13.34 15
0.6 9 8 9.94 12
0.5 7 7 7.74 9

Nevertheless, the average range across all optimization cases is 2.71 zones, demon-
strating the robustness of the GAZD, as the best solutions do not vary significantly between
executions. In more than 50% of the optimizations (15 out of 24), the GAZD found solutions
equal to or better than those of the BILP, particularly for cases involving organic matter
and sum of bases properties. For the pH and phosphorus optimization sets, the genetic
algorithm generally produced solutions that were slightly inferior but still close to those of
the BILP. The fact that in several cases the GAZD “outperformed” the optimal solutions
produced by the BILP can be attributed to differences in how the models handle the field
description. While the BILP requires the addition of two dummy samples to complete a
rectangular field shape—thereby assigning non-real property values to the field descrip-
tion—the genetic algorithm excludes these areas from the optimization process. As a result,
the two models are effectively dealing with different field representations.

BILP execution times (see [20] for details on software and hardware) range from 0.01
to 0.2 s, while GAZD execution times range from 5.57 to 21.25 s. Higher execution times in
the GAZD are associated with cases requiring high homogeneity levels, where larger initial
population sizes are necessary to ensure sufficient diversity and the presence of well-suited
solutions to support the following stages of the evolutionary process.

3.3. Instances 1–6

Table 4 presents the experimental results comparing the BILP and GAZD approaches
for the set of Instances 1-6. For each instance, three different relative variance values (0.5,
0.7, 0.9) were used to test the algorithms, resulting in a total of 18 optimization cases. The
first column lists the instance index, while the second column shows the instance size in
terms of the number of samples. The third column specifies the required homogeneity level



Mathematics 2025, 13, 1064 13 of 18

of the partition. Columns 4–5 present the results and execution times for the BILP, while
Columns 6–9 display the results for the GAZD across 50 independent runs, along with their
average execution time. Cases where the GAZD achieved results equal to or better than
those of the BILP are highlighted in color.

Table 4. Comparison of BILP and AG-SSMZ Results for Instances 1–6. Highlighted results show
cases where GAZD matched BILP.

BILP AG-SSMZ
Generated
Instance Samples Relative

Variance Zones Time
(Seconds) Min. Avg. Max. Time

(Seconds)
0.9 13 0.078212 13 13.98 15 8.94824

Instance 1 42 0.7 5 0.091649 5 5.4 7 11.58368
0.5 3 0.460792 3 3 3 10.37918
0.9 18 0.108554 19 20.26 23 22.63273

Instance 2 60 0.7 8 0.159806 8 9.92 12 17.99779
0.5 4 0.589699 4 4.3 6 17.61462
0.9 23 0.193209 24 25.9 28 38.39443

Instance 3 80 0.7 9 0.229263 9 11.94 15 53.1683
0.5 5 0.601512 5 6.38 9 46.433
0.9 30 0.315366 30 33.8 36 117.599

Instance 4 100 0.7 13 0.347363 15 17.38 21 115.431
0.5 6 0.880585 6 8.04 10 104.3865
0.9 35 0.409061 38 40.68 45 184.6348

Instance 5 120 0.7 15 0.673061 16 19.1 21 252.6944
0.5 7 1.7285 7 8.98 11 191.8161
0.9 38 0.772159 41 44.36 47 261.6986

Instance 6 140 0.7 15 0.953882 18 21.8 26 249.4993
0.5 7 1.69942 7 8.48 12 375.4883

Since no dummy samples were required, the field descriptions used by both models
were identical, allowing for a direct comparison of their results. In this set of tests, GAZD
results showed a slight increase in the difference between the best minimal and maximal
solutions per case, ranging from zero to eight zones. Nevertheless, GAZD found the global
optimum in 60% of the optimizations (11 out of 18), and for the remaining cases, the
deviation of GAZD’s best minimal solution from the BILP results ranged from one to three
zones, equivalent to a relative percentage error range of 4.3% to 15.4%. This demonstrates
that GAZD is capable of finding global or near-optimal solutions, effectively avoiding
premature convergence to local optima.

However, the BILP approach significantly outperformed GAZD in terms of execution
time: BILP execution times ranged from 0.078 to 1.75 s, while GAZD’s average times varied
between 8.94 and 375.5 s. The execution times of the genetic algorithm increased with the
combinatorial size of the problem (i.e., the number of samples in the instance) and with
stricter homogeneity requirements. The execution time ratios (GAZD/BILP) varied widely,
from 22.5 to 451 across all optimizations. While GAZD is slower, its execution times remain
within acceptable limits for most agricultural decision-making processes, where real-time
performance is not critical. Furthermore, strategies such as implementing the model in C
and parallelizing processes during execution could significantly improve performance.

3.4. Scalability Analysis

Complementary experiments using a relative variance requirement of 0.9 were con-
ducted with Instances 7–12 to evaluate the GAZD’s performance on larger-scale opti-
mization problems. These results, combined with those from Instances 1–6, provide a
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comprehensive overview of GAZD’s performance. Figures 9 and 10 summarize the results
from 50 independent runs for each optimization case. The first figure presents the average
execution time, while the second illustrates the trends in the minimum, average, and
maximum of the best solutions across all instances. The execution time behavior exhibits
two distinct phases. The first phase, covering Instances 1 to 6, shows an increasing trend
as the instance size grows. This can be explained by the simultaneous increase in both
the initial population size required to start the evolutionary process and the number of
iterations needed to achieve solutions with fewer zones. The second phase, from Instances
7 to 12, marks a halt in this growth trend, with execution times stabilizing at values slightly
lower than the maximum observed in Phase 1. This can be attributed to two compensating
behaviors: while the initial population size requires decreases for this set of instances, the
number of iterations increases. Overall, it can be inferred that beyond a certain instance
size, execution time ceases to be a critical factor. In such cases, the improvement strategies
proposed in previous sections could be sufficient to enhance GAZD’s performance. In
relation to the number of zones in the solutions, as shown in the second figure, the gap
between the minimum and maximum number of zones in the best solutions widens as
instance size increases. This indicates that for larger instances, GAZD’s results exhibit
increased variability in the solutions obtained. As a result, the algorithm’s robustness
and precision decrease in larger-scale problems, potentially leading to deviations from
the optimal solution. This problem should be addressed in future research. Potential
solutions could involve exploring how the maximum allowable partition sizes (i.e., the
maximum number of zones) can be regulated, either statically or dynamically, within the
evolutionary process. In the present study, these values were kept static, fixed to the maxi-
mum possible partitioning—equivalent to the number of sampled AUs. By varying these
parameters, it may be possible to enhance the robustness and precision of the algorithm for
larger-scale problems.

Figure 9. Execution time vs. instance size. Instances 1–12. RV = 0.9.

Figure 10. Number of zones vs. instance size. Instances 1–12. RV = 0.9. The red lines represent the
average best solution, while the black lines indicate its range of variation across 50 executions.
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3.5. Irregularly Shaped Instances

The results of GAZD for the three irregularly shaped instances are presented in
Table 5. Three relative variance values (0.5, 0.7, and 0.9) were used to evaluate GAZD,
resulting in a total of nine optimization cases. The first column lists the modified instance,
while the second column indicates the number of sampled AUs. The third column specifies
the required homogeneity level of the partition. Columns 4–7 present the results obtained
across 50 independent runs of GAZD, along with the average execution time.

For this test, a performance comparison between the BILP and the GAZD was not
conducted due to the number of dummy samples required by the BILP to handle the
non-rectangular shapes. For the modified Instances 4 and 5, the BILP requires 33 dummy
samples, and for modified Instance 6, 37 dummy samples are required. This extra in-
formation, added to the ”real” field description, distorts the values of parameters such
as the total variance and the relative variance of the partitions, which are used in the
optimization process. In contrast, the GAZD uses only the information from the sampled
AUs, preserving the ”real” agricultural field description. Compared to the real-instance
experiment, where only two dummy samples were involved, in this case the differences
between the instances descriptions would be emphasized, resulting in the optimization
of different problems by the algorithms. In these circumstances, the comparison between
model was deemed not pertinent. Table 5 shows that the relationship between the ho-
mogeneity requirement and the number of zones in the partition remains consistent: as
the relative variance requirement increases, the number of zones also increases. Figure 11
presents examples of solutions for all modified instances under various relative variance
requirements. The figure illustrates that, in all cases, the GAZD is able to find solutions
that respect the rectangular zone shape constraint.

Table 5. AG-SSMZ Results for Irregular-Shaped Generated Instances.

AG-SSMZ
Modified
Instance

Sampled
AUs

Relative
Variance Min. Avg. Max. Time

(s)

0.9 23 24.3 26 104.5069
Instance 4 67 0.7 13 14.42 17 91.88751

0.5 11 11.4 13 83.83991

0.9 27 29.88 32 182.679
Instance 5 87 0.7 15 17.2 20 159.1199

0.5 11 12.18 14 162.5808

0.9 35 37.24 39 233.6485
Instance 6 103 0.7 18 20.86 23 214.5141

0.5 12 13.12 16 347.3826
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Figure 11. SSMZ delineation in irregularly shaped instances. Zone boundaries are shown in orange.

4. Conclusions
This paper presents a methodology based on genetic algorithms to address the site-

specific management zone (SSMZ) delineation problem. The GAZD generates optimized
field partitions, using rectangular zones, for both regular and irregularly shaped agri-
cultural fields. While other methodologies add dummy samples to handle the SSMZ
problem in non-rectangular fields, the GAZD uses only real sample data, thereby not
altering the field description during the optimization process. The possibility to deal with
irregularly shaped instances without adding non-real data is the major contribution of
this methodology.

To evaluate the algorithm, its performance was compared with that of an exact ap-
proach based on integer linear programming (BILP). Experimental tests were conducted
using real-field instances and a set of generated irregularly shaped instances of various
sizes. Although the GAZD requires longer execution times compared to the exact BILP
approach, the algorithm demonstrates functionality, flexibility, and robustness in address-
ing the SSMZ problem for both rectangular and irregularly shaped agricultural instances,
especially for smaller problem sizes. However, for larger instance sizes, a loss of precision
and robustness is observed, with the GAZD exhibiting increased variability in the solutions.
This issue will be addressed in future work, where potential solutions may involve dynami-
cally adjusting the maximum allowable partition sizes (i.e., the maximum number of zones)
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during the evolutionary process to enhance the algorithm’s robustness and precision for
larger-scale problems.

Moreover, GAZD’s time performance is not critical for the planning decisions related
to the SSMZ problem, and there is significant potential for improving its performance.
Strategies such as implementing the model in a compiled language and parallel processing
could substantially reduce execution times. Additionally, the GAZD provides a set of “good
enough” solutions that users can evaluate in terms of feasibility and practical convenience,
offering a potential advantage in supporting decision-making processes.
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