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Abstract: This article delves into some properties of free and Boolean multiplicative con-
volutions, in connection with the theory of Cauchy-Stieltjes kernel (CSK) families and
their respective variance functions (VFs). Consider K_ (1) = {Qh,(ds) : m € (m",m}))},
a CSK family induced by a non-degenerate probability measure y on the positive real
line with a finite first-moment mg. For v > 1, we introduce a new family of measures:

X
(IC_(‘L[))&'Y = { (Q%) W(ds) D me (m”,mg)}. We show that if (IC_(V))Wy represents a
re-parametrization of the CSK family /C_ (), then y is characterized by its corresponding
VF V,(m) = cm?In(m), with ¢ > 0. We also prove that if (K_ (y))&v is a re-
parametrization of K_ (D, (4®7)) (where H is the additive free convolution and Dy (j)
denotes the dilation y by a number a # 0), then y is characterized by its corresponding

VE Vy,(m) = c1(mIn(m))?, with ¢; > 0. Similar results are obtained if we substitute the
free multiplicative convolution X with the Boolean multiplicative convolution |J.

Keywords: Cauchy transform; multiplicative Boolean and free convolutions; variance
function

MSC: 46L.54; 60E10

1. Introduction

In probability theory, the basic concept of convolution is important in understanding
interactions between random variables, particularly when they are independent. However,
when extending the concept of probability to noncommutative structures, such as free
probability and Boolean probability, the classical convolution operation is no longer suitable.
The study of free and Boolean convolutions in noncommutative probability offers rich
new perspectives for understanding the behavior of random elements in these settings,
providing insights into the algebraic and statistical properties of the systems beyond the
classical framework.

Free probability, introduced by Dan Voiculescu in the early 1980s [1], generalizes
classical probability theory to the context of random variables associated with noncom-
mutative algebras; see [2-5]. In this context, free multiplicative convolution appears as a
natural extension of classical multiplicative convolution, where instead of independent
random variables, we consider random elements in a noncommutative algebra that are
free (i.e., they satisfy some form of noncommutative independence). This convolution is
essential to the study of the behavior of free random variables, particularly in the analysis
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of their distributional properties and spectral behaviors, and has found applications in
areas such as random matrices, operator algebras, and statistical mechanics.

Boolean independence was introduced in the context of noncommutative probability
as an alternative to classical and free independence. It is characterized by the Boolean
convolution, which defines the addition of Boolean-independent random variables. The key
property of Boolean independence is that mixed moments factorize in a way distinct from
classical or free independence. The Boolean independence and the Boolean convolution
was introduced in [6] as a fundamental operation in noncommutative probability. The
combinatorial structure was explored using moment—-cumulant relations and connections
to free probability. For a deeper perspective, the authors of [7] expanded on this framework
by studying Boolean cumulants. Further results on the Boolean convolution can be found
in [8-10]. These works laid the foundation for Boolean probability theory, influencing later
developments in noncommutative probability.

Both free and Boolean multiplicative convolutions expand our understanding of con-
volution operations by adapting them to noncommutative probability settings. The free
multiplicative convolution provides a framework for exploring the correlations between
free random variables, while the Boolean multiplicative convolution offers a means of
analyzing the dependencies between Boolean-valued random variables. Together, these op-
erations highlight the versatility and depth of noncommutative probability theory, revealing
novel insights into the behavior of systems with complex dependence structures.

This article delves into some properties of free and Boolean multiplicative convolutions,
in connection with the recently introduced theory of Cauchy-Stieltjes kernel (CSK) families
in the setting of free probability. To better present the outcomes to be proven in this study,
we first present some basic concepts around free and Boolean multiplicative convolutions
and also some preliminaries on CSK families. P (P, respectively) denotes the set of
(non-degenerate) probabilities on R (R, respectively). For o € P, the Cauchy transform
G, (-) is given by

Go(z) = / Z(f"?, z € C\ supp(0)

and the free cumulant transform of ¢, denoted R (+), is given by [11]

Res(Go(z)) =2—1/Gy(z), zclose to co.

For T € Py, (T # dp), the S-transform is introduced by the relation

1
Re(wS(w)) = S-(@) w in a neighborhood of 0.

The operation of free multiplicative convolution ¢ X 7 of ¢ and T € Py is defined by
Sowc(w) = Sp(w)S+(w). Free multiplicative convolution powers 727 are defined at least
Vv > 1 (see Theorem 2.17, [3]) by S &= (w) = S¢(w)7.

We now introduce the notion of Boolean multiplicative convolution [12]. For T € P,
v = [ Py, peci\..

o 1-py

For T € P, consider the #-transform [13]:

Nt : (C\]RJr — C\RJr

consider

p — ﬂr(ﬁ):m~

The transform
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is defined for p € C\R. The multiplicative Boolean convolution glJt of ¢ and T € P is
defined by the relation

BQUT(‘B) - BQ(AB)BT(AB)/ ,B € C\R+

For ¢, T € P, verifies the following;:
(i) arg(no(B)) +arg(yc(B)) —arg(B) <m P € (—00,0)UCT;

(ii) One of the measures g or 7 (at least) has a finite first moment.

So, ot € P+ is well defined. It was demonstrated in [12] that the operation ¢ Pt
is defined for x € [0, 1].

On the other hand, within the framework of noncommutative probability, the the-
ory of CSK families has recently been defined. These families of probability measures
are defined in a manner similar to natural exponential families (NEFs), but with the
Cauchy-Stieltjes kernel ﬁ replacing the exponential kernel exp(9s). The CSK families
(called also free exponential families) were examined in [14] for compactly supported
measures. In [15-18], the authors extended the study of CSK families to include measures
with support bounded on one side (for example, from above). Py, (respectively, P.) refers
to a subset of non-degenerate probability measures having support bounded from above
(respectively, having compact support).

Let p € Py,. Then,

is defined for 0 < ¢ < ¢/ were l%p = max{0,sup supp(p) }. The family
+

Kole) = { gt = o B0 0 <o <t

is said to be the CSK family generated by p.

The application ¢ — k,(8) = [IP;(dl) is bijective from (0,9") to k,((0,9})) =
(mf), mF.), which is the mean domain of Ki(p); see
(pp- 579-580, [15]). We then obtain the re-parametrization with the mean of K (p): The
inverse of k,(-) is represented by ¢),(-). For m) < m < mf_, denote Qfy(dl) = Ppp(m) (dl).

[
Then,
Ki(p) = {Qu(dl) = mf <m < mf}.

It is proved in Proposition 3.4 [15] that mg = gli%h kp(l‘/’) and mi = By — Zl_i}r;;+ Gpl(z)'
*

The CSK family is represented by K_ (p) if the support of p is bounded from below.
The family K (p) is defined analogously to K (p) except with negative values of ¢, that
is, 8 € (8”,0), where ¢ can either be 1/ A, or —co, with A, = min{0,infsupp(p)}. The
mean domain for K_(p) is given by (m” ,mf)), where m’ = A, —1/G,(A,). If p € P+
Then, A, = 0, and so

where B, =

o _o_ _ 1 )1
m’ =0-1/Gy(0) = (/[O,m) o)

sothat 0 < m” < mf.Ifp € P, then ¥’ < ¢ < ¢, and K(p) = K_(p) U{p} UK (p)is
the two-sided CSK family.

Let p € Py, with a finite first moment mf = [Ip(dl). The variance function (VF)
parameterizes the variance in terms of the mean. It is defined by (see ([14], Equation (2.5)))
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m s Vy(m) = /(1 — m)2Q5,(dl).

If the first moment of p does not exists, then in K, (p), all measures have infinite
variance. In Definition 3.1, [15], the pseudo-variance function (PVF) Vp(-) is presented as a
substitute. The results proved in this paper are based on expanding the S-transform (or
the B-transform) as we will see in the next section. For this reason, we consider measure p
with a finite first moment, which ensures the existence of the VE. So, there is no need to
introduce the concept of the PVF in this paper.

Now, let us introduce the objective of this article in more detail: Consider
K_(n) = {Qu(ds) : m € (m",mf)} as the CSK family induced by a (non-degenerate)
u € Py with a finite first moment mg . For v > 1, introduce a novel set of probabilities:

(K- ()™ = {(Q%)%(ds) come (m”,mg)}. (1)

In Theorem 1, we prove that if (K_ (u))™"

is a re-parametrization of K_(y), then u
is characterized by its corresponding VF V,,(m) = cm?In(m), with ¢ > 0. We also prove
that if (IC,(y))&'Y is a re-parametrization of K_(Dy,,(u7)) (where H is the additive
free convolution and D,(u) represents the dilation of a measure y by a number a # 0),
then the measure y is characterized by its corresponding VF V,,(m) = ¢ (m1In(m))?, with
c1 > 0. Similar results are obtained in Theorem 2 if we replace in (1) the free multiplicative
convolution X with the Boolean multiplicative convolution |J. This will yield a new property
for the Marchenko—Pastur law as we will see in Theorem 2(ii).

The following remark concludes this part by presenting some helpful information that
supports the major findings of this article.

Remark 1. Let y € Py, with finite first moment m.

(i)  The CSK families are different from NEFs in the fact that we can recover the generating measure
u without knowing the mean domain. According to Theorem 3.1 [14], the generating measure

y is characterized by V,,(+) and mj: Denote A = A(m) = m + z" (Z’)‘ , then
—0
I
m—m
Gu(A) = 0, )
Il( ) Vy(ﬂ’l)
(i) Consider f : s — 15+ v, where 1 # 0 and v € R. For m close sufficiently to mg(m =
f(mfy) = mmf + v, , I
Vf(#)(m) =1 VV ; . (3)

See Section 3.3 [15] for more details.
(iii) The Marchenko—Pastur law is provided by

MP,(ds) = V((@+1)2 ;7:,1)2(5 17,

(-1 (as1)2) ()ds + (1= 1/a*) "5y (4)
for a # 0, with mf)wp” = 1. We have Vyp, (m) = a*m.

2. Main Results

We present some properties related to free and Boolean multiplicative convolutions.
The following finding is related to free multiplicative convolution.
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Theorem 1. Let p € P, with a finite first moment mg. For v > 1, consider the family of

probability measures (K_(p ))WY defined by (1).

X
(i)  Assume that V r € (m”,mf), there is p = p(r,y) € (m”,mb) so that Qf = (Qf,) !
Then, p = r'/7, and p is characterized by its corresponding VF given by

Vp(r) = cr? In(r), Vre (m‘i,mg), c>0.
& ]
(ii) Assume that V' r € <le”(" Y mg e 7)), there is a p = p(r,7) € (m”,mp) so that

B X
Q? ) (Qf,) ’ Then, p = r'/7, and p is characterized by its corresponding VF
given by
B B
Vo(r) = c1(rIn(r))?, Vre ( Pi/4le 7) (])31/7@ 7)>, cp > 0.

Proof. (i) Agsume that V r € (m’,m)), thereis a p = p(r,y) € (m’,mf) so that
of = (Qf,) 7. This implies that

S (0) = (SQ,; (g))”, V 7 close to 0. )

We know from Theorem 3.3 [19] that the S-transform of Q} may be given as

1 Var(Qp) 1 V(r) -0
r s

Sr(8) =~ ~ {+el0) = (2), where () =5 0. (6
m§ ()

Also we have

V U V N
(SQ»;(é))7 = (; — ’;(f) s(é)) = ;7(1 7 ;2(;7)“&1@)/ where £1(7) =% 0. @)
Combining (5)—(7), we obtain
1 Vo(r) 1 7% (p)
Pl e(f) = m(lpzéJFCel(o)- 8)

This implies that p = r1/7, and then,

V, Vo (rt/7
,;gr):'y ’;2(:7 ), Vre(m’,mh) and Vv >1. ©9)

The solution of functional Equation (9) is Vj—gr) = cIn(r), for some ¢ > 0. This
concludes the proof of Theorem 1(i).

(ii) Assume that Vr € ( Dl”( 7) DW( )>, thereisap = p(r,7) € (mp,,mg) SO
that Q? 17 (E7) = (Q’;;) 7. This implies that

(SQQ(@)’Y _ SQ,D””(th) (Z), V¥ {closetoO. (10)

(0®7)

Based on (6), the S-transform of Q? 177 may be given as
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1 Var( ?Uv(PEW))
SQD1/7(0837)(C) = Dy, BT 3 ¢+ ge(0)

v Dy /o (6F7)
mg’ <m0Qr ’Y

V By —
_ % _ W§+ Ze(Z), where ¢(Q) =0, (11)

Based on (3) and knowing from [15] that Ve, (r) = YVo(r/7y), from (11), we have

v 5
o (@) = LB e(0), wheree(@) S50, (12)

Combining (7), (10), and (12), we obtain

1 (1 ~ 1(p)
pY p*

Vv
t+ @) =1 - 20 a0 (13)

r

This gives that p = 17, and so,

Vo(r) ¥V (r1/7) Dy (0B7) Dy (07
prz = :2/7 , Vre (m_l”(p ),mol”(p )> and V> 1. (14)
The solution of functional Equation (14) is V‘; 5” = ¢1(In(r))?, for some ¢; > 0. This

concludes the proof of Theorem 1(ii). [

Remark 2. Note that, up to affine transformations, we may suppose that (m”, mg) C (1, +c0) in
; Di/7(0™)  Di/y(™7) . .
Theorem 1(i) and | m_ , M C (1, +c0) in Theorem 1(ii).

The following finding is related to Boolean multiplicative convolution.

Theorem 2. Let p € P with a finite first moment mg. For x € (0,1), consider the family of
probability measures

(K_ (o) = {(Qﬁ)ux(ds) come (mp,mg)}.

(i)  Assume that ¥V m € (m” ,mb), we have ( Qb e = Qf for some r = r(m,x) € (m",mf).
Then, r = m*, and p is characterized by its corresponding VF given by

Vo(m) = dmIn(m), Yme (m”,mh), d>0.

W B1/x
(ii) Assume that ¥ m € (mﬂ,mg), we have (Q%) *_ Q?K(P )for some r = r(m,x) €

H1/x B1/x
(mD"(p ), mg x(p )>. Then, r = m*, and p is a Marchenko—Pastur law scaled up.

L
Proof. (i) Assume that V m € (m” ,mf), we have (Qﬁ) = Qf for some r = r(m,x) €
(m” , mf). This implies that

K
(BQﬁI(C)) = BQf(g), V Z close to 0. (15)
We know from Equation (24) [20] that

W =71+ V,(r){ + Ce(Z), wheree(]) 0, (16)
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Based on (16), we obtain

—0

< ! ) = (m+Vo(m)7+2e(0))" = m"<1 +x]ﬁi’mg+gel(g)>, with €,(0) =% 0. 17)

Ban (g )
Combining (15)—(17), we obtain

VL geld) = (1 Yo(m >g+@;1<@>)

This gives that r = m", and so,

Vo (m") _ KV, (m)

o p— vV me (m’,m) and Vx e (0,1). (18)

Vp(m)

The solution of functional Equation (18) is = dIn(m), for some d > 0. This

concludes the proof of Theorem 2(i).

\J B1/x
(ii) Assume that V m € (mﬂ,mg), we have (an) o Q! x(05/%) for some
r=r(mx) € (mD"(pBal/K),mg”(pEl/K)). This implies that
K
(BQ%@)) = BQPK(paal/K) (0), V¥ {closetoO. (19)

Combining (3) and (16) and knowing from [15] that V 1/« (r) = Vo(xr)/x, we obtain

1

m = r—I—VD pBEL/x) ()0 + Ce(Z) = r+xV,(r)g + Ce() where €(7) ﬂ 0.
Q;/DK pﬂﬂl K

(20)
Combining (17), (19), and (20), we obtain
17 ( )
r4+xVo(r)g +Ce(l) = m*( 1+ x———C+Cer(0) |-
This gives that » = m*, and so,
VPT(HTK> = Vp;m), vV me (m’,mf), and Ve (0,1) (21)

(m)

The solution of functional Equation (21) is V’JT = d4, for some d; > 0. Thus, the measure

p is a Marchenko—Pastur distribution scaled up. This concludes the proof of Theorem 2(ii). [

Remark 3. Note that, up to affine transformations, we may suppose in Theorem 2(i) that

(m?,mf) C (1, +o0).

3. Conclusions

This paper studies the relationship of CSK families with multiplicative (free and Boolean)
convolutions. Let p € Py with a finite first moment mo For x € (0,1), we considered a new
family of probability measures

(IC_(p))UK = {(Q%)Uk(ds) : me (mp,mg)}.

We proved that if (K_(p) )UK is a re-parametrization of _(p), then p is characterized
by its corresponding VF V,(m) = dmIn(m), ¥ m € (m’,mf)), d > 0. We also proved

that if (K_ (p))UK is a re-parametrization of K_ (D (0®!/¥)), then p is a Marchenko—Pastur
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measure scaled up. Similar results are obtained if we replace the Boolean multiplicative
convolution |J with the free multiplicative convolution X. The study of CSK families in relation
to free and Boolean multiplicative convolutions provides a powerful analytic framework for
understanding fundamental objects in noncommutative probability. It helps unify different
independence structures, aids in explicit calculations, and connects probability theory with
deep areas of complex analysis and functional analysis. The study of invariance properties of
CSK families under free and Boolean multiplicative convolutions provides a deep structural
understanding of noncommutative probability and free harmonic analysis. It helps classify
fundamental distributions, connects probability with functional analysis, and reveals rich
algebraic and analytic structures underlying multiplicative convolutions.
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