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Abstract: This study tackles the challenge of splitting and merging in parametric active
contours or snakes. The proposed method comprises three stages: (1) fully 4-connected
interpolation, (2) snake splitting, and (3) snakes merging. For this purpose, first, the
coordinates of snake points are separated into two corrupted 1D signals, with missing
X/Y samples in the signals representing missing snakes’ coordinates. These missing X/Y
samples are estimated using a constrained Tikhonov regularisation model, ensuring fully
4-connected snakes. Next, crossing points are identified by plotting snake points onto a
raster matrix, detecting overlaps where multiple snake points occupy the same raster cell.
Finally, snakes are split or merged by extracting snake points between crossing snake points
that form a loop using a heuristic approach. Experimental results on the boundary detection
of enamel in Micro-CT images and coronary arteries’ lumen in CT images demonstrate the
proposed method’s ability to handle contour splitting and merging effectively.

Keywords: active contour; merging; regularisation; snake; splitting; Tikhonov regularisation
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1. Introduction
1.1. Background

Image segmentation is the process of partitioning an image into meaningful re-
gions. Active contour (AC) models, or snakes, play a crucial role in segmentation by
evolving a curve towards object boundaries through energy minimisation techniques.
These models incorporate edge information, region statistics, and shape priors to en-
hance segmentation accuracy, making them particularly effective for detecting complex
and irregular structures [1]. The AC model, initially proposed by Kass et al. [2], is a
framework where a curve dynamically evolves to minimise defined energy functions.
Parametric ACs, or “snakes”, are represented as a parameterised c(s) = (x(s), y(s)),
where s ∈ [0, 1] is a parameter. The evolution of the curve is governed by minimis-
ing Esnake = Einternal + Eimage + Eexternal where Einternal ensures smoothness of the curve,

defined as: Einternal =
∫ 1

0

(
α∥c′(s)∥2 + β∥c′′ (s)∥2

)
ds, where c′(s) and c′′ (s) are the first-

and second-order derivatives, and α and β are weighting parameters. Eimage attracts the

curve toward image features such as edges: Eimage = −
∫ 1

0 |∇I(c(s))|2ds, where I(x, y) is
the image intensity and ∇I is its gradient. Finally, Eexternal incorporates other forces (e.g.,
user-defined constraints). Since its introduction, numerous advancements have been made
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to enhance the snake’s efficiency to address more complex and challenging image segmen-
tation tasks. In recent years, Deep Snake [3] has reignited interest in snake models, a topic
that had long been overlooked after the development of data-driven image segmentation
methods. Deep learning techniques have contributed to this resurgence by enhancing the
flexibility and accuracy of traditional snakes in image segmentation and object boundary
detection. However, the key limitations of snakes including the splitting of a parametric
contour into multiple contours or the merging of multiple parametric contours into a
unique contour have not been addressed in their entirety [4].

• Merging: When two distinct contours (e.g., two objects) approach and eventually
collide, the AC model must be capable of merging them into a single contour.

• Splitting:

■ Object Splitting: An object can split into multiple contours (e.g., during cell mitosis).
The AC should effectively handle this process, ensuring a clear separation into
distinct contours.

■ Self-loop: During evolution, the AC may form small loops within itself, which are
undesirable artefacts. These loops typically arise due to the improper handling of
contour evolution or issues in the energy minimisation process.

Research addressing these limitations has generally followed two main directions:
geometric ACs (GACs) and non-GACs. The following subsection reviews previous methods
proposed for splitting and merging of snake models based on these directions.

1.2. Reviewing Splitting and Merging Methods
1.2.1. GACs

GACs are a class of AC models that, unlike snakes, explicitly represent the contour
as a deformable curve using an implicit representation based on level set methods. This
approach enables the contour to handle topology changes without requiring additional
modifications. GACs are widely used in medical imaging, object tracking, and computer
vision due to their flexibility in capturing complex shapes. GACs were independently
introduced by Caselles et al. [4] and Malladi et al. [5], building upon curve evolution
theory [6] and the level set method, where the curve c = {(x, y) : ϕ(x, y) = 0} is implicitly
represented as the zero level set of a higher-dimensional function ϕ(x, y) [7]. The evolution
of ϕ is governed by the Hamilton–Jacobi equation: ∂ϕ

∂t = ∥∇ϕ∥
(
κ + Fimage

)
, where ∇ϕ is

the gradient norm, ensuring proper propagation. κ is the curvature of the contour, defined
as: κ = ∇·

(
∇ϕ
∥∇ϕ∥

)
, which promotes smoothness. Fimage is an image-based term, such as:

−|∇I |, attracting the curve to edges. GACs are further classified into edge-based and
region-based methods. In edge-based GACs, the evolving contour is represented as the
zero level set of a higher-dimensional embedding function. The contour evolves in the
direction perpendicular to the image gradient, stopping at the desired boundary. While
edge-based GACs handle topological changes automatically and allow the incorporation of
arbitrary geometric or topological constraints, they face significant challenges in introduc-
ing user-defined external forces [8]. Furthermore, edge-based GACs are highly sensitive to
image noise, weak gradients, or discontinuities in boundaries [9]. To address the limitations
of edge-based GACs, region-based GACs were proposed by Chan and Vese [10], Samson
et al. [11], and Yezzi et al. [12]. Region-based methods incorporate image region informa-
tion rather than relying solely on gradient features, improving robustness in challenging
scenarios. However, these models are often restricted to a finite number of image regions,
limiting their flexibility.
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Despite their strengths, the primary drawback of all GAC methods is their computa-
tional complexity, leading to high execution times. This limitation hinders their application
in real-time tasks, such as online target tracking, where rapid contour evolution is essential.

1.2.2. Non-GACs

Unlike GACs, non-GAC methods are mostly based on computational geometry and
focus on the shape and properties of the contour. These methods leverage geometric
principles to address curve intersections or topological changes and can be categorised into
several distinct classes.

Grid-Based

The first category is the grid-based approach, introduced by McInerney and Terzopou-
los as “T-snakes” [8]. This method integrates the AC with a graphical decomposition
approach. It employs a simplicial affine cell image decomposition method, also known as
triangulation, to iteratively reparameterise snakes in two phases. This technique enables
topology transformations and handles collisions effectively. While the T-Snake achieves
topological adaptability, it compromises accuracy due to the use of simplicial approxima-
tions. Delingette and Montagnat [13] extended the grid-based concept by employing a
regular grid not for reparameterisation but to detect intersecting edges. Through their
method, the candidates for intersecting edges were stored in a hash table, and topol-
ogy modification was achieved based on distances between the snakes. Bischoff and
Kobbelt [14,15] introduced restricted snake method to reduce computational complexity
by dividing images into uniform square grids and confining the positions and movements
of snake points to the grid lines. However, this reduction in computation time comes
at the cost of accuracy. Additionally, the restricted snake method struggles to perform
well in regions with deep concavities and small tubular branches. Oliveira et al. [16,17]
introduced the concept of loop snakes to control the self-crossing of T-snakes. In their
approach, self-crossing was approximated by piecewise linear mapping. Then, with the
aid of additional structural analysis, termed the loop-tree, they determined whether the
enclosed region was explored by the snake. Finally, Zheng [18] proposed an enhancement
to the original T-snakes by introducing stricter constraints. These constraints limit the
movement of snake points to orthogonal equidistant paths, ensuring that each point moves
exclusively from one vertex to another.

Force-Based

The second class encompasses approaches that either contribute to or utilise AC
forces to handle topological changes. Ivins and Porrill [19] proposed the application of a
repulsion force, calculated based on stiffness, tension, and reversed pressure, to prevent
self-crossing in snakes. Ďurikovič et al. [20] introduced an area-based force, defined as
a discrete approximation of the inner normal vector to the snake. This area-based force
initially prevents formation of self-crossings. Wong et al. [21] developed an AC approach
for detecting bottleneck edges while avoiding self-collision of AC. Their method involves
disconnecting the closed snake into multiple open snakes and guiding the snakes toward
bottleneck edges using a force. A scaling function was used to adjust the normal forces
acting on the open snakes, while preventing the formation of self-crossing loops. Choi
et al. [22] leveraged image forces near the snake points to identify critical points prone to
splitting. Then, splitting was executed between point pairs separated by distances below a
specified threshold. Lefèvre and Vincent [23] used external energy information to detect
splitting points on the snake. Specifically, snake points trapped in the background, where
the external energy fell below a noise robust threshold, were identified as splitting points.
New snakes were subsequently created from successive points. Li et al. [24] utilised the



Mathematics 2025, 13, 991 4 of 22

Gradient vector flow (GVF) as an external force to enable snake splitting in multi-object
segmentation tasks. Their approach first segmented all objects into a single region using
the external force field. Subsequently, snake splitting was performed along the boundaries
of the segmented regions. Similar strategies to those employed by Li et al. [24] can be found
in related works [25,26].

Computational Geometry-Based

The third category encompasses intersection detection methods, including brute force,
sweep line [27], and sweep-and-prune [28], which are well-established in the field of
computational geometry. The brute force algorithm systematically examines all pairs of
line segments, formed by connecting successive snake points, to identify intersections. In
contrast, the sweep line algorithm introduces a dynamic approach, where a line sweeps
across the image plane, recording events as it intersects line segments. At each position
of the sweep line, information about segments it intersects is stored in a data structure.
This data structure, which is an ordered list of intersected segments, facilitates intersection
detection and is dynamically updated as the sweep progresses. Finally, the sweep-and-
prune algorithm enhances the sweep line technique by optimising the sorting process,
only reordering relevant portions of the list rather than the entire structure. Examples of
applying these techniques on handling AC topological changes can be found in [29–32].

Distance-Based

The fourth category represents a straightforward approach based on measuring
the distances between snake points to identify intersections [33]. Araki et al. [34] pro-
posed a method for detecting crossing points between two line segments vivi+1 and vjvj+1

(v is a snake point and j ̸= i− 1, i, i + 1). They identified an intersection if the equation
p(vi+1 − vi) = q

(
vj+1 − vj

)
yielded roots p, q where 0 < p < 1 and 0 < q < 1. This model

was later extended for merging multiple snakes [35]. Ngoi and Jia [36] introduced a positive-
negative contour approach to prevent self-loop formation and facilitate contour splitting
during multiple object segmentation by measuring the distance between snake points.
Similarly, Nakaguro and Makhanov [37] used a distance threshold to detect intersections
and proposed a model that allowed multiple snakes to split and merge while employing
quadratic constraints [38] to avoid self-looping. Lefèvre and Vincent [23] merged snakes
by comparing the centres of gravity, calculated as the mean of the X and Y coordinates
of all snake points. If the distance between two centres was below a set threshold, the
snakes were merged. Mikula et al. [39,40] introduced a grid-based method to efficiently
detect self-crossing by identifying grid boxes containing multiple non-consecutive snake
points. This approach was generalised by Benninghoff and Garcke for complex topological
scenarios [41] and extended to accommodate free-endpoint snakes [42].

Snake Interpolation-Based

The final approach focuses on fully connecting snake points to identify intersection
points. Challenges with this approach are false positive and false negative intersection
points (illustrated in Figure 1) introduced during the discretisation of snake points (dashed
line in Figure 1). Ji and Yan [43] proposed a linear interpolation method to detect intersection
points, effectively making snake points continuously connected on a discrete plane. To
mitigate the false positive issue, they employed a distance threshold to filter out erroneous
detections. Their method was later extended to address the problem of merging snakes [44].
Building on this work, Nakhmani and Tannenbaum [45] introduced a 4-connected linear
interpolation technique that effectively resolved the issue of false negatives.
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In addition to the above categories, AC models can be classified based on their ability
to handle various topological changes, such as merging and splitting. The splitting problem
can be further divided into two sub-problems: (1) the segmentation of multiple objects
within an initial contour, where the primary snake is divided into multiple snakes, and
(2) resolving the small self-loops that form when the internal resistance of snake points
becomes highly uneven, leading to the creation of self-loops [44]. Two main strategies are
employed to manage self-looping: the first strategy aims to prevent self-loop formation,
while the second focuses on eliminating self-loops after their formation. Table 1 summarises
the reviewed methods in this section.

Table 1. A review of the methods that address topological issues in AC models.

Topological Handling
Splitting
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ie
s

Self-Crossing

Sub-
Categories Methods
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ng

M
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ti
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e
O
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t

Pr
e-

Fo
rm
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n

Po
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-F
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McInerney and Terzopoulos [8],
Oliveira et al. [16,17]

√ √ √

Bischoff and Kobbelt [14,15]
√ √

Zheng [18]
√ √

- Not detecting all intersections due to
discretisation [44].
- Deal only with rigid deformation of
snakes [44].Grid-based

Delingette and Montagnat [13]
√ √ √ - Intersection detection is restricted

by the size of grid [13].

Ivins and Porrill [19],
Wong et al. [21]

√
- Not always successful prevention of
self-loop [45].
- Restricting snakes’ dynamic and
convergence [45].

Ďurikovič et al. [20],
Choi et al. [22]

√ √ - Unable to deal with complex objects
due to limiting speed of snake’s
points to equal value [13].

Lefèvre and Vincent [23]
√ - False positive in detecting

intersection points.
- Limiting external energy.

Force-
based

Li et al. [24], Xingfei and Jie [25],
Chuang and Lie [26]

√ - Time consuming due to prior need
to GVF field before snake
deformation [26].

A
C

s

Computational
geometry-

based

Smith and Schaub [29], Perrin
et al. [30], Doğan et al. [31], Stoeter
and Papanikolopoulos [32]

√ √ √ - Difficult implementation due to
existence of different special
cases [45].
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Table 1. Cont.

Topological Handling
Splitting

C
at

eg
or

ie
s

Self-Crossing

Sub-
Categories Methods

M
er

gi
ng

M
ul

ti
pl

e
O

bj
ec

t

Pr
e-

Fo
rm

at
io

n

Po
st

-F
or

m
at

io
n

Drawbacks

Pauš and Beneš [33]
√ √ √

Araki et al. [34]
√ √

Araki et al. [35]
√ √ √

Ngoi and Jia [36]
√ √

Nakaguro and Makhanov [37]
√ √ √

Lefèvre and Vincent [23]
√

- False positive or negative in
detecting intersection points.

Mikula et al. [39,40]
√ √

Distance-
based

Benninghoff and Garcke [41,42]
√ √ √

- False positive or negative in
detecting intersection points.
- Intersection detection is restricted by
the size of the grid.

Ji and Yan [43]
√ √

- False negative and positive.

Ji and Yan [44]
√ √ √ - Linear interpolation.

- False negative and positive.

A
C

s

Snake
interpolation-

based
Nakhmani and Tannenbaum [45]

√ √
- False positive.

Edge-based Caselles et al. [4], Malladi et al. [5]
√ √ √

- Difficulties in admitting imposition
of arbitrary geometric or topological
constraints [8] and adding
user-defined external force.
- Susceptible to noise, low gradient or
boundary gap [9].
- High execution time [24].

G
A

C
s

Region-
based

Chan and Vese [10], Samson et al.
[11], Yezzi et al. [12]

√ √ √ - Supervised usage or pre-specified
number of regions [24].
- High execution time [24].

1.3. Motivation and Innovation

In this paper, building on the work of Nakhmani and Tannenbaum [45], we extend the
approach to address both the merging of collided snakes and the splitting of a contour. Our
contributions are two-fold: (1) we propose a novel nonlinear fully 4-connected interpolation
method, which overcomes the limitations of linear interpolation in merging scenarios, as
illustrated in Figure 2 where linear interpolation cannot detect intersection; and (2) we
develop an advanced merging algorithm capable of extracting all snakes, including both
the main external and internal snakes, following a collision.
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Figure 2. Inefficiency of linear 4-connected interpolation for detecting intersection points. (a) Col-
lided snakes, (b) result of linear 4-connected interpolation, and (c) result of nonlinear 4-connected
interpolation.

2. Materials and Methods
2.1. Fully 4-Connected Interpolation

To form a fully 4-connected snake on a discrete image plane, the difference in coor-
dinates between any two successive snake points must meet specific criteria: along one
axis (X or Y) the difference must be exactly one, while along the other axis it must be zero
(Figure 3).
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Figure 3. Relationship between coordinates of two successive pixels in a 4-connected neighbourhood.

To achieve this, we leverage a well-established 1D signal processing method known as
error concealment. In this approach, unknown or missing samples are estimated based on
the available known samples. Figure 4 illustrates the application of an error concealment
technique, where missing data points are reconstructed using a least-squares optimisation
method. In the subsequent subsections, we first reformulate the task of achieving fully
4-connected interpolation of snake points as an error concealment problem. We then pro-
pose a constrained Tikhonov regularisation model to solve the error concealment problem
effectively. Finally, we extract the location information of the connector points from the
solution and embed it back into the image plane.
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2.1.1. Transformation of 4-Connected Interpolation Problem to Error Concealment

Since the X- and Y-coordinates of snake point locations are independent, the estimation
of the X- and Y-coordinates of the connector points can be performed separately. By separat-
ing the X- and Y-coordinates of the snake points into two signal vectors,

(
cx(n), cy(n)

)N
n=1,

as known samples (Figure 5b), and inserting missing samples represented by NaN (Not
a Number) values between the known samples (Figure 5c), the problem is reformulated
as an error concealment problem. As shown in Figure 5a, the number of missing samples
between each pair of known samples is calculated as No.NaN = (|dx|+ |dy|).
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missing samples.

2.1.2. Mathematical Notations

Before mathematically formulating the proposed error concealment model, we first
introduce some key notations. Let y represent a corrupted signal of length N, and let K
denote the number of known samples in y, where K < N. Define S as a sampling matrix
of size K× N. For example, if the first, third, and sixth samples of a 6-point signal y are
y(1), y(3), and y(6), then the sampling matrix S is given by:

S =

1 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1

. (1)
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The sampling matrix S is essentially an identity matrix with the rows corresponding to
missing samples removed. For instance, applying S to the signal y, i.e., Sy, removes the
three corrupted samples, leaving only the known samples.

Sy =

1 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1




y(0)
y(1)
y(2)
y(3)
y(4)
y(5)


=

y(0)
y(2)
y(5)

. (2)

Also, we define D′ and D′′ as first- and second-derivative matrices, respectively, as follows:

D′ =


1 −1 0
0 1 −1

· · · 0

...
. . .

...
0 · · · 1 −1

, (3)

D′′ =



1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

· · · 0

...
. . .

...
0 · · · 1 −2 1

. (4)

2.1.3. Constrained Tikhonov Regularisation Model

Tikhonov Regularisation is a technique used to stabilise ill-posed problems, by intro-
ducing a regularisation term that penalises large or unrealistic solutions. In the context
of error concealment—such as video streaming or image processing—this method can
be employed to recover missing or corrupted data, ensuring visually or perceptually
smooth results. Mathematically, Tikhonov regularisation involves minimising the objective
function [46]:

min ∥c− r∥2
2 + λ∥D′′ r∥2

2
r

, (5)

where c and r denote the corrupted and resultant signals, respectively, λ is the regularisation
parameter, and ∥.∥2 represents the Euclidean norm of a vector. The key idea in Tikhonov
regularisation is to solve a minimisation problem that balances two objectives:

1. Data Fidelity (∥c− r∥2
2): The reconstructed or filled-in data should be as close as

possible to the known data such as neighbouring pixels, frames, or signals.
2. Smoothness (Regularisation) (∥D′′ r∥2

2): The reconstructed data should avoid abrupt
changes or inconsistencies, ensuring a smooth appearance.

With our problem, the critical challenge in reconstructing the corrupted signals lies
in ensuring that the retrieved signals of cx and cy, when inversely transformed to pixel
coordinates, form fully 4-connected lines in the image plane. For this to occur, the difference
along one coordinate of two successive snake points must satisfy −1 ≤ D′r ≤ 1, while the
difference along the other coordinate must be zero: D′r = 0 (see Figure 3). Since we cannot
predetermine which samples should adhere to D′r = 0, the constraint −1 ≤ D′r ≤ 1 is
applied to all samples in both signals. Then, in Section 2.1.4, we will identify and adjust the
samples that should satisfy D′r = 0.
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By incorporating the constraint −1 ≤ D′r ≤ 1 into (5), the optimisation problem
becomes

min
r
∥ST(c− r)∥2

2 + λ∥D′′ r∥2
2, subject to− 1 ≤ D′r ≤ 1, (6)

where ST is the transpose of the sampling matrix S. The first term in the objective function,
∥ST(c− r)∥2

2, ensures that the known values of the corrupted signal are preserved, while
the second term, λ∥D′′ r∥2

2, enforces smoothness across all samples, including “known–
unknown” values (as illustrated in Figure 6). This optimisation problem is solved as
presented in [46].
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Figure 6. Illustration of known, known-unknown, and unknown values.

2.1.4. Post-Processing

In this section, some modifications are applied to the retrieved rx and ry signals to
ensure their values can be embedded into the image plane. Additionally, paired samples of
rx and ry that need to satisfy the condition D′r = 0 are detected and adjusted accordingly.

First, the positions of the snake points are determined using the sample values from
the reconstructed rx and ry signals. These positions are represented as a set of coordinates:
P = { (r1

x, r1
y ), . . . , (rn

x , rn
y )}. Here, rn

x and rn
y denote the n-th sample values of the rx and ry

signals, respectively.
Second, to embed the members of P into the image plane, the values of P must be

rounded to integers. However, rounding may lead to a diagonal neighbourhood between
successive points, which must be corrected to ensure a 4-connected neighbourhood. To
solve this problem, first, diagonal neighbours are detected using Euclidean distance i.e.,

D =
√

(Pn
x − Pn−1

x )2 + (Pn
y − Pn−1

y )2, for D > 1. To address the diagonal neighbourhood
and transform it into a 4-connected neighbourhood, an intermediate snake point is inserted
between the diagonally connected snake points. The adjustment can be performed in
two ways, depending on the specific configuration of the diagonal connection. This is
illustrated in Figure 7a,b. To decide the proper intermediate snake points for converting
diagonal connections into 4-connected connections, the relative differences in the X- and
Y-coordinates of the diagonally connected snake points are compared. To decide the proper
intermediate snake points for converting the diagonal neighbourhood into a 4-connected
neighbourhood, dx = cn

x − cn−1
x and dy = cn

y − cn−1
y of diagonally connected snake points

are compared. If |dx| ≤ |dy|, the snake point is chosen in the way x× = Pn−1
x and

y× = Pn−1
y + 1 as shown in Figure 7c,e. Otherwise, if |dx| > |dy|, x× = Pn−1

x + 1 and
y× = Pn−1

y (Figure 7d,f). The algorithm for this step is detailed as Algorithm A1 in the
Appendix A.
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Figure 7. Transformation of diagonal connection of snake points to a 4-connected one. (a,b): Two pos-
sible configurations for the diagonal connection. (c): converting (a) to a 4-connected connection when
|dx| ≤ |dy|, (d): converting (a) to a 4-connected connection when |dx| > |dy|, (e): converting (b) to
a 4-connected connection when |dx| ≤ |dy|, (f): converting (b) to a 4-connected connection when
|dx| > |dy|.

2.2. Splitting

After transforming the snake to a fully 4-connected contour, all self-loops within the
contour are identified and extracted as separate contours using a straightforward algorithm.
The process begins by plotting the resultant fully 4-connected snake onto an image matrix.
Subsequently, intersecting snake points are identified at locations where snake points are
plotted multiple times within the same array position. Upon detecting a crossing location,
the snake points from the first occurrence of the intersection point (denoted as PiF

k ) to
the point just before the second occurrence of the same intersection point (denoted as
PiS−1

k ) are isolated and reassigned to form a new, separate snake. The algorithm iteratively
examines the snakes for additional crossing locations and applies the same procedure until
no further intersections are detected. The algorithm of the splitting process is detailed as
Algorithm A2 in the Appendix A.

2.3. Merging

This section presents a novel algorithm designed to extract all closed loops formed after
the collision of two or more separated snakes. For clarity, we illustrate the algorithm using
Figure 8, where the white circles (i.e., i1 = (x1, y1) ∈ Pk ∩Pk+1 to i8 = (x8, y8) ∈ Pk ∩Pk+1)
represent the crossing points. The problem of merging collided snakes can be subdivided
into the extraction of two distinct types of snakes: (1) the outline or external snake (Figure 8,
red dashed line 1), and (2) the internal snakes (Figure 8, red dashed lines 2, 3, and 4). The
extraction of these internal and external snakes is discussed in the subsequent subsections.

Before delving into the extraction process, we first introduce three key concepts. To
accurately extract both external and internal snakes, the relative positions of the crossing
points within each snake must be known. To achieve this, we define two “snake vectors”,
which consists of each snake’s points arranged in sequence. Figure 9 illustrates two
different contour vectors of the black snake in Figure 8. Furthermore, as shown in Figure 9,
two types of paths, “Long Path” (LP) and “Short Path” (SP), can be defined within the
snake vector based on the chosen starting point and the direction of traversal (clockwise
or counterclockwise), illustrated by solid and dashed blue lines for crossing points of i2
and i3. In Figure 9a, the SP passes through both the beginning and end of the snake vector,
while the LP does not. In contrast, Figure 9b demonstrates the inverse relationship between
the SP and LP.
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Figure 9. Two different statuses for LP and SP in snake vectors of the black contour in Figure 8. (a) SP
passes the beginning and end of the snake vector while LP does not. (b) LP passes the beginning and
end of the snake vector while SP does not.

2.3.1. Extracting Internal Contours

To extract internal snakes, the first step is to select two successive, non-adjacent
crossing points, such as i2 and i3 (with i1 and i2 being successive and adjacent). Next,
the snake points that lie along the SPs between selected crossing points (depicted by the
blue dotted lines in Figure 8) are extracted as part of the internal snake. This process is
repeated for all successive, non-adjacent pairs of crossing points. There are six distinct
configurations for extracting points along the SPs, depending on the choice of starting
point for each snake vector: if both are in LPs, both are in SPs, or one is in LP and another
in SP. For example, consider the crossing points i2 and i3. If both starting points are in
LPs, e.g., point “A” in Figure 8, and the black snake is mapped clockwise while the grey
snake is mapped counterclockwise (or vice versa) into the snake vectors, this results in the
configuration shown in Figure 10a. If both snakes are mapped into the snake vectors in
the same direction (either both clockwise or both counterclockwise), the result corresponds
to Figure 10b. If both crossing points are in SPs, e.g., “B”, with the black snake mapped
clockwise and the grey snake mapped counterclockwise (or vice versa) into the snake
vectors, the extraction status corresponds to Figure 10c, while the same direction for both
contours (either clockwise or counterclockwise) results in the configuration shown in
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Figure 10d. Lastly, if one crossing point is in LP and another in SP, e.g., “C”, with the black
snake mapped clockwise and the grey snake mapped counterclockwise (or vice versa) into
the snake vectors, the configuration in Figure 10e is obtained, and when both snakes are
mapped in the same direction, the configuration is as shown in Figure 10f.
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2 , |Dk+1| <
Nk+1

2 , and Dk+1 × Dk < 0; (c): |Dk| > Nk
2 , |Dk+1| <

Nk+1
2 , and Dk+1 × Dk > 0; (d): |Dk| > Nk

2 , |Dk+1| <
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2 , and Dk+1 × Dk < 0; (e): |Dk| > Nk
2 ,
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2 , and Dk+1 × Dk > 0; (f): |Dk| > Nk
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To distinguish between each of the six configurations shown in Figure 10, we define
the function Dk = Lk

(
ij+1

)
− Lk

(
ij
)
, where L gives the index of the snake point within the

snake vector, and ij+1 and ij are two successive and non-adjacent crossing points. For each
snake, if |Dk| > Nk

2 (where Nk represents the total number of points in each snake vector),
the SP passes through both the beginning and end of the snake vector. This situation
corresponds to vector 1 in Figure 10c,d, as well as both vectors in Figure 10e,f. Conversely,
if |Dk| < Nk

2 , the SP does not pass through the beginning and end of the snake vector.
This case corresponds to vector 2 in Figure 10c,d, as well as both vectors in Figure 10a,b.
Additionally, the sign of the product Dk+1 ×Dk determines the direction of mapping snake
points, i.e., clockwise or counterclockwise, in the snake vectors. Specifically:

• If Dk+1 × Dk > 0, the sequence of the two crossing points in both vectors is either
clockwise or counterclockwise (Figure 10a,c,e).

• If Dk+1 × Dk < 0, the sequence of the crossing points differs, i.e., one is clockwise
while another one is counterclockwise (Figure 10b,d,f).

Based on the output of the function D, the SP for each of the six statuses can be
identified and extracted, as illustrated by the small dashed lines in Figure 10. Algorithm A3,
presented in Appendix A, formalises the process of extracting internal snakes after the
collision of two or more snakes.

2.3.2. Merging External Contours

To extract the external contour, the process begins by identifying two outer crossing
points, i.e., i1 and i8. These points are then used to extract the snake points that lie along the
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LPs between i1 and i8 (illustrated by the solid blue line in Figure 8), forming the external
contour. To detect the pair of outer crossing points, in our example i1 and i8, SPs between
crossing points are evaluated two-by-two, and the pair of crossing points with the longest
SP is selected as the outer crossing points. To extract LPs, there are six configurations
presented in Figure 10 by the large dashed arrows. The sign of Dk+1 × Dk retains the same
interpretation as discussed in Section 2.3.1. However, the value of |Dk| has a different
meaning for LP extraction. Specifically:

• If |Dk| < Nk
2 , the LP passes through the beginning and end of the snake vector. This is

represented by vector 2 in Figure 10c,d, as well as both vectors in Figure 10a,b.
• If |Dk | > Nk

2 , the LP does not pass through the beginning and end of the contour
vector. This corresponds to vector 1 in Figure 10c,d, and both vectors in Figure 10e,f.

Algorithm A4, presented in Appendix A, provides a detailed methodology for extract-
ing the external contour after the collision of two or more snakes.

Below, we present the steps outlining how to plug or integrate the proposed splitting
and merging algorithm into an image segmentation process using a snake algorithm:

1. The locations of snakes in the initial image are manually defined.
2. The boundaries are detected using the AC model.
3. The resultant boundaries are converted into fully 4-connected contours.
4. These fully 4-connected contours are passed through the splitting algorithm, where

contours with fewer than 50 points, identified as self-loops, are removed.
5. The merging algorithm then processes the remaining contours to identify and merge

collided contours.
6. Finally, the output contour from the merging algorithm serves as the initial positions

for the snakes in the next image, and the process is repeated.

3. Results
This section demonstrates the performance of the proposed algorithm for splitting

and merging of the snakes through two experiments.
The first experiment aims to detect the boundary between the dentin (dark grey region

in Figure 11) and enamel (light grey region in Figure 11) in sequential 2D images from a
tooth Micro-computed tomography (Micro-CT) dataset using a snake. Browsing 2D images
of this 3D dataset sequentially exhibit anatomical variations that lead to the splitting and
merging of enamel regions in Figure 11. For this experiment, we use a dataset consisting of
Micro-CT images of a tooth, described in [47]. In the process of boundary detection, each
detected contour in a 2D image serves as the initial position of the snakes in the subsequent
image. By applying the proposed splitting and merging method, we effectively regulate
topology changes in the snakes, ensuring accurate and adaptive boundary detection.

Before initiating boundary detection using the snake, we perform image denoising as
a preprocessing step using the total variation method [48,49]. Micro-CT images inherently
contain significant noise, which poses challenges for snakes in accurately detecting bound-
aries. After noise reduction, the boundary between enamel and dentin regions is detected
using a snake implemented by MATLAB, version R2024b, as explained at the end of the
method section.

To underscore the importance of splitting and merging in snakes, Figure 11 presents
the results of the original snake without implementing the proposed splitting and merging
approach, whereas Figure 12 shows the results after applying the proposed method. As
shown in Figure 11a, in the initial 2D image, four separate contours are detected in the
image. The boundary detection then continues sequentially, image by image, until the
first merging is expected to occur in Figure 11c, as indicated by the red arrow. Using the
proposed method, two internal snakes merge, and the number of snakes is reduced to three,
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as observed in Figure 12c. Similarly, in Figure 12d, our proposed algorithm successfully
performs two merges. In addition, the lack of topology handling results in inaccurate edge
detection in the next images, such as the red dashed circles in Figure 11f,g. Finally, in
Figure 12h, the proposed method successfully handles the expected splitting and merging
as indicated by red arrows in Figure 11h.
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Figure 11. Results of applying the original snake without proposed splitting and merging method
to detect enamel’s boundaries in successive images of 3D Micro-CT. In (a), four snakes begin their
evolution, and continue at (b). The first merging is expected to occur at (c), indicated by the red
arrow, however, without the splitting and merging algorithm, snakes cannot merge or split. Similarly,
in the following image at (d), two additional merges (shown by red arrows) cannot be processed.
Then, the snakes continue evolution at (e–g). As shown by red circles at (f,g), the lack of splitting
and merging leads to an inaccurate edge detection. Finally, at (h), two more topological changes are
expected but cannot be handled without the proposed algorithm.

In the second experiment, we detect the lumens of coronary arteries in 2D images from
a cardiac CT dataset using the snake sequentially, where the detected contour in each 2D
image serves as the initial position of the snake in the next image. The dataset used in this
experiment is freely available, and further details can be found in [50]. Browsing through
the sequential 2D images of this 3D dataset reveals the merging of lumen cross-sections,
which corresponds to the joining of different artery branches in 3D. To detect the lumen
boundaries, we follow the same procedure as in the first experiment for detecting the
boundary between enamel and dentin. Figures 13 and 14 show the results of snake’s edge
detection without and with the proposed splitting and merging algorithm. As shown
in Figure 13a, in the initial 2D image, four lumens are detected by the snakes. As the
snakes evolve sequentially through the images, the first merging is expected in Figure 13b,
indicated by the red arrow, which is resolved using the proposed method in Figure 14b.
Similarly, the unresolved merges (shown by red arrows) in Figure 13c are processed in
Figure 14c. Finally, the last merging expected in Figure 13g is successfully resolved by the
proposed method in Figure 14g.
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Figure 12. Results of integrating the proposed splitting and merging method with the snake algorithm
to handle topology changes in the images from Figure 11. Compared to the corresponding images
in Figure 11, the proposed algorithm successfully manages the merging and splitting of snakes,
effectively handling the topological changes. As shown at (a,b), four snakes evolve similar to
Figure 11a,b. Then, first merging occurs at (c), followed by two additional merges at (d). Subsequently,
the snake continues to evolve at (e–g). Finally, one merging and one splitting occur at (h).
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Figure 13. Results of applying the original snake without proposed splitting and merging method
to detect lumens’ boundaries. In (a), four snakes (red contours) begin their evolution, with the first
expected merging at (b), indicated by the red arrow. Without the splitting and merging algorithm, the
snakes cannot merge or split. Similarly, in the following image at (c), one additional merge (shown by
red arrow) cannot be processed. Then, four snakes continue to evolve at (d–f). Finally, at (g), another
merging is expected but cannot occur without the proposed algorithm. These snakes overlap without
merging, as shown at (h).
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Figure 14. Results of integrating the proposed splitting and merging method with the snake algorithm
to handle topology changes in the images from Figure 13. Compared to the corresponding images
in Figure 13, the proposed algorithm successfully manages the merging and splitting of snakes,
effectively handling the topological changes. At (a) four snakes (red contours) are detected. The first
and second merging happen at (b,c). Then, two snakes continue to evolve at (d–f). Finally, the last
merging occurs at (g), after which a snake continues its evolution, as shown at (h).

Finally, to further assess self-loops removal, we conduct a third experiment introducing
larger self-loops during initialisation, the green contour in Figure 15. The splitting method
effectively removes these loops, as shown in Figure 15, with different colours illustrating
results of snake evolution at each iteration.
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Figure 15. Performance of splitting algorithm for self-loops removal. The green contour shows the
initial contour. Results of applying the splitting algorithm for each iteration are depicted by different
colours sequentially.

Performance-wise, the proposed algorithm added less than 8% runtime overhead to
the original snake for handling topology changes in the first and second experiments. In the
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third experiment, detecting and removing self-loops increased runtime by approximately
4%, highlighting the algorithm’s efficiency and effectiveness in handling self-crossing
occurrence in the complex topology changes.

4. Conclusions
In this paper, we proposed a novel method for handling topology changes in snakes

(parametric ACs). Our approach effectively manages the splitting and merging of snakes
through three stages: fully 4-connected interpolation, snake splitting, and snake merging,
ensuring improved robustness in snake evolution.

To evaluate our method, we applied it to both dental Micro-CT and cardiac CT datasets
to detect the boundary of enamel and artery lumens, respectively, demonstrating its ability
to accurately handle complex topological changes. The results confirm that our method
successfully preserves snake integrity, though it introduces a moderate increase in runtime.

This advancement is significant because topology changes are a major challenge in
snake models, particularly in medical image segmentation, where anatomical structures
frequently split and merge. By addressing these challenges, our method enhances the
accuracy and adaptability of snakes, making them more reliable for medical imaging and
other applications requiring dynamic boundary detection.

The proposed splitting and merging method has demonstrated its effectiveness in
boundary detection in CT imaging. Future work should explore its application to other
imaging modalities, such as MRI, ultrasound, and PET, where boundary detection chal-
lenges differ, particularly in terms of tissue complexity.

Additionally, we aim to optimise the algorithm in the future to reduce computational
overhead and explore its integration with deep learning-based AC models, such as Deep-
Snake. Since learning-based AC models are trained to predict energy terms or forces, they
guide the contour through multiple iterations to achieve an optimal shape. Therefore,
similar to traditional AC models, the proposed splitting and merging approach can detect
and resolve potential collisions at the end of each iteration. Finally, extending our method
to 3D ACs could further enhance its applicability in volumetric image analysis.
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Appendix A

Algorithm A1: Post-Processing Algorithm

1: Forming P =
((

C1
x, C1

y

)
, . . . ,

(
Cn

x , Cn
y

))
2: Rounding the values of the members of P
3: For all samples of P
4: Calculate D
5: If D > 1
6: If |dx| >|dy|
7: Add

(
Pn−1

x + 1, Pn−1
y

)
between Pn−1 and Pn in P

8: Else
9: Add

(
Pn−1

x , Pn−1
y + 1

)
between Pn−1 and Pn in P

10: End
11: End
12: End
13: Removing the successive and repetitious members of P

Algorithm A2: Splitting Algorithm

1: For each Pk
2: While there is an intersection point in the Pk
3: Extracting an intersection point such as i
4: Pj+1 ←

(
PiF

k . . . . .PiS−1
k

)
5: Removing

(
PiF

k . . . . .PiS−1
k

)
from Pk

6: j← j + 1
7: End
8: k← k + 1
9: End

Algorithm A3: Merging internal contours

1: Extracting intersection points between Pk and Pk+1

2: Ordering intersection points clockwise or counterclockwise
3: For j = 1 to (number of intersection points − 1)
4: If ij and ij+1 are successive and not adjacent

5: Dk = Lk

(
ij

)
− Lk

(
ij+1

)
6: Dk+1 = Lk+1

(
ij

)
− Lk+1

(
ij+1

)
7: If |Dk| < Nk

2 & |Dk+1| < Nk+1
2 & (Dk ×Dk+1) > 0

8: Pk+2 ←
{

P
Lk(ij)
k , . . . , P

Lk(ij+1)
k , P

Lk+1(ij+1)−1
k+1 , . . . , P

Lk+1(ij)
k+1

}
9: Elseif |Dk| < Nk

2 & |Dk+1| < Nk+1
2 & (Dk ×Dk+1) < 0

10: Pk+2 ←
{

P
Lk(ij)
k , . . . , P

Lk(ij+1)
k , P

Lk+1(ij+1)+1
k+1 , . . . , P

Lk+1(ij)
k+1

}
11: Elseif |Dk| > Nk

2 & |Dk+1| < Nk+1
2 & (Dk ×Dk+1) > 0

12: Pk+2 ←
{

P1
k , . . . , P

Lk(ij)
k , P

Lk+1(ij)+1
k+1 , . . . , P

Lk+1(ij+1)
k+1 , P

Lk(ij+1)+1
k , . . . , PN

k

}
13: Elseif |Dk| > Nk

2 & |Dk+1| < Nk+1
2 & (Dk ×Dk+1) < 0

14: Pk+2 ←
{

P1
k , . . . , P

Lk(ij)
k , P

Lk+1(ij)−1
k+1 , . . . , P

Lk+1(ij+1)
k+1 , P

Lk(ij+1)+1
k , . . . , PN

k

}
15: Elseif |Dk| > Nk

2 & |Dk+1| > Nk+1
2 & (Dk ×Dk+1) > 0

16: Pk+2 ←
{

P1
k , . . . , P

Lk(ij)
k , P

Lk+1(ij)−1
k+1 , . . . , P1

k+1, PN
k+1, . . . , P

Lk+1(ij+1)
k+1 , P

Lk(ij+1)+1
k , . . . , PN

k

}
17: Else
18: Pk+2 ←

{
P, . . . , P

Lk(ij)
k , P

Lk+1(ij)+1
k+1 , . . . , PN

k+1, P1
k+1, . . . , P

Lk+1(ij+1)
k+1 , P

Lk(ij+1)+1
k , . . . , PN

k

}
19: End
20: End
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Algorithm A4: Merging of external contour

1: Extracting intersection points between Pk and Pk+1

2: Finding a pair of crossing point, PLk(i)
∗ and PLk(i

′
)

∗ that has largest SP
3: Dk = Lk(i)− Lk

(
i
′
)

4: Dk+1 = Lk+1(i)− Lk+1

(
i
′
)

5: If |Dk| < Nk
2 & |Dk+1| <

Nk+1
2 & (Dk ×Dk+1) > 0

6: Pk+2 ←
{

P1
k , . . . , PLk(i)

k , PLk+1(i)−1
k+1 , . . . , P1

k+1, PN
k+1, . . . , PLk+1(i

′
)

k+1 , . . . , PLk(i
′
)+1

k , . . . , PN
k

}
7: Elseif |Dk| < Nk

2 & |Dk+1| <
Nk+1

2 & (Dk ×Dk+1) < 0

8: Pk+2 ←
{

P1
k , . . . , PLk(i)

k , PLk+1(i)+1
k+1 , . . . , PN

k+1, P1
k+1, . . . , PLk+1(i

′
)

k+1 , PLk(i
′
)+1

k , . . . , PN
k

}
9: Elseif |Dk| > Nk

2 & |Dk+1| <
Nk+1

2 & (Dk ×Dk+1) > 0

10: Pk+2 ←
{

PLk(i)
k , . . . , PLk(i

′
)

k , PLk+1(i
′
)+1

k+1 , . . . , PN
k+1, P1

k+1, . . . , PLk+1(i)
k+1

}
11: Elseif |Dk| > Nk

2 & |Dk+1| <
Nk+1

2 & (Dk ×Dk+1) < 0

12: Pk+2 ←
{

PLk(i)
k , . . . , PLk(i

′
)

k , PLk+1(i
′
)−1

k+1 , . . . , P1
k+1, PN

k+1, ..., PLk+1(i
′
)

k+1

}
13: Elseif |Dk| > Nk

2 & |Dk+1| >
Nk+1

2 & (Dk ×Dk+1) > 0

14: Pk+2 ←
{

PLk(i)
k , . . . , PLk(i

′
)

k , PLk+1(i
′
)−1

k+1 , . . . , PLk+1(i)
k+1

}
15: Else

16: Pk+2 ←
{

PLk(i)
k , . . . , PLk(i

′
)

k , PLk+1(i
′
)+1

k+1 , . . . , PLk+1(i)
k+1

}
17: End
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