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Abstract: Signifiable computability aims to separate what is theoretically computable from
what is computable through performable processes on computers with finite amounts
of memory. Mathematical objects are signifiable in a formalism L on an alphabet A if
they can be written as spatiotemporally finite texts in L on A . In a previous article, we
formalized the signification and reference of real numbers and showed that data structures
representable as multidimensional matrices of discretely finite real numbers are signifiable.
In this investigation, we continue to formulate our theory of signifiable computability by
offering an axiomatization of signifiable computation on discretely finite real numbers.
The axiomatization implies an ontology of functions on discretely finite real numbers that
classifies them as signifiable, signifiably computable, and signifiably partially computable.
Relative to L and A , signification is performed with two formal systems: the Former
ˆ̈FA ,L that forms texts in L on A and the Transformer ˆ̈TA ,L that transforms texts formed
by ˆ̈FA ,L into other texts in L on A . Singifiable computation is defined relative to L on A

as a finite sequence of signifiable program states, the first of which is generated by ˆ̈FA ,L

and each subsequent state is deterministically obtained from the previous one by ˆ̈TA ,L .
We define a debugger function to investigate signifiable computation on finite-memory
devices and to prove two theorems, which we call the Debugger Theorems. The first
theorem shows that, for a singifiably partially computable function signified by a program
on a finite-memory device D , the memory capacity of D is exceeded when running the
program on signifiable discretely finite real numbers outside of the function’s domain.
The second theorem shows that there are functions signifiably computable in general that
become partially signifiably computable when signified by programs on D insomuch as
the memory capacity of D can be exceeded even when the programs are executed on some
signifiable discretely finite real numbers in the domains of these functions.

Keywords: computability theory; recursion theory; signifiable computability; axiomatization;
debugger theorems; discretely finite real numbers; number theory

MSC: 03D75; 03D80

1. Introduction
While general computability describes functions computable on devices without any

memory limitations [1], or, equivalently, computable in principle [2], actual computability
aims to characterize functions computable on devices with finite amounts of memory
available for computation. We call such devices finite-memory devices (FMD) [3]. In a
previous article [4], we began to formulate a theory of signifiable computability (or, equiva-
lently, a signifiable computability theory (SCT)). The SCT separates general computability
investigated in the classical computability theory (CCT) from actual computability when
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computation occurs within a finite amount of memory, as is the the case in many areas of
applied computer science. In signifiable computability, names of intuitive objects, such
as numbers, functions, data types and structures (i.e., instances of data types), programs,
and program states are treated as spatiotemporally finite texts constructed with formal
languages (or, equivalently, formalisms) on specific alphabets. Thus, these texts signify (or,
equivalently, designate or name) intuitive objects, such as numbers, functions, data types
and structures, programs, and program states in a given universe of discourse described by
a formalism L on an alphabet A (e.g., Lisp on Unicode). When the texts are stored within
the available memory units on an FMD D , they signify the corresponding objects in the
finite memory of D , thereby making the universe of discourse conditional not only on L

and A , but also on D . E.g., a human programmer using Lisp on Unicode on a computer
with 5 terabytes (TB) of combined RAM and hard disk space cannot signify an intuitive
object on this FMD if the storage size of the signifying text (i.e., the name of the object in
Lisp on Unicode) exceeds 5 TB.

In a previous investigation [4], we defined the concepts of signification and reference
of real numbers and extended signification to number tuples and data types and structures.
We showed that data structures representable as tuples of discretely finite real numbers are
signifiable. The signification of multidimensional matrices was introduced to show that
data structures representable as multidimensional matrices of discretely finite real numbers
are also signifiable. We argued that, in order to be sufficiently expressive, L on A must
be not only decimal-sufficient (i.e., should contain finitely many rules to signify discretely
finite real numbers in the standard decimal notation or an equivalent thereof) but also
tuple-sufficient (i.e., should have finitely many rules to signify sequences of such numbers).

In this investigation, we continue to formulate the SCT by offering an axiomatization
of signifiable computation on discretely finite real numbers. We show how a sufficiently
expressive L on A can be extended with instruction types and how these types can be
signified with texts and arranged into sequences. Signified instructions in a text sequence
can be executed (or, equivalently, performed) one-by-one in order to carry out the prescribed
numerical computation. If the computation exists (i.e., the execution finishes), its result
(or, equivalently, output) is signified with a text in L on A . An independent party can
verify the computation from (1) the input text; (2) the text of the instruction sequence; and
(3) the text with the sequences of the numerals of the individual instructions used in the
computation.

This investigation is motivated by the following limitations of the CCT reflected in its
axioms: (1) what is computable in principle (general computability) is indistinguishable
from what is actually computable on computers with finite amounts of memory (actual
computability); (2) the investigation of computability properties is confined to functions
on natural numbers; (3) the formation of programs is insufficiently axiomatized insomuch
as it is unclear how programs are formed (or, equivalently, generated or produced); (4) the
transformation of programs to obtain a computation in the form of a finite sequence of
program states is insufficiently axiomatized in that there is no concept of error or cost;
(5) interpretation of input and output texts is unresolved to the extent that no position is
taken on whether interpretation (e.g., a denotational or operational semantics) is part of
computation or not. While the SCT is grounded in the CCT, it extends the CCT, because it (1)
separates general computability from actual; (2) extends the investigation of computability
properties to functions on discretely finite real numbers; (3) makes actual computability
properties of functions explicitly dependent on formalisms, alphabets, and FMDs on which
those functions are signified and computed; (4) introduces error and cost into computation;
(5) takes a position that interpretation is not part of computation and as such belongs to
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metacomputability. As we formulate the SCT in this article, we reference, when appropriate,
the CCT axioms summarized for the reader’s convenience in the Appendix A.

The remainder of this article is organized as follows. In Section 2, we review the
basic ontology of the CCT presented in [1,2] and the formalism in [4] that we continue to
use in this article. In Section 3, we axiomatize the formation and transformation of texts.
Signification is actualized with two formal systems: the Former ˆ̈FA ,L that generates texts in
L on A , and the Transformer ˆ̈TA ,L that transforms texts formed by ˆ̈FA ,L into other texts
in L on A . In Section 4, we define formable and transformable instructions and axiomatize
the formation and transformation of program instructions and formation of programs. In
Section 5, we axiomatize program states and computations. Computation is defined relative
to L on A as a finite sequence of signifiable program states, the first of which is generated
by ˆ̈FA ,L and each subsequent state is deterministically obtained from the previous one by
ˆ̈TA ,L . In Section 6, we axiomatize the transformation of programs and discuss whether
it is possible for ˆ̈TA ,L to transform program states that are not generated by ˆ̈FA ,L . In
Section 7, we offer an ontology of functions on discretely finite real numbers that classifies
functions as signifiable, signifiably computable, and signifiably partially computable. In
Section 8, we introduce memory limitations on signifiable computation to characterize
functions as signifiably computable and partially computable on FMDs. Sections 2–8 can be
viewed as the preliminary, auxiliary steps to Section 9, where we present our main results.
In particular, we define a debugger function to actualize signifiable computation on FMDs
and use it to prove two theorems, which we call the Debugger Theorems, to investigate
some of the effects of finite memory on signifiable computation. In Section 10, we discuss
our results. In Section 11, we summarize our findings and outline the scope of the next part
of our investigation of signifiable computability.

2. Prolegomena
The reader may skip this section on first reading and return to it as necessary. Here,

we review the basic concepts of the CCT and the basic formal apparatus in [4] that we
continue to use in this article.

The CCT ontology used in this article is based on [1,2] and includes the following
concepts:

1. function—a mathematical object, i.e., a mapping from a given domain to a given range;
2. alphabet—a finite set of symbols (or, equivalently, signs) (e.g., A = {"0", "1"});
3. formalism—a formal language L on a specific alphabet A defined with a finite set of

syntactic rules used to name (or, equivalently, signify or designate) intuitive mathemati-
cal objects (e.g., numbers, functions, sequences, etc.);

4. model—a formal model to compute functions, such as a Turing machine (TM) (cf., e.g.,
Ch. 6 in [1]);

5. program—a signified finite sequence of instructions in L on A that specifies how a
function named by the program can be computed, i.e., how a signified sequence of
inputs in L on A can be mapped (or, equivalently, transformed) to a signified sequence
of outputs by a computer capable of performing instructions in L on A ;

6. computer—a device or an agent, physical or abstract, that executes programs in L on
A on given inputs according to a specific model;

7. program state—a state of a program in L on A signified by a spatiotemporally finite
text in L on A that, at a minimum, signifies the value of every variable used by the
program and the next instruction in the program for a computer to perform;

8. computation—a finite sequence of program states signified by a spatiotemporally finite
text in L on A that a computer goes through in order to compute the signified values
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of a function designated by a program in L on A on a signified input (or, equivalently,
to transform a signified input to a signified output);

9. class of functions—a set of functions; in the CCT, the three most prominent classes are:
primitive recursive; computable; and partially computable.

Finite automata (cf., e.g., [5]) such as finite state machines (FSA), stack machines (also
known as push-down automata (PDA)), and TMs are formal models signifiable with different
formalisms on different alphabets to compute different classes of functions. A formalism
L is necessarily paired with an alphabet A . E.g., a programming language, such as Lisp,
Perl, C/C++, etc., can be defined on Unicode or ASCII. Computability is a property of
functions. E.g., a primitive recursive function (e.g., f (x) = x + 1) is signifiable in different
formalisms on different alphabets and is computable by an FSA, a PDA, or a TM. There
are functions signifiable with context-free formalisms and computable by PDAs that are
not computable by FSAs (e.g., f (n) = ën?n, n > 0, where ën and ?n denote n consecutive
occurences of ë and ?, respectively). There are functions signifiable with context-sensitive
formalisms that are computable by TMs but not by PDAs (e.g., f (n) = ën?n!n, n > 0) (cf.,
e.g., [6]). In formal logic, some texts in L on A are referred to as names and the named
classes of those objects are called extensions (cf. p. 94 and pp. 268–269 in [7]). If a text
signifies a unique object, it signifies a singleton.

The statements S1 ⊂ S2 and S1 ⊆ S2 mean that S1 is a proper subset and a sub-
set of the set S2, respectively; ∅ denotes the empty set. N, Z, Z−, Z+, Q, R respec-
tively denote the infinite sets of natural numbers (N = {0, 1, 2, . . .}), of whole num-
bers (Z = {. . . ,−2,−1, 0, 1, 2, . . .}), of negative whole numbers (Z− = {. . . ,−2,−1}),
of positive whole numbers (Z+ = {1, 2, 3, . . .}), of rational numbers (Q = {m

n |m ∈ Z,
n ∈ Z− ∪Z+}), and of real numbers that include the whole numbers, the rational numbers,
and the irrational numbers. If Ti1 , Ti2 , . . . , Tik , k ∈ Z+ are sets, then

Ti1 × Ti2 × · · · × Tik = {(ti1 , ti2 , . . . , tik )|ti1 ∈ Ti1 , ti2 ∈ Ti2 , . . . , tik ∈ Tik},

where (ti1 , ti2 , . . . tik ) is called a k-tuple, i.e., a finite sequence of k elements.
A finite-memory device (FMD) D is a computational device with a finite number of

memory units (or, equivalently, memory cells) available for computation. An FMD is not
a model of computation insomuch as it can perform computations according to different
models so long as each computation can be signified within its memory capacity. If D is
the set of all FMDs, then the function CCAP : D 7→ Z+ maps each FMD to the number of its
memory cells. Thus, each FMD has a strictly positive memory capacity. It should be noted
that if a device D ∈ D is an FSA, a PDA, or a TM, then

¬(∃k){k ∈ Z+ ∧ CCAP(D) = k}.

On the other hand, if D is an FMD, then

(∃k){k ∈ Z+ ∧ CCAP(D) = k}.

Thus, if D1 and D2 are two TMs, the predicates CCAP(D1) = CCAP(D2),
CCAP(D1) < CCAP(D2), CCAP(D1) > CCAP(D2) are, respectively, equivalent to ∞ = ∞,
∞ < ∞, ∞ > ∞, of which the first statement is vacuously true, whereas the second and
third statements have no immediate logical satisfaction without a reinterpretation of < and
> (e.g., along the lines of Cantor’s set theory, where ℵ0 < 2ℵ0 ). On the other hand, if D1 and
D2 are FMDs, then the three CCAP statements above can be assigned the Boolean values
of True and False under the standard interpretation of the three comparison operators on
natural numbers.
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If D is an FSA, a PDA, or a TM, then D can be turned into an FMD if, and only if, one
of the two conditions holds. First, CCAP(D) = k, k ∈ Z+, i.e., an explicit upper bound in
the form of a concrete positive integer is placed on the combined size of the the text that
signifies the finite control of D and the size of the input tape. Second, D is signified in a
specific formalism on a specific alphabet (e.g., Lisp, Perl, C/C++ on Unicode) on a specific
FMD (e.g., a computer with 5 TB of RAM and hard disk space). In the latter case, D is an
FMD, because its memory capacity is bounded by the memory capacity of the device on
which it runs, i.e., CCAP(D) ≤ 5 TB.

An elementary sign is that which can be written in exactly one memory cell. We enclose
all elementary signs in pairs of matching " (e.g., "0", "1", "+"). The elementary sign
"" is the empty sign. An alphabet is an enumerably finite, non-empty set of non-empty
elementary signs. A text is a spatiotemporally finite sequences of elementary signs of A .
We intentionally use the term text instead of the term string to avoid allusions to the modern
string theory in physics or to the classical finite automata theory of theoretical computer
science. All texts are also enclosed in matching pairs of ". An alphabet A is decimal-sufficient
if, and only if, A contains the signs of the standard decimal notation or their isomorphic
equivalents. L on A is decimal-sufficient if, and only if, it allows, via a finite set of rules, for
the mechanical formation of texts on A in the characteristic-mantissa form of the standard
decimal notation.

A basic text formation operation in L on A is concatenation, denoted as
⊕

A ,L . The
order of the sign concatenation in the formation of a text is arbitrarily assumed to be left to
right, i.e., for n ∈ Z+,

si1 si2 . . . sin =
(

. . .
(

. . .
((

si1
⊕

A ,L si2

)⊕
A ,L si3

)
. . .

⊕
A ,L sin−1

)⊕
A ,L sin

)
.

Two enumerably infinite sets, denoted as

A +
L ; A ∗L ,

are associated with L on A . The first set includes all signs of A and all non-empty texts in
L on A formed according to the finite set of rules of L . The second set is defined as

A ∗L = {""} ∪A +
L .

For ti ∈ A +
L , 1 ≤ i ≤ l ∈ Z+, l > 1, we let

⊕
A ,L

(
t1, t2, . . . , tl

)
=

⊕
A ,L

∣∣∣l
i=1

ti =

⊕
A ,L t1

⊕
A ,L t2

⊕
A ,L . . .

⊕
A ,L tl .

(1)

If t ∈ A +
L , then |t| is the number of the elementary signs from A in t. If s ∈ A ,

then |s| = 1 and |""| = 0. If |t| = n ∈ Z+, then s1, s2, . . . , sn designate the consecutive
elementary signs of t = s1s2 . . . sn from the leftmost to the rightmost, where si ∈ A , 1 ≤
i ≤ n.

If f is a function, dom( f ) and ran( f ) denote the domain and the range of f , respec-
tively; f : S 7→ R abbreviates dom( f ) = S ∧ ran( f ) = R, where ∧ denotes the logical and.
E.g., if f (n) = ën?n!n, n > 0, then dom( f ) = Z+ and ran( f ) = { ë?!, ëë??!!, ëëë???!!!, . . .}
or, equivalently, f : N 7→ { ë?!, ëë??!!, ëëë???!!!, . . .}. If f : Ti1 × Ti2 × · · · × Tik 7→
Tj and (ti1 , ti2 , . . . , tik ) ∈ dom( f ), then f is defined on (ti1 , ti2 , . . . , tik ) or, in symbols,
f (ti1 , ti2 , . . . , tik ) ↓ if, and only if, there exists tj ∈ Tj such that f (ti1 , ti2 , . . . , tik ) = tj or, equiv-
alently, (∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik ) = tj}, where ∃ designates the logical existential quan-
tifier. If ¬(∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik ) = tj}, where ¬ designates the logical not, then f is
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undefined on (ti1 , ti2 , . . . , tik ) or, in symbols, f (ti1 , ti2 , . . . , tik ) ↑. If f : Ti1 ×Ti2 ×· · ·×Tik 7→ Tj

and

(∀ (ti1 , ti2 , . . . , tik ) ∈ Ti1 × Ti2 × · · · × Tik ) (∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik ) = tj},

where ∀ designates the logical universal quantifier, f is total on Ti1 × Ti2 × . . .× Tik . If

(∃ (ti1 , ti2 , . . . , tik ) ∈ Ti1 × Ti2 × · · · × Tik ) { f (ti1 , ti2 , . . . , tik ) ↑},

then f is partial on Ti1 × Ti2 × . . . × Tik . It should be noted that while the notation f :
Ti1 × Ti2 × · · · × Tik 7→ Tj is used for partial and total functions, total functions on Ti1 × Ti2 ×
. . .× Tik are defined for all (ti1 , ti2 , . . . , tik ) ∈ Ti1 × Ti2 × . . .× Tik , whereas partial functions
on Ti1 × Ti2 × . . .× Tik may not be defined for some (ti1 , ti2 , . . . , tik ) ∈ Ti1 × Ti2 × . . .× Tik .
Thus, every total function on Ti1 × Ti2 × . . .× Tik is partial on Ti1 × Ti2 × . . .× Tik , but not
vice versa.

Let r ∈ R. Then, r is discretely finite in L on A if, and only if, there exists

Sr =
{

t|t ∈ A +
L

}
̸= ∅,

where each t signifies (or, equivalently, designates or names) r and no other number, or, in
symbols,

r ← {=}A ,L → Sr. (2)

If t ∈ Sr, then t signifies r in L on A , or, in symbols,

t← (=)A ,L → r. (3)

← {=}A ,L → and← (=)A ,L → are symmetric.
Let r ∈ R such that r ← {=}A ,L → Sr ̸= ∅. Then, r is finite-memory signifiable

(FM-signifiable) or, equivalently, FM-designatable in L on A on an FMD D if, and only if,
there exists S′r ⊆ Sr such that S′r = {t|CCAP(D) ≥ |t|} ̸= ∅, in which case,

r ← {=}A ,L ,D → S′r (4)

holds. If t ∈ S′r, then t FM-signifies or, equivalently, FM-designates r in L on A on D , or,
in symbols,

t← (=)A ,L ,D → r. (5)

← {=}A ,L ,D → and← (=)A ,L ,D → are symmetric. In general, the subscript D when
added to the right of the subscripts L and A means that a relationship is defined not only
relative to L and A but also to D , and, in particular, relative to CCAP(D).

A numeral is t ∈ A +
L that designates a real number. A decimal-sufficient alphabet A

can be extended with the unique signs ⊴, ⊵, ∓ that designate the beginning of a tuple, the
end of a tuple, and a number separator inside a tuple, respectively. E.g., let

A = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "+", "-", "."}, (6)

be a decimal-sufficient alphabet and let

B = A ∪A∆;

A∆ = {"♢", "|a", "a|", ";", "▽", "□", " ◀ ", "⊛ "}.
(7)
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B consists of the standard decimal notation signs in A and the signs in A∆ that can be used
to signify number tuples, data types, and data instances. Specifically, in B in (7), we let ⊴
= "|a", ⊵ = "a|", and ∓ = ";". Alphabets that contain these unique signs are tuple-sufficient.
Thus, B is tuple-sufficient. L on a tuple-sufficient A is tuple-sufficient if, and only if, L

contains finitely many rules that allow for the signification of k-tuples of discretely finite
real numbers on A . For brevity, we will say that L on A is tuple-sufficient to mean that
both L and A are tuple-sufficient. E.g., Lisp, Perl, C/C++ on Unicode are tuple-sufficient.

Let ti ∈ A +
L , 1 ≤ i ≤ l ∈ Z+, l > 1, ti ̸= ⊴, ti ̸= ⊵, ti ̸= ∓. Then,

⊕
A ,L

(
t1,∓, t2,∓, . . . ,∓, tl

)
is the unmarked concatenation of t1, . . . , tl in L on A and

⊕
A ,L

(
⊴,

⊕
A ,L

(
t1,∓, t2,∓, . . . ,∓, tl

)
,⊵

)
is the marked concatenation of t1, . . . , tl in L on A . E.g., in a tuple-sufficient L on B,
"1;2;3" is the unmarked concatenation of "1", "2", and "3", whereas "|a1;2;3a|" is the
marked concatenation of "1", "2", and "3".

A k-tuple r = (r1, . . . , rk) ∈ Rk, 1 < k ∈ Z+, is signifiable or, equivalently, designatable
in L on A if, and only if, (a) r is of type T and T is signifiable in L on A , or, in symbols,
T⇐≬A ,L⇒ tT ∈ A +

L ; and (b) ri ← (=)A ,L → ti, ti ∈ A +
L , 1 ≤ i ≤ k. If (a) and (b) hold,

then r is signifiable in L on A by

tr =
⊕

A ,L

(
⊴,

⊕
A ,L

(
t1,∓, t2,∓, . . . ,∓, tk

)
,⊵

)
or, in symbols,

r← ≑A ,L → tr.

If r is not signifiable in L on A , then r← ≑A ,L → "";← ≑A ,L → is symmetric.
A k-tuple r = (r1, . . . , rk) ∈ Rk, 1 < k ∈ Z+, is finite-memory signifiable (FM-

signifiable) or, equivalently, FM-designatable in L on A on D if, and only if, (a) r ←
≑A ,L → tr ∈ A +

L and (b) |tr| ≤ CCAP(D). If (a) and (b) hold, then r ← ≑A ,L ,D → tr.
If r is not FM-signifiable in L on A on D , then r ← ≑A ,L ,D → ""; ← ≑A ,L ,D → is
symmetric.

Let pi be the i-th prime so that p1 = 2, p2 = 3, p3 = 5, etc., and let

π(i) = pi. (8)

Let (n1, . . . , nk) be a k-tuple such that ni ∈ N, 1 ≤ i ≤ k. The Gödel number (G-number)
of (n1, . . . , nk) is

[n1, . . . , nk] =
k

∏
i=1

π(i)ni . (9)

Let (z1, . . . , zk) be such that zi ∈ Z+, 1 ≤ i ≤ k. The j-shifted Gödel number (denoted
as G∆=j, j ∈ N) of this k-tuple is

[z1, . . . , zk]∆=j =
k

∏
i=1

π(i + j)zi . (10)

The G-number and G∆=j-number of () are defined to be 1.
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Let γA : A 7→ Z+ be a 1–1 function that maps each sign of A to a unique odd prime,
i.e.,

γA (si) = π(i + 1), 1 ≤ i ≤ l, l > 0. (11)

E.g., for B in (7), we have

γB("0") = 3; γB("1") = 5; γB("2") = 7; γB("3") = 11;
γB("4") = 13; γB("5") = 17; γB("6") = 19; γB("7") = 23;
γB("8") = 29; γB("9") = 31; γB("+") = 37; γB("-") = 41;
γB(".") = 43; γB("♢") = 47; γB("|a") = 53; γB("a|") = 59;
γB(";") = 61; γB("▽") = 67; γB("□") = 71; γB(" ◀ ") = 73;
γB("⊛ ") = 79.

The 1–1 function in (12) maps t ∈ A +
L (i.e., t = s1 . . . sn, n ∈ Z+, sj ∈ A , 1 ≤ j ≤ n) to

a unique positive integer and maps "" to 0 (cf. Theorem 4 in [4]).

gA ,L (t) =

[γA (s1), . . . , γA (sn)]∆=1 if |t| > 0,

0 if |t| = 0.
(12)

3. Formation, Transformation, Metacomputability
A programming formalism L on A is a formalism by which one formal system generates

texts in L on A that signify sequences of numerical instructions that another formal system
can perform. Hence,

Definition 1 (Programming Formalism). Let L be tuple-sufficient on A . Then, L on A is a
programming formalism if it is used by two formal systems: the Former ˆ̈FA ,L and the Transformer
ˆ̈TA ,L .

A formal system in (1) is specified by a finite set of formal rules and a rule application
mechanism to form texts or to transform texts into other texts. The rules and rule application
mechanisms have no meaning inside the systems and, in that sense, are purely syntactic (cf.
Ch. IV in [8]).

Definition 2 (The Former). The formal text formation system, denoted as ˆ̈FA ,L , is a finite set
of rules

R ˆ̈FA ,L
=

{
f r1, . . . , f rk

∣∣∣ f rj : A ∗L
m 7→ A +

L

}
, 0 < j ≤ k, k, m ∈ Z+,

and a rule application mechanism M ˆ̈FA ,L
to form texts in A +

L .

Each formation rule f rj ∈ R ˆ̈FA ,L
is assigned a unique name t f rj

∈ A +
L (i.e., signified

with a unique t f rj
). Since gA ,L (t f rj

) is a unique natural number, we have

(∃t′)
{

t′ ∈ A +
L ∧ t′ ← (=)A ,L → gA ,L (t f rj

)
}

, (13)

so that each formation rule is mapped to a unique natural number signifiable in L on A ,
which we abbreviate as

f rj ← (=)A ,L → t f rj
. (14)

If ˆ̈FA ,L uses the rule sequence f ri1 , f ri2 , . . . , f ril , l ∈ Z+, to form t ∈ A +
L from "",

then, by convention, the first argument of each rule takes the output of the previous rule
and the first argument of f ri1 is "", whence
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t = f ril

(
f ril−1

(
. . . f ri2

(
f ri1

(
ti11

, . . . , ti1m

)
, . . . , ti2m

)
. . . , til−1m

)
. . . , tilm

)
,

where tij1
= "" and tijk

∈ A ∗L , 1 < j ≤ l, 1 < k ≤ m ∈ Z+. E.g., if L is tuple-sufficient on

A = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "+", "-", ".",
"♢", "|a", "a|", ";", "▽", "□", " ◀ ", "⊛ ", "♣"}

(15)

and R ˆ̈FA ,L
contains the rule for

⊕
A ,L , then

"3.14" =
⊕

A ,L

(⊕
A ,L

(⊕
A ,L

(⊕
A ,L

(
"", "3"

)
, "."

)
, "1"

)
, "4"

)
.

A⊕ designates the concatenation of the signs in A separated with ∓ ̸∈ A . E.g., if
∓ = "♡", then, for A in (15), we have

A⊕ = "0♡1♡2♡3♡4♡5♡6♡7♡8♡9♡+♡-♡.♡♢♡|a♡a|♡;♡▽♡□♡ ◀ ♡⊛♡♣♡".

Definition 3 (Text Formation). A mechanical formation or, simply, formation of t ∈ A +
L by

ˆ̈FA ,L is a finite sequence of formation rules f ri1 , f ri2 , . . . , f ril , f ril ∈ R ˆ̈FA ,L
such that

t = f ril

(
f ril−1

(
. . . f ri2

(
f ri1

(
ti11

, . . . , ti1m

)
, . . . , ti2m

)
. . . , til−1m

)
. . . , tilm

)
,

where
f rij ← (=)A ,L → t f rij

∈ A +
L ;

tij1
= ""; tijk

∈ A ∗L ;

1 ≤ j ≤ l ∈ Z+; 1 < k ≤ m ∈ Z+.

Each rule f rj ∈ R ˆ̈FA ,L
has access to A⊕.

Definition 4 (Formation Signature). Let f ri1 , f ri2 , . . . , f ril , f ril ∈ R ˆ̈FA ,L
, l ∈ Z+, be a

formation of t ∈ A +
L by ˆ̈FA ,L , where, for m ∈ Z+,

t = f ril

(
f ril−1

(
. . . f ri2

(
f ri1

(
ti11

, . . . , ti1m

)
, . . . , ti2m

)
. . . , til−1m

)
. . . , tilm

)
.

Then,

s =
⊕

A ,L

(
⊴, t f ril

,⊴, t f ril−1
,⊴, . . . , t f ri2

,⊴, t f ri1
,⊴, a f ri1

,⊵, a f ri2
,⊵, . . . , a f ril−1

,⊵, a f ril
,⊵,⊵

)
,

where f rij ← (=)A ,L → t f rij
, 1 ≤ j ≤ l, a f ri1

=
⊕

A ,L

(
ti11

,∓, . . . ,∓, ti1m

)
, a f ri2

=⊕
A ,L

(
ti21

,∓, . . . ,∓, ti2m

)
, . . ., a f ril

=
⊕

A ,L

(
til1

,∓, . . . ,∓, tilm

)
, for tijk

, 1 ≤ j ≤ l, 1 ≤

k ≤ m, is a formation signature of t ∈ A +
L by ˆ̈FA ,L , whence

( f ri1 , f ri2 , . . . , f ril )←≑A ,L→ s,

and ( f ri1 , f ri2 , . . . , f ril ) is a signed formation of t ∈ A +
L by ˆ̈FA ,L designated by s.

E.g., let L be tuple-sufficient on B in (7), where ⊴ = "|a", ⊵ = "|a", ∓ = ";", and

⊕
A ,L

← (=)A ,L → "♣".
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Then, if we keep the matching pairs of " only in "" and "." for clarity and omit them
elsewhere for brevity, then

s = "♣|a♣|a♣|a♣|a""; 3a|; "."a|; 1a|; 4a|"

designates the formation signature of "3.14" by ˆ̈FA ,L .
Thus, any t ∈ A +

L formed by ˆ̈FA ,L exists as a spatiotemporally finite entity con-
structed from a finite number of signs of A by finitely many rules signified in the formation
signature of t. Hence, our first two axioms.

SCT Axiom 1. A signed formation of t ∈ A +
L by ˆ̈FA ,L takes a finite amount of physical time, and

t occupies a finite amount of physical space.

SCT Axiom 2. If s designates a formation signature of t by ˆ̈FA ,L , then, given A , s, and R ˆ̈FA ,L
,

another formal system can deterministically verify the formation of t by ˆ̈FA ,L within a finite amount
of physical time and space.

No a priori knowledge is assumed on how time and space are physically measured
(e.g., sun cycles, turns of a sand clock, nanoseconds, meters, centimeters, cubic meters, bits,
bytes, megabytes, etc.). SCT Axioms 1 and 2 concretize CCT Axiom A1 (cf. Appendix A)
by taking a definite position on the origin of texts that designate programs: (1) these texts
are produced by one formal system for another formal system; (2) their production can be
deterministically verified; and (3) the produced texts are spatiotemporally finite objects.

For t ∈ A +
L , the predicate

⊪ ˆ̈FA ,L
(t) (16)

holds if, and only if, t is formed by ˆ̈FA ,L through a signed formation. We let ⊪ ˆ̈FA ,L
("")

vacuously hold and define

S ˆ̈FA ,L
=

{
t ∈ A +

L

∣∣∣ ⊪ ˆ̈FA ,L
(t)

}
(17)

to be the enumerably infinite set of texts formed by ˆ̈FA ,L . E.g., if A is Unicode and L is
Lisp and R ˆ̈FA ,L

includes the finitely many Common Lisp program formation rules in [9],

then

⊪ ˆ̈FA ,L
("(defun f (n) (+ n 1))") ≡ "(defun f (n) (+ n 1))" ∈ S ˆ̈FA ,L

.

Definition 5 (The Transformer). The formal text transformation system, denoted as ˆ̈TA ,L , is a
finite set of rules

R ˆ̈TA ,L
=

{
tr1, . . . trk|trj : A ∗L 7→ A ∗A

}
, 1 ≤ j ≤ k, k ∈ Z+,

and a deterministic rule application mechanism M ˆ̈TA ,L
to transform texts in S ˆ̈FA ,L

into texts
in A ∗L .

Each transformation rule trj ∈ R ˆ̈FA ,L
is assigned a unique name wtrj ∈ A +

L (i.e.,

signified with a unique wtrj ). Since gA ,L (w f rj
) is a unique natural number,

(∃t′)
{

t′ ∈ A +
L ∧ t′ ← (=)A ,L → gA ,L (w f rj

)
}

(18)
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so that each transformation rule is mapped to a unique natural number signifiable in L on
A , which we abbreviate as

trj ← (=)A ,L → w f rj
. (19)

Associated with every tuple (A , L ) is a finite, non-empty set of error messages

ERRA ,L =
{

t
∣∣∣ t ∈ A +

L

}
, ERRA ,L ∩S ˆ̈FA ,L

= ∅, (20)

that the transformation rules of ˆ̈TA ,L can output to signal that specific transformations are
impossible. E.g., if ˆ̈TA ,L cannot verify the formation of t ∈ A +

L by ˆ̈FA ,L , then ˆ̈TA ,L issues
an error message.

Suppose that ˆ̈TA ,L uses the rule sequence tri1 , tri2 , . . . , tril , l ∈ Z+, to transform
t ∈ A +

L to t′ ∈ A ∗L . By convention, the first argument of each subsequent rule takes the
output of the previous rule and the first argument of tri1 is t, whence we have the following
definition:

Definition 6 (Text Transformation). A mechanical transformation, or simply transformation,
of t ∈ S ˆ̈FA ,L

by ˆ̈TA ,L into t′ ∈ A ∗L , t′ ̸∈ ERRA ,L , is a finite sequence of transformation rules

tri1 , tri2 , . . . , tril , tril ∈ R ˆ̈TA ,L
, tril ← (=)A ,L → wtrij

∈ A +
L , 1 ≤ j ≤ l ∈ Z+, where

t′ = tril

(
tril−1

(
. . . tri2

(
tri1

(
t
))

. . .
))

.

An example of a transformation rule is substitution which ˆ̈TA ,L can use to substitute
t1 ∈ A +

L for all occurrences of t2 ∈ A +
L in t3 ∈ A +

L so long as the texts satisfy a finite
set of syntactic requirements (cf., e.g., Ch. 18, p. 558 in [1]; Ch. IX, § 44 in [8]; Ch. 14,
pp. 402–403 in [9]); Ch. 4, p. 66 in [10], for various definitions of substitution in different
formal systems).

Definition 7 (Transformation Signature). Let tri1 , tri2 , . . . , tril , tril ∈ R ˆ̈T,A ,L , l ∈ Z+, be a

transformation of t ∈ S ˆ̈FA ,L
by ˆ̈TA ,L , where

t′ = tril

(
tril−1

(
. . . tri2

(
tri1

(
t
))

. . .
))

.

Then,

s =
⊕

A ,L

(
⊴, wtril

,⊴, wtril−1
,⊴, . . . , wtri2

,⊴, wtri1
,⊴, t,⊵,⊵, . . . ,⊵,⊵,⊵

)
,

where trij ← (=)A ,L → wtrij
, 1 ≤ j ≤ l, is a transformation signature of the transformation of t

into t′ by ˆ̈TA ,L , in which case

(tri1 , tri2 , . . . , tril )←≑A ,L→ s

holds, and (tri1 , tri2 , . . . , tril ) is a signed transformation, designated by s, of t into t′ by ˆ̈TA ,L .

Let t ∈ S ˆ̈FA ,L
, t′ ∈ A ∗L , t′ ̸∈ ERRA ,L . The predicate

⊢ ˆ̈TA ,L
(t, t′) (21)

holds if, and only if, there exists a signed transformation of t into t′ by ˆ̈TA ,L . The relation

⊢ ˆ̈TA ,L

(
t, t′

)
is clearly transitive, i.e., if
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⊢ ˆ̈TA ,L

(
t, t′

)
∧ ⊢ ˆ̈TA ,L

(
t′, t′′

)
,

then
⊢ ˆ̈TA ,L

(
t, t′′

)
.

E.g., if A is Unicode, L is Lisp, and R ˆ̈TA ,L
is the standard transformation rules of Com-

mon Lisp applied deterministically by the rule application mechanism known as the
read-eval-print loop (cf., e.g., Ch. 20 in [9]), then

⊢ ˆ̈TA ,L
("(progn (defun g (n) (+ n 1)) (g 2.14))", "3.14")

holds, because ˆ̈TA ,L uses the Lisp progn construct that defines a sequence of Lisp op-
erations to transform "(defun g (n) (+ n 1)) (g 2.14))" into a text of a procedure
associated with the symbol named "g", substitutes "2.14" for the variable named "n"
in "(+ n 1)" to obtain "(+ 2.14 1)", and then uses the transformation rules associated
with the function named "+" to transform "(+ 2.14 1)" to "3.14". One can easily verify
this transformation in any Lisp system that implements the Common Lisp formation and
transformation rules in [9]. E.g., if ˆ̈TA ,L is GNU CLISP 2.49.60+ on Linux 18.04 LTS, and
ˆ̈FA ,L is used to form

"(progn (defun g (n) (+ n 1)) (g 2.14))"

on Unicode, then the following transformation is produced in the GNU CLISP 2.49.60+
Linux terminal, where ">" is the CLISP prompt.

"> (progn (defun g (n) (+ n 1)) (g 2.14))
3.14"

Suppose ˆ̈FA ,L generates and signs

"(loop while (= 3.14 3.14) do (+ 13.7 13.7))"

for ˆ̈TA ,L to transform. ˆ̈TA ,L cannot transform the above text into another text designating
a result, because the program, while formally flawless, contains an infinite loop. Con-
sequently, although the choice and the application of a transformation rule by ˆ̈TA ,L are
mechanical and deterministic, and both actions take a finite amount of physical time, the
transformation of a program into a text designating a result may not take a finite amount of
physical time.

The next axiom states that spatiotemporally finite transformations are verifiable. If a
transformation and its signature are available, another formal system can independently
and deterministically verify the transformation from its signature and the set of transfor-
mation rules.

SCT Axiom 3. If ⊢ ˆ̈TA ,L
(t, t′), where t ∈ A +

L , t′ ∈ A ∗L , and t′ ̸∈ ERRA ,L , holds and s

designates the transformation signature of the transformation of t into t′ by ˆ̈TA ,L , then, given t, t′,
s, and R ˆ̈T,A ,L , another formal system can deterministically verify the transformation of t into t′ by
ˆ̈TA ,L within finite amounts of physical time and space.

SCT Axiom 3 extends the CCT axioms by introducing the concept of deterministic
verifiability of transformation. We should note here that SCT Axioms 1, 2, and 3 take no
position with respect to computing agents that use ˆ̈FA ,L and ˆ̈TA ,L or computing devices
on which these systems are signified. Thus, neither ˆ̈FA ,L nor ˆ̈TA ,L are identical to the
computing agent L in CCT Axioms A2, A4, A5, A9, and A10.
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By interpretation of a program P in L on A , we will mean the application of a denota-
tional or operational semantics of L on A to P with respect to the input text t and, when
applicable, to the output text t′ (cf., e.g., Chapters 17, 18 in [1]; Ch. 2 in [10])). We will use
the term metacomputability to refer to a denotational and operational semantics of L on A

and the interpretation of programs with respect to given input and output texts and assume
that metacomputability is captured by neither the formation nor the transformation rules.
We will not tackle the question of whether metacomputability is algorithmic in nature and
leave it outside of the scope of this article. Hence,

SCT Axiom 4. Metacomputability occurs outside of ˆ̈FA ,L and ˆ̈TA ,L .

4. Formation and Transformation of Instructions and Formation
of Programs

Some texts formed by ˆ̈FA ,L and transformed by ˆ̈TA ,L designate instructions from a
finite set of instruction types

IA ,L = {Ĩ1, J̃2, . . . , Ĩn}, n ∈ Z+. (22)

The elements of IA ,L denote operations of a specific type, e.g., addition or subtraction
of finitely many discretely finite real numbers. E.g., L is Lisp on Unicode, then

"(+ x1 y1)", "(+ x2 y2)", "(+ x3 y3)", . . .

designate the same numerical operation type of addition applied to numerals designated
by specific variable names. If we switch L to Perl on Unicode, then we obtain

"$x1 + $y1", "$x2 + $y2", "$x3 + $y3", . . .

designating the same numerical operation type.

Definition 8 (Signifiable Instruction). If t ∈ A +
L and ik ∈ Ĩj ∈ IA ,L , then the predicate

▷◁A ,L (t, ik) holds if, and only if, t signifies ik in L on A , in which case ik is a signifiable or,
equivalently, designatable instruction in L on A . ▷◁A ,L is symmetric.

E.g., let x, y ∈ R and L stand for Lisp, P for Perl, and U for Unicode. We have the
following relations hold.

▷◁U,L (x + y, "(+ x y)") ≡ ▷◁U,L ("(+ x y)", x + y)
▷◁U,P (x + y, "$x + $y;") ≡ ▷◁U,P ("$x + $y;", x + y)
▷◁U,L (x− y, "(- x y)") ≡ ▷◁U,L ("(- x y)", x− y)
▷◁U,P ("$x - $y;", x− y) ≡ ▷◁U,P (x− y, "$x - $y;")
▷◁U,L (xy, "(* x y)") ≡ ▷◁U,L ("(* x y)", xy)
▷◁U,P ("$x * $y;", xy) ≡ ▷◁U,P ("$x * $y;", xy)
▷◁U,L (x/y, "(/ x y)") ≡ ▷◁U,L ("(/ x y)", x/y)
▷◁U,P ("$x / $y;", x/y) ≡ ▷◁U,P (x/y, "$x / $y;")

The elements of IA ,L vary from alphabet to alphabet and from programming formal-
ism to programming formalism due to the software-hardware duality principle of computer
science: specific instructions are written to run on devices designed to perform those and
only those instructions. E.g., while one formalism may restrict its set of instructions to
addition and subtraction of natural numbers, another formalism may be designed for a
device that adds, subtracts, multiplies, and divides discretely finite real numbers.
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Definition 9 (Formable Instruction). If ik ∈ Ĩj ∈ IA ,L , then

Ⅎ ˆ̈FA ,L
(ik, t) ≡ t ∈ S ˆ̈FA ,L

∧ ▷◁A ,L (t, ik),

in which case ik is an instruction in L on A formable or, equivalently, generatable by ˆ̈FA ,L .
Ⅎ ˆ̈FA ,L

is symmetric.

Definition 10 (Transformable Instruction). If ik ∈ Ĩj ∈ IA ,L , then

⟲A ,L (ik, t, t′) ≡ Ⅎ ˆ̈FA ,L
(ik, t) ∧ ⊢ ˆ̈TA ,L

(
t, t′

)
, t ∈ A +

L , t′ ̸∈ ERRA ,L ,

in which case, ik is an instruction in L on A transformable by ˆ̈TA ,L .

The next axiom is rooted in the existence of general programming languages such as
Lisp and Perl.

SCT Axiom 5. There exists L on A in which the instruction types in Table A1 in the Appendix A
are spatiotemporally finitely formable and transformable.

SCT Axiom 5 agrees with CCT Axiom A9 in that the computational capacity of the
computing agent is always finite, i.e., any agent, physical or abstract, can execute only a
finite number of instruction types. However, SCT Axiom 5 differs from CCT Axiom A9,
because it makes it explicit that the computational capacity of a computing agent is a char-
acteristic of not just the computing agent, but also of L on A . In this sense, SCT Axiom
5 offers yet another take on the software-hardware duality principle: programming for-
malisms are designed for computational devices and computational devices are constructed
to perform computations prescribed by programs signified with specific formalisms. We
will hereafter refer to a tuple-sufficient L on A that satisfies SCT Axiom 5 as minimally
adequate. E.g., Lisp, Perl, and C/C++ Unicode are minimally adequate.

Definition 11 (Formable Program). Let L on A be minimally adequate. Let m, n, q ∈ Z+,
1 ≤ j ≤ n. If z1 ← (=)A ,L → 1, . . ., zn ← (=)A ,L → n and

(∀j)(∃m)
{
⟲A ,L (im, tij , t′ij

) ∧ im ∈ Ĩq ∧ Ĩq ∈ IA ,L

}
, then

Pk =
⊕

A ,L

(
⊴, z1,∓, ti1 ,⊵,∓, . . . ,∓⊴, zn,∓, tin ⊵

)
,

where tij ∈ S ˆ̈FA ,L
, is a program formable by ˆ̈FA ,L . The function ni(Pk) = n denotes the number

of the instructions in Pk. The predicate

⋋ ˆ̈FA ,L
(Pk)

holds if, and only if, Pk is formable by ˆ̈FA ,L . The set

P ˆ̈FA ,L
=

{
Pk ∈ A +

L

∣∣∣⋋ ˆ̈FA ,L
(Pk)

}
is the enumerably infinite set of programs in L on A formable by ˆ̈FA ,L .

Thus, Pk is formable by ˆ̈FA ,L or, in symbols, Pk ∈ P ˆ̈FA ,L
if, and only if, it is a finite

concatenation of the enumerated formable and transformable instruction texts in L on
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A . E.g., Pj in Figure 1 is a Lisp program on Unicode formable by the GNU CLISP 2.49.60+
disassembler.

Definition 11 allows us to give a programmatic illustration of SCT Axiom 3 in Figure 2,
where the bottom box contains a Lisp program on Unicode formed by the GNU CLISP
2.49.60+ disassembler that no Lisp transformer ˆ̈TA ,L whose R ˆ̈TA ,L

consists of the standard

transformation rules of the Lisp read-eval-print loop can transform into a text on Unicode
within a finite amount of physical time. However, each individual enumerated instruction
text of Pk in Figure 2, is transformable by ˆ̈TA ,L within a finite amount of physical time.

"(defun natural-number-p (n) (and (typep n ’integer) (>= n 0)))
(deftype natural-number () ’(satisfies natural-number-p))
(defun f (n)

(assert (typep n ’natural-number))
(let ((n+1 (1+ n)))

(assert (typep n+1 ’natural-number))
n+1))"

"1 (JMP L7)
2 L2
3 (CONST&PUSH 1) ; (TYPEP N ’NATURAL-NUMBER)
4 (CALL1&PUSH 2) ; SYSTEM::ASSERT-ERROR-STRING
5 (CALL1 3) ; SYSTEM::SIMPLE-ASSERT-FAILED
6 L7
7 (LOAD&PUSH 1)
8 (CALL1&JMPIFNOT 0 L2) ; NATURAL-NUMBER-P
9 (LOAD&INC&PUSH 1)
10 (JMP L20)
11 L15
12 (CONST&PUSH 4) ; (TYPEP N+1 ’NATURAL-NUMBER)
13 (CALL1&PUSH 2) ; SYSTEM::ASSERT-ERROR-STRING
14 (CALL1 3) ; SYSTEM::SIMPLE-ASSERT-FAILED
15 L20
16 (LOAD&PUSH 0)
17 (CALL1&JMPIFNOT 0 L15) ; NATURAL-NUMBER-P
18 (POP)
19 (SKIP&RET 2)"

Figure 1. (Top box) A definition in Lisp on Unicode of a strongly typed function f (n) = n + 1 on
natural numbers, from which Pj in the bottom box is automatically formed by the GNU CLISP 2.49.60+
disassembler. (Bottom box) The program Pj in Lisp on Unicode is a concatenation of enumerated
instruction texts generated from the definition of the function f in the top box by the GNU CLISP
2.49.60+ disassembler. The statements to the right of the semicolons, which are single line comment
markers in Lisp, are comments automatically generated by the disassembler.
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"(loop while (= 3.141592653 3.141592653) do (+ 13.7 13.7))"

"1 L0
2 (T)
3 (SKIP&RET 1)
4 (CONST 0) ; 27.4
5 (SKIP&RET 1)
6 (JMP L0)"

Figure 2. (Top box) A definition in Lisp on Unicode of an infinite loop, from which the Lisp program
Pk in the bottom box is automatically formed by the GNU CLISP 2.49.60+ disassembler. (Bottom box)
The program Pk in Lisp on Unicode is a concatenation of enumerated instruction texts formed from the
definition of the loop in the top box by the GNU CLISP 2.49.60+ disassembler. The statements to the
right of the semicolons, which are single line comment markers in Lisp, are comments automatically
generated by the disassembler.

5. Program States and Computations
To transform Pj ∈ P ˆ̇FA ,L

deterministically into an output text designating the result

of the computation formalized in Pj on a singified input, ˆ̈TA ,L goes through a sequence of
states of Pj. Hence,

Definition 12 (Program State). Let Pj ∈ P ˆ̇FA ,L
. Then, σ ∈ A +

L is a valid state of Pj if, and

only if, ˆ̈TA ,L can determine from σ: (a) the numeral designating the number 1 ≤ i ≤ ni(Pj) + 1
of the instruction in Pj to perform; (b) the numeral designating the total number of the instructions
of Pj already performed; (c) the texts designating the type and value of every variable name in Pj,
including the type and value of the unique output variable denoted by □j; (d) the text Pj; and (e) for

every variable name in σ, ˆ̈TA ,L can assign exactly one type and exactly one value. If σ is a valid
state, then Pj contained in σ is referred to as Pj of σ, while σ is referred to as σ of Pj.

E.g., a valid state σi1 of Pj in Figure 1, constructed according to the Common Lisp
syntactic conventions, is given in (23), where the symbol ". . ." in the right-hand side of
the equality designates the text of the lines 2–18 and □j = "2", i.e., "2" is the numeral
designating the number of the output register in this case.

σi1 = "(1 0 (natural-number-p n) (n 12)"
⊕

A ,L
"(natural-number-p 2) (2 0)"

⊕
A ,L

"("
⊕

A ,L Pj
⊕

A ,L ")"
⊕

A ,L ")"
= "(1 0 (natural-number-p n) (n 12)"

⊕
A ,L

"(natural-number-p 2) (2 0)"
⊕

A ,L
"(1 (JMP L7) ... 19 (SKIP&RET 2)))"

= "(1 0 (natural-number-p n) (n 12)
(natural-number-p 2) (2 0)
(1 (JMP L7) ... 19 (SKIP&RET 2)))"

(23)

ˆ̈TA ,L mechanically obtains from σi1 in (23) the following elements:

1. "1" — designates the instruction number to perform;
2. "0" — designates the total number of instructions already performed;
3. "(natural-number-p n)" — designates the type of the input variable "n";
4. "(n 12)" — designates that the current value of "n" is "12" that, according to the

standard decimal notation in Lisp on Unicode, designates the natural number 12;
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5. "(natural-number-p 2)"—designates the type specification of the output variable;
6. "(2 0)" — designates that the current value of the output variable named "2" is "0";
7. "(1 (JMP L7) ... 19 (SKIP&RET 2))"— designates that the nineteen instructions

of Pj are enumerated with "1", "2", . . ., "19" that designate the natural numbers
1, 2, . . . , 19 in Lisp on Unicode.

Thus, by Definition 12, Pj in Figure 1 is the program of σii in (23) and σi1 is a valid state
of Pj.

Definition 12 and valid program states like the state in (23) imply the existence of
several predicates and functions that we now proceed to define to subsequently formalize
the concept of transformation of programs in P ˆ̇FA ,L

.

The function in (24) (VLDS abbreviates Valid State) returns "1", if σ is a valid program
state, and "0" otherwise.

VLDSA ,L (σ) : A + 7→ {"0", "1"};

VLDSA ,L (σ) =

"1" if σ is a valid program state;

"0" otherwise,

(24)

where "1" is arbitrarily interpreted as True and "0" as False. E.g., if σ1 is a valid program
state and σ2 is not, then

VLDSA ,L (σ1) ← (=)A ,L → 1;

VLDSA ,L (σ2) ← (=)A ,L → 0,
(25)

which can be, respectively, abbreviated as

VLDSA ,L (σ1) = 1;

VLDSA ,L (σ2) = 0.
(26)

The function in (27) (PROG abbreviates Program) returns the text of the program of σ, if
the latter is valid, and terr otherwise.

PROGA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

PROGA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

(27)

where t is the program of σ, terr ∈ ERRA ,L . For example, if σi1 is given in (23) and Pj is
given in Figure 1, then PROGA ,L (σi1) = Pj.

The function in (28) (NPIS abbreviates Number of Program Instructions) returns the
numeral designating the number of the instructions in PROGA ,L (σ) if σ is valid and terr

otherwise.

NPISA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

NPISA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → n ∈ Z+, terr ∈ ERRA ,L .

(28)
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E.g., for σi1 in (23), NPISA ,L (σi1) = "19" ← (=)A ,L → 19. If, for some valid σ,
NPISA ,L (σi1) = t ∈ A +

L and t ← (=)A ,L → z ∈ Z+, we abbreviate NPISA ,L (σ) = t ←
(=)A ,L → z to NPISA ,L (σ) = z = ni(PROGA ,L (σ)) (cf. (11)).

The function in (29) (CINS abbreviates Current Instruction) returns the numeral des-
ignating the number of the instruction to execute in PROGA ,L (σ), if σ is valid, and terr

otherwise.

CINSA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

CINSA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → n ∈ Z+, terr ∈ ERRA ,L .

(29)

E.g., for σi1 in (23), CINSA ,L (σi1) = "1" ← (=) → 1 ∈ Z+ or, more succinctly,
CINSA ,L (σ) = 1.

The function in (30) is a side-effect function that sets the value returned by CINSA ,L

to the numeral t.

SETCINSA ,L (σ, t) : A +
L ×A +

L 7→ A +
L ∪ {terr};

SETCINSA ,L (σ, t) =


σ′ if VLDSA ,L (σ) = 1 ∧

t← (=)A ,L → z ∧
1 ≤ z ≤ ni(PROGA ,L (σ)) + 1;

terr otherwise.

where CINSA ,L (σ′) = t, terr ∈ ERRA ,L .

(30)

The function in (31) (TOTI abbreviates Total Instructions) returns the numeral des-
ignating the total number of the transformed (or, equivalently, performed or executed)
instruction texts in PROGA ,L (σ) if σ is valid and terr otherwise.

TOTIA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

TOTIA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → n ∈ Z+, terr ∈ ERRA ,L .

(31)

E.g., for σi1 in (23), TOTIA ,L (σi1) = "0" ← (=) → 0. If, for some valid σ,
TOTIA ,L (σ) = t ∈ A +

L and t ← (=)A ,L → z ∈ Z+, we abbreviate TOTIA ,L (σ) = t
← (=)A ,L → z to TOTIA ,L (σ) = z.

The next function in (32) (VVRS abbreviates Values of Variables) returns a marked con-
catenation designating a tuple of 2-tuples, each of which designates a variable and its
numerical value. Toward that end, we let σ be valid and let PROGA ,L (σ) contain l > 0 vari-
ables, including the unique output variable designated by □j. We let xi ∈ A +

L , 1 ≤ i ≤ l,
designate the i-th variable and zi ∈ A +

L , 1 ≤ i ≤ l, designate the variable’s numerical value,
i.e., zi ← (=)A ,L → r ∈ R, 1 ≤ i ≤ l. We let ⊴, ⊵, ∓ ∈ A +

L designate the beginning of a
tuple, the end of a tuple, and the separator sign, respectively. With these conventions in
place, the function in (32) returns the text designating the tuple of 2-tuples, each of which
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designates a variable and its numerical value in PROGA ,L (σ), when σ is valid, and terr

otherwise.

VVRSA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

VVRSA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t =
⊕

A ,L

(
⊴, t1,∓, t2,∓, . . . ,∓, tl ,⊵

)
, terr ∈ ERRA ,L ,

ti =
⊕

A ,L

(
⊴, xi,∓, zi ⊵

)
, 1 ≤ i ≤ l, l > 0.

(32)

E.g., if we recall that in Lisp ⊴ = "(", ⊵ = ")", and ∓ is any non-empty sequence of
white space Unicode characters, then VVRSA ,L (σi1) = "((n 2) (□j 0))".

The function in (33) (OUTV abbreviates Output Value) returns the numeral designating
the value of the output variable of PROGA ,L (σ), if σ is valid, and terr otherwise.

OUTVA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

OUTVA ,L (σ) =

t if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → r ∈ R, terr ∈ ERRA ,L .

(33)

E.g., OUTVA ,L (σi1) = "0" ← (=)A ,L → 0. If, for some valid σ, OUTVA ,L (σ) = t ∈
A +

L and t ← (=)A ,L → r ∈ R, we abbreviate OUTVA ,L (σ) = t ← (=)A ,L → r to
OUTVA ,L (σ) = r. OUTVA ,L takes the output of VVRSA ,L (σ) (i.e., OUTVA ,L (VVRSA ,L (σ)))
and returns the numeral designating the value of the output variable in the tuple so long as
σ is valid.

The function in (34) (VV abbreviates Variable Value) returns the text designating the
value of the i-th variable in VVRSA ,L (σ) and terr otherwise.

VVA ,L (σ, t) : A +
L ×A +

L 7→ A +
L ∪ {terr};

VVA ,L (σ, t) =

t′ if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → i, 1 ≤ i ≤ l, terr ∈ ERRA ,L , t′ ← (=)A ,L → r ∈ R.

(34)

We now define a useful variant of VVA ,L to obtain the numerals designating the values
of the input variables for any program that takes k ∈ Z+ input texts. If VVRSA ,L (σ) contain
l > 0 variable-value tuples, of which the first 0 < k < l tuples, by convention, designate the
names and values of the input variables. The function in (35) (IVV abbreviates Input Variable
Value) returns the numeral designating the value of the i-th input variable in VVRSA ,L (σ),
if σ is valid, and terr otherwise.
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IVVA ,L (σ, t) : A +
L ×A +

L 7→ A +
L ∪ {terr};

IVVA ,L (σ, t) =

t′ if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

where t← (=)A ,L → i, 1 ≤ i ≤ l, terr ∈ ERRA ,L , t′ ← (=)A ,L → r ∈ R.

(35)

The function in (36) (NXTS abbreviates Next State) returns the next valid program state
of PROG(σ)A ,L if σ is valid and an error message otherwise.

NXTSA ,L (σ) : A +
L 7→ A +

L ∪ {terr};

NXTSA ,L (σ) =

trj(σ) if VLDSA ,L (σ) = 1;

terr if VLDSA ,L (σ) = 0,

terr ∈ ERRA ,L , trj ∈ R ˆ̈TA ,L
.

(36)

This function looks at the current instruction and deterministically constructs the next
valid state σ′ from the type of the instruction and the variables used in the instruction in
the current program state σ so long as that latter is valid, or, equivalently, it transforms σ

into σ′. The choice of the transformation rule trj is determined by σ. Since the next valid
state trj(σ) = σ′ (the notation trj(σ) = σ′ denotes the application of trj to σ to compute σ′)
necessarily depends on the specifics of L on A , we offer an intuitive and abstract outline
of how ˆ̈TA ,L uses NXTSA ,L to transform σ to σ′.

ˆ̈TA ,L transforms the text of the instruction whose number is designated by CINSA ,L (σ)

according to its type (cf. Table A1) and then (1) updates, if necessary, the value numer-
als of the variable names involved in this instruction, i.e., updates the text returned by
VVRSA ,L (σ); (2) updates the numeral designating the number of the instruction to execute
in σ′; and (3) updates the numeral designating the total number of the instructions (or,
to be more exact, instruction texts) of PROGA ,L (σ) transformed thus far to the numeral
designating the value of the total number incremented by 1. Per Definition 6, if σ is valid,
then we define NXTS0

A ,L (σ) = σ and, for l ∈ Z+, define

NXTSl
A ,L (σ) = tril

(
tril−1

(
. . . tri2

(
tri1

(
σ
))

. . .
))

= σ′, trij ∈ R ˆ̈TA ,L
, 1 ≤ j ≤ l. (37)

Thus, we have

Lemma 1. Let L on A be minimally adequate and let A contain the signs of the standard decimal
notation. If NXTSA ,L (σ) = σ′ ̸= terr, then TOTIA ,L (σ) ← (=)A ,L → n and TOTIA ,L (σ′)

← (=)A ,L → n + 1, n ∈ N.

Let us assume that a minimally adequate L on A , like many modern programming
languages, has at least four types of numerical instructions on the numerals in the standard
decimal notation: addition, multiplication, subtraction, and division applicable to finitely
many discretely finite real numbers. Then, if the current instruction is addition, the
numerals designating the values of two or more variable names are added and the numeral
of the sum is assigned to a variable name, the numeral value of which is accordingly
updated in σ′. The numerals designating the values of the variable names that are not
affected by the instruction text, remain in σ′ exactly as they are in σ. The transformation
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of the multiplication and subtraction instruction types is performed analogously. The
transformation of the division instructions is performed with the convention that the
division by zero (or, to be more exact, by the numeral designating 0 in L on A ) results in
an error message.

If L on A has the assignment instruction type whereby the value of a variable is set to
a value, then the numeral value of that variable’s name is accordingly updated in σ′. If L

has a GOTO/JUMP instruction type and the current instruction prescribes a jump to a label
(e.g., "(JMP L7)" in Pj in Figure 1 prescribes a jump to the label "L7"), then no updates
of the variable numeral values are performed, and the numeral of the next instruction to
execute in σ′ is set to the numeral of the program line with that label. If multiple instruction
texts of PROGA ,L (σ) have the same label, the numeral of the instruction to execute in σ′ is
set to the numeral designating the smallest such number. If the current instruction calls for a
jump to a label that does not exist in PROGA ,L (σ), then the numeral designating the number
of the instruction to execute in σ′ is set to the numeral designating NPISA ,L (σ) + 1. The
transformation of a dispatch to a numeral designating an instruction number is performed
analogously to the transformation of a dispatch to a label. Thus,

Lemma 2. If NXTSA ,L (σ) = σ′ ̸= terr, then PROGA ,L (σ) = PROGA ,L (σ′).

Associated with the execution of P ∈ P ˆ̈FA ,L
are two states: a program start state and

a program end state. The predicate in (38) (STARTS abbreviates Start State) returns "1" if σ

is a valid program start state and "0" otherwise.

STARTSA ,L (σ) : A + 7→ {"0", "1"};

STARTSA ,L (σ) =


"1" if VLDSA ,L (σ) = 1 ∧ CINSA ,L (σ) = 1 ∧

TOTIA ,L (σ) = 0;

"0" otherwise.

(38)

The predicate in (39) (ENDS abbreviates End State) returns "1" if σ is a valid end state
and "0" otherwise.

ENDSA ,L (σ) : A +
L 7→ {"0", "1"};

ENDSA ,L (σ) =

"1" if CINSA ,L (σ) = NPISA ,L (σ) + 1;

"0" otherwise.

(39)

Suppose that ˆ̈TA ,L starts in a valid start state σi1 ∈ S ˆ̈TA ,L
such that Pk =

PROGA ,L (σi1), and then uses a sequence of its transformation rules through NXTSA ,L

(cf. Equation (37)) to transform σi1 into σi2 , and so on, thus generating a finite sequence
of states σi1 , σi2 , . . . , σil , 1 < l ∈ Z+, where σil and σil are valid start and end states of Pk,
respectively, then NXTSl−1

A ,L (σi1) = σil . Hence,

Definition 13 (Signifiable Computation). A signifiable computation of Pk ∈ P ˆ̇FA ,L
is a finite

sequence of valid program states σi1 , σi2 , . . . , σil , 1 ≤ j < l, 1 < l ∈ Z+, σi1 ∈ S ˆ̇FA ,L
, such that

STARTSA ,L (σi1) = 1 ∧ ENDSA ,L (σil ) = 1 ∧
NXTSA ,L (σij) = σij+1 ∧ PROGA ,L (σil ) = Pk.
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The predicate
SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σil ))

holds if, and only if, σi1 , σi2 , . . . , σil is a signifiable computation of Pk in L on A .

Hence,

Lemma 3. Let SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σil )). Then, ⊢ ˆ̇TA ,L
(σij , σij+1), 1 ≤ j < l ∈ Z+,

and ⊢ ˆ̇TA ,L
(σi1 , σil ).

6. Transformation of Programs
Definition 14 (Transformation of Programs). Let l ∈ Z+, 1 ≤ j ≤ n ∈ Z+, tj ∈ A +

L ,

Pk ∈ P ˆ̇FA ,L
, and σi1 ∈ S ˆ̇FA ,L

. Then, Pk is transformable by ˆ̇TA ,L from σi1 , which is denoted as

⋌ ˆ̇TA ,L
(Pk, σi1), if, and only if, (∃ σi1 , σi2 , . . . , σin) SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σin)).

The next lemma follows from Definition 14 and Lemmas 2 and 3.

Lemma 4. Pk ∈ P ˆ̇FA ,L
and SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σil )), 1 < l ∈ Z+. Then, the

following statements are equivalent, for 1 ≤ j < l:

1. ⋌ ˆ̇TA ,L
(Pk, σi1);

2. ⊢ ˆ̇TA ,L
(σij , σij+1);

3. ⊢ ˆ̇TA ,L
(σi1 , σil );

4. NXTSl−1(σi1) = σil ̸= terr.

A question naturally arises whether it is possible for ˆ̇TA ,L to transform, in finitely
many steps, a valid start state σi1 of a program Pk into another valid state of Pk when
Pk is not formed by ˆ̇FA ,L . In other words, can ⋌ ˆ̇TA ,L

(Pk, σij) hold if PROG(σij) = Pk but

Pk ̸∈ P ˆ̇FA ,L
? Definition 11 implies a negative answer, because for the program to be

transformable by ˆ̇TA ,L from a valid start state σi1 , every enumerated instruction text in Pk

must be transformable. ˆ̇FA ,L and ˆ̇TA ,L are co-dependent in that ˆ̇FA ,L cannot place in a
program an instruction text that ˆ̇TA ,L cannot transform.

E.g., consider a Lisp program by Steele in Figure 3. This text is formally impeccable
insomuch as it is formed according to the Lisp syntactic conventions. However, the
program is not transformable unless one supplies the definitions of the functions stroke,
stuck, make-oar, winded, and dream, all of which, in turn, can be converted by the Lisp
disassembler into finite sequences of instruction texts that ˆ̈TUnicode,Lisp can transform
with the rules of the read-eval-print loop from a valid start state for this program. For
example, if ˆ̈TUnicode,Lisp is GNU CLISP 2.49.60+, then the attempted transformation of
"(life)" results in

terr = "*** - EVAL: undefined function ROW" ∈ ERRUnicode,Lisp,

whence
¬⋌Unicode,Lisp ("(life)", σi1).
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"(defun gently (oar)
(stroke oar :force 0.5)
(when (stuck oar) (throw ’crab nil)))

(defun row (boat stroken-fn stream &key count)
(let ((oar (make-oar boat stream)))

(loop repeat count do (funcall stroke-fn oar))))

(defun life ()
(catch ’crab

(catch ’breath
(unwind-protect

(row "your boat" #’gently *query-io* :count 3)
(when (winded) (throw ’breath nil)))

(loop repeat 4 do (set-mode :merry))
(dream))))"

"1 (CONST&PUSH 0) ; LIFE
2 (CALL1 1) ; SYSTEM::REMOVE-OLD-DEFINITIONS
3 (CONST&PUSH 0) ; LIFE
4 (CONST&PUSH 2) ; #<COMPILED-FUNCTION LIFE>
5 (CALLS2 156) ; SYSTEM::%PUTD
6 (CONST 0) ; LIFE
7 (SKIP&RET 1)"

Figure 3. (Top box) A Lisp program by Guy Steele on p. 191 in [9] to illustrate the operational
semantics of catch and throw with unwind-protect. (Bottom box) The program generated from
the definition of the Lisp function li f e in the top box by the GNU CLISP 2.49.60+ disassembler.
The statements to the right of the semicolons, which are single line comment markers in Lisp, are
comments automatically generated by the disassembler.

The above observations lead to the next axiom.

SCT Axiom 6. There exists a minimally adequate L on A , where any Pk ∈ P ˆ̈FA ,L
is reducible

to an enumerated sequence of instruction texts from a finite set of transformable instruction types
that are irreducible to any other instruction types.

SCT Axiom 6 does not appear to have a direct equivalent among the CCT axioms. It is
related to CCT Axiom A9 insomuch as it reflects the fact that the computational capacity
of any computing agent is finite. This axiom reflects a common fact of modern compiler
theory: all higher level constructs (e.g., function definitions and macros) of programming
languages are reduced to a finite set of irreducible (also known as primitive) instructions
(cf., e.g., Ch. 3 in [1]). Therefore, for any L on A compliant with SCT Axiom 6, we can
assume that a Pk ∈ P ˆ̈FA ,L

is a concatenation of enumerated instruction texts, each of

which designates an irreducible instruction type. We will hereafter assume that L on A is
minimally adequate and satisfies SCT Axiom 6.

7. Signifiable Computability of Functions
To characterize functions that are signifiably computable in principle, we remove

memory limitations imposed on computation by an FMD D , which is formalized in our
next definition.
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Definition 15 (Signifiably Computable Function). A total function f : Rm 7→ R is signifiably
computable in L on A if, and only if, there exists Pk ∈ P ˆ̇FA ,L

and, for 1 < n ∈ Z+, 1 ≤ j ≤
m ∈ Z+, (r1, . . . , rm) ∈ Rm,

(∀ (r1, . . . , rm) ∈ dom( f )) f (r1, . . . , rm) = r

if, and only if,

(∃ (σi1 , σi2 , . . . , σin)) SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σin)) ∧
IVVA ,L (σi1 , tij)← (=)A ,L → rj ∧
j← (=)A ,L → tij ∧
OUTVA ,L (σin)← (=)A ,L → r.

The predicate SGNCFA ,L ( f , Pk) holds if, and only if, f is signifiably computable in L on A

and Pk is a program that signifies f in L on A .

We proceed to characterize functions that are signifiably partially computable in principle.

Definition 16 (Signifiably Partially Computable Function). A partial function f : Rm 7→ R
is signifiably partially computable in L on A if, and only if, there exists Pk ∈ P ˆ̇FA ,L

and, for

1 < n ∈ Z+, 1 ≤ j ≤ m ∈ Z+, (r1, . . . , rm) ∈ Rm,

(r1, . . . , rm) ∈ dom( f ) ∧ f (r1, . . . , rm) = r

if, and only if,

(∃ (σi1 , σi2 , . . . , σin)) SGNCOMPA ,L (Pk, (σi1 , σi2 , . . . , σin)) ∧
IVVA ,L (σi1 , tij)← (=)A ,L → rj ∧
j← (=)A ,L → tij ∧
OUTVA ,L (σin)← (=)A ,L → r.

The predicate SGNPCFA ,L ( f , Pk) holds if, and only if, f is signifiably partially computable in
L on A and Pk is a program that signifies f in L on A .

Definitions 15 and 16 imply

Lemma 5. If SGNCFA ,L ( f , Pk), then SGNPCFA ,L ( f , Pk).

Definitions 15 and 16 and Lemma 5 broaden the scope of CCT Axiom A0 by making
the properties computable and partially computable apply to functions on discretely finite real
numbers. The next definition states that signifiable functions are those functions that can
be signified with texts in L on A .

Definition 17 (Signifiable Function). A function f is signifiable in L on A , which is denoted as
SGNFA ,L ( f ), if, and only if, there exists t ∈ A +

L such that

f ← (=)A ,L → t.

If t ≤ CCAP(D), for some FMD D , then f is signifiable in L on A on D , which is denoted as
SGNFA ,L ,D ( f ).

E.g., f : N 7→ N, f (x) = x + 1, then
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SGNFUnicode,Lisp( f ) where t ∈ Unicode+Lisp that signifies f is given in Figure 1.

Lemma 6. There exist L on A and a function f such that

SGNFA ,L ( f ) ∧
(
∀ Pk ∈ P ˆ̈FA ,L

)
¬SGNCFA ,L ( f , Pk).

Proof. Let x ∈ A +
L such that x ← (=)A ,L → r ∈ R. Let s ∈ A +

L such that
s← (=)A ,L → 1. Let

f (x, P) : A +
L ×P ˆ̈FA ,L

7→ {"0", "1"};

f (x, P) =


"1" if SGNCOMPA ,L (P, (σi1 , . . . , σin));

"0" otherwise,

(40)

where IVVA ,L (σi1 , s) = x and x ← (=)A ,L → r, r ∈ R. Take A = Unicode, L = Lisp,
and consider the following t ∈ Unicode+Lisp

"(defun f (x p) (if (halts-p p x) 1 0))",

where "(halts-p p x)" returns the text in Unicode+Lisp designating the Boolean value

True if a Lisp funcallable object designated by p ∈ Unicode+Lisp halts on the real number

designated by x ∈ Unicode+Lisp. Since t← (=)Unicode,Lisp → f , we have

SGNFUnicode,Lisp( f ).

However, since the predicate halts-p is not signifiably computable in Lisp on Unicode,

¬(∃Pk)Pk ∈ P ˆ̈FUnicode,Lisp
∧ SGNCFUnicode,Lisp( f , Pk).

8. Signifiable Computability of Functions on Finite Memory Devices
We now proceed to modify some of the definitions in Section 5 for situations when

functions signifiable by programs in L on A are computed on an FMD D . We associate
with every triplet L , A , D a non-empty set of error messages

ERRA ,L ,D = {tcap} ∪ {t ∈ ERRA ,L |CCAP(D) ≥ |t|}, (41)

where tcap ∈ A +
L , |tcap| ≤ CCAP(D), tcap ̸∈ ERRA ,L , is a unique error message whose size

does not exceed the memory capacity of D . An important difference between the functions
and predicates in Section 5 and the functions and predicates in this section is that the latter
return tcap when the memory capacity of D is exceeded.

The function in (42) returns VLDSA ,L (σ) if the size of σ does not exceed the memory
capacity of D . Otherwise, the function returns tcap.

VLDSA ,L ,D (σ) : A +
L 7→ {"0", "1", tcap};

VLDSA ,L ,D (σ) =

VLDSA ,L (σ) if |σ| ≤ CCAP(D);

tcap otherwise.

(42)
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The function in (43) returns PROGA ,L (σ), if σ is a valid program state and the size of σ

does not exceed the memory capacity of D . Otherwise, terr or tcap are returned.

PROGA ,L ,D (σ) : A +
L 7→ A +

L ∪ {terr, tcap};

PROGA ,L ,D (σ) =


PROGA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(43)

The function in (44) returns CINSA ,L (σ), if σ is valid and the size of σ does not exceed
the memory capacity of D . Otherwise, terr or tcap are returned.

CINSA ,L ,D (σ) : A + 7→ A + ∪ {terr, tcap};

CINSA ,L ,D (σ) =


CINSA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(44)

The function in (45) returns TOTIA ,L (σ), if σ is valid and the size of σ does not exceed
the memory capacity of D . Otherwise, terr or tcap are returned.

TOTIA ,L ,D (σ) : A +
L 7→ A +

L ∪ {terr, tcap};

TOTIA ,L ,D (σ) =


TOTIA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(45)

The function in (46) STARTSA ,L (σ), if σ is valid and the size of σ does not exceed the
memory capacity of D . Otherwise, the function returns terr or tcap.

STARTSA ,L ,D (σ) : A + 7→ {"0", "1", terr, tcap};

STARTSA ,L ,D (σ) =


STARTSA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(46)

The function in (47) returns NPISA ,L (σ), if σ is valid and the size of σ does not exceed
CCAP(D). Otherwise, terr or tcap is returned.

NPISA ,L ,D (σ) : A +
L 7→ A +

L ∪ {terr, tcap};

NPISA ,L ,D (σ) =


NPISA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(47)

The function in (48) returns ENDSA ,L (σ), if σ is a valid program state and the size of σ

does not exceed the memory capacity of D . Otherwise, it returns terr or tcap.
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ENDSA ,L ,D (σ) : A + 7→ {"0", "1", terr, tcap};

ENDSA ,L ,D (σ) =


ENDSA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(48)

The function in (49) returns NXTSA ,L (σ), if σ is valid and the size of σ does not exceed
the memory capacity of D . Otherwise, terr or tcap are returned.

NXTSA ,L ,D (σ) : A +
L 7→ A +

L ∪ {terr, tcap};

NXTSA ,L ,D (σ) =


NXTSA ,L (σ) if VLDSA ,L ,D (σ) = "1";

terr if VLDSA ,L ,D (σ) = "0";

tcap if VLDSA ,L ,D (σ) = tcap.

(49)

We now define memory-dependent signifiable computation on discretely finte real
numbers in (18). This definition is similar to its memory-independent counterpart in (13),
but is defined in terms of memory-dependent functions and predicates defined above in
this section.

Definition 18 (Signifiable Computation on Finite Memory). A signifiable computation of
Pk ∈ P ˆ̇FA ,L

on an FMD D is a finite sequence of valid program states σi1 , σi2 , . . . , σil , 1 ≤ j < l,

1 < l ∈ Z+, such that
σi1 ∈ S ˆ̇FA ,L

∧
STARTSA ,L ,D (σil ) = "1" ∧
ENDSA ,L ,D (σil ) = "1" ∧
NXTSA ,L ,D (σij) = σij+1 ∧
PROGA ,L ,D (σil ) = Pk.

The predicate
SGNCOMPA ,L ,D (Pk, (σi1 , σi2 , . . . , σil ))

holds if, and only if, σi1 , σi2 , . . . , σil is a signifiable computation of Pk in L on A on D .

Definition 19 (Signifiably Computable Function on Finite Memory). A total function f :
Rm 7→ R is signifiably computable in L on A on D if, and only if, there exists Pk ∈ P ˆ̇FA ,L

and,

for 1 < n ∈ Z+, 1 ≤ j ≤ m ∈ Z+, (r1, . . . , rm) ∈ Rm,

(∀ (r1, . . . , rm) ∈ dom( f )) f (r1, . . . , rm) = r

if, and only if,

(∃ (σi1 , σi2 , . . . , σin)) SGNCOMPA ,L ,D (Pk, (σi1 , σi2 , . . . , σin)) ∧
(σik , σik+1

)←≑A ,L→ sk,k+1 ∧
|sk,k+1| ≤ CCAP(D) ∧
IVVA ,L (σi1 , tij)← (=)A ,L → rj ∧
j← (=)A ,L → tij ∧
OUTVA ,L (σin)← (=)A ,L → r.

The predicate
SGNCFA ,L ,D ( f , Pk)



Mathematics 2025, 13, 934 28 of 36

holds if, and only if, f is signifiably computable in L on A on D and Pk is a program that signifies
f in L on A on D .

The next definition formalizes signifiably computable partial functions when the
memory available for computation is confined to the memory capacity of D on which the
signifiable computation is performed.

Definition 20 (Signifiably Partially Computable Function on Finite Memory). A partial
function f : Rm 7→ R is signifiably partially computable in L on A on D if, and only if, there
exists Pk ∈ P ˆ̇FA ,L

and, for 1 < n ∈ Z+, 1 ≤ k < n, 1 ≤ j ≤ m ∈ Z+, (r1, . . . , rm) ∈ Rm,

(r1, . . . , rm) ∈ dom( f ) ∧ f (r1, . . . , rm) = r

if, and only if,

(∃ (σi1 , σi2 , . . . , σin)) SGNCOMPA ,L ,D (Pk, (σi1 , σi2 , . . . , σin)) ∧
(σik , σik+1

)← (=)A ,L → sk,k+1 ∧
|sk,k+1| ≤ CCAP(D) ∧
IVVA ,L (σi1 , tij)← (=)A ,L → rj ∧
j← (=)A ,L → tij ∧
OUTVA ,L (σin)← (=)A ,L → r.

The predicate
SGNPCFA ,L ,D ( f , Pk)

holds if, and only if, f is signifiably partially computable in L on A on D and Pk is a program that
signifies f in L on A on D .

The above definitions imply that D can hold sk,k+1 in its memory. In other words, the
text sk,k+1 that signifies two consecutive valid program states in a signifiable computation
does not exceed the memory capacity of D . We will hereafter state that such an FMD has a
sufficiently large memory capacity, whence the next definition.

Definition 21 (Sufficient Memory Capacity). Let D be an FMD and Pk ∈ P ˆ̇FA ,L
. Then, D

has a sufficient memory capacity relative to Pk if, for any sequence of states such that

SGNCOMPA ,L ,D (Pk, (σi1 , σi2 , . . . , σil )),

(σik , σik+1
)←≑A ,L→ sk,k+1 ∧ |sk,k+1| ≤ CCAP(D), 1 ≤ k < l ∈ Z+.

The predicate
SMCAPA ,L ,D (Pk)

holds if, and only if, D has a sufficient memory capacity relative to Pk.

We now axiomatize the signifiable computability of VLDSA ,L ,D .

SCT Axiom 7.

(∃Pk)
{

Pk ∈ P ˆ̇FA ,L
∧ SMCAPA ,L ,D (Pk) ∧ SGNCFA ,L ,D (VLDSA ,L ,D , Pk)

}
.

SCT Axiom 7 concretizes CCT Axiom A3 by formalizing a facility (i.e., VLDSA ,L ,D ) to
move a computation forward step-by-step when a step is identical to a valid program state.
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SCT Axiom 7 also broadens CCT Axiom A8 by stating that there is an explicit finite bound
(i.e., CCAP(D)) on the amount of memory available for signifiable computation whenever
signifiable computation is carried out by a computing agent (e.g., an operating system or a
virtual machine) on D .

Since the functions PROGA ,L ,D (43), CINSA ,L ,D (44), TOTIA ,L ,D (45), STARTSA ,L ,D (46),
NPISA ,L ,D (47), ENDSA ,L ,D (48), NXTSA ,L ,D (49), and SGNCOMPA ,L ,D (18) are defined in
terms of VLDSA ,L ,D , we have

Definition 22 (Sufficiently Powerful Finite Memory Device). An FMD D is sufficiently
powerful relative to L on A if, for any f , such that

f ∈ {PROGA ,L ,D , CINSA ,L ,D , TOTIA ,L ,D , STARTSA ,L ,D ,
NPISA ,L ,D , ENDSA ,L ,D , NXTSA ,L ,D , SGNCOMPA ,L ,D},

(∃Pk)
{

Pk ∈ P ˆ̈FA ,L
∧ SMCAPA ,L ,D (Pk) ∧ SGNCFA ,L ,D ( f , Pk)

}
.

9. Main Results
We now present the two theorems, which we refer to as the Debugger Theorems, that

constitute the main results of this investigation. The theorems are so called, because they
characterize some properties of the debugger (DBGR) function defined as

DBGRA ,L ,D (σ, s) : A + ×A + 7→ A + ∪ {tcap, terr};

DBGRA ,L ,D (σ, s) =



NXTSn−1
A ,L ,D (σ) if

STARTSD ,A ,L (σ) = "1" ∧
(∀σij , σij+1){NXTSA ,L ,D (σij) ̸= σij+1 ∨
{σij+1 ̸= terr ∧ σij+1 ̸= tcap }};

terr if (∃σij)NXTSA ,L ,D (σij) = terr;

tcap if (∃σij)NXTSA ,L ,D (σij) = tcap,

where σ = σi1 , s← (=)A ,L → n ∈ Z+, n > 1, 1 ≤ j < n.

(50)

We define a debuggable FMD relative to L on A as

Definition 23 (Debuggable Finite Memory Device). An FMD D is debuggable relative to L

on A if

(∃Pk)
{

Pk ∈ P ˆ̈FA ,L
∧ SMCAPA ,L ,D (Pk) ∧ SGNCFA ,L ,D (DBGRA ,L ,D , Pk)

}
.

We now prove

Lemma 7. Let D be an FMD debuggable relative to L on A . Let s ∈ A +
L such that, for 1 < n ∈ Z+,

s← (=)A ,L → n ∧ STARTSA ,L ,D (σ) = "1".

Then,
DBGRA ,L ,D (σ, s) = tcap
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if, and only if, for 1 ≤ j < n,

VLDSA ,L ,D (σij) = "1"∧ NXTA ,L ,D (σij) = tcap.

Proof. We omit the subscripts A , L , D for brevity and let σ = σi1 . If STARTS(σi1) = "1"
and, for 1 ≤ j < n, VLDS(σij) = "1" and NXT(σij) = tcap, then DBGR(σi1 , s) = tcap, for
s ← (=) → j + 1 = n. Conversely, assume that DBGR(σi1 , s) = tcap. Since STARTS(σi1) =
"1",

{NXT(σi1) = σi2 ∧ VLDS(σi2) = "1"} ∨ NXT(σi1) = tcap.

If NXT(σi1) = tcap, then j = 1 and n = 2. Otherwise, we proceed from j = 2 and
examine each consecutive pair (σij , σij+1) in the same fashion as the pair (σi1 , σi2) to find
2 ≤ j < n and j + 1 = n← (=)→ s such that VLDS(σij) = "1" and NXT(σij) = tcap.

Corollary 7.1. Let D be an FMD debuggable relative to L on A . Let s ∈ A +
L such that, for

1 < n ∈ Z+,
s← (=)A ,L → n ∧ STARTSA ,L ,D (σ) = "1".

Then,
DBGRA ,L ,D (σ, s) = terr

if, and only if, for 1 ≤ j < n,

VLDSA ,L ,D (σij) = "1"∧ NXTA ,L ,D (σij) = terr.

We now prove

Theorem 1. Let D be an FMD debuggable relative to L and A . Let f : Rm 7→ R such that

SGNPCFA ,L ,D ( f , Pk) ∧ Pk ∈ P ˆ̈FA ,L
.

Then, if
σ ∈ A +

L ∧
(r1, . . . , rm) ̸∈ dom( f ) ∧
STARTSA ,L ,D (σ) = "1" ∧
PROGA ,L ,D (σ) = Pk ∧
IVVA ,L ,D (σ, tij)← (=)A ,L → rj ∧
tij ← (=)A ,L → j ∧
1 ≤ j ≤ m ∈ Z+ ∧
¬(∃ s) DBGRA ,L ,D (σ, s) = terr,

then
(∃n ∈ Z+)

{
1 < n ∧ n← (=)A ,L → s ∧ DBGRA ,L ,D ,(σ, s) = tcap

}
.

Proof. We omit the subscripts A , L , D for brevity. Let σ = σi1 be such that STARTS(σi1) =

"1", PROG(σi1) = Pk, and IVV(σi1 , tij) ← (=) → rj, 1 ≤ j ≤ m ∈ Z+, tij ∈ A +. Let
Pw ∈ P ˆ̈FA ,L

be such that SGNCF(DBGR, Pw).

Since (r1, . . . , rm) ̸∈ dom( f ), we have

¬(∃n > 1) SGNCOMP(Pk, (σi1 , σi2 , . . . , σin)),

whence

¬(∃n > 1)
{
NXTSn−1(σi1) = σ′ ∧ ENDS(σ′) = "1"∧ OUTV(σ′)← (=)→ f (r1, . . . , rm)

}
.
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We observe that if, for some σ, VLDS(σ) = "1", TOTI(σ) = t ∈ A +
L , t← (=)→ z ∈ Z+,

NXT(σ) = σ′, and VLDS(σ′) = "1", then, by Lemma 1,

TOTI(σ′) = t′ ∈ A +
L ∧ t′ ← (=)→ z′ ∈ Z+ ∧ z′ = z + 1.

Let NXT(σi1) = σi2 . If |σi2 | > CCAP(D), then n = 2. Otherwise, we run Pw to compute
DBGR(σi1 , s3), s3 ← (=)→ 3, whereby Pw computes

NXT(NXT(σi1)) = NXT(σi2) = σi3 .

If |σi3 | > CCAP(D), then n = 3. Otherwise, we continue incrementing the natural
number corresponding to the previous state counter numeral by 1 and running Pw on σi1
and

s4 ← (=)→ 4, s5 ← (=)→ 5, . . . ,

(i.e., the numerals corresponding to the natural numbers 4, 5, . . .). After a finite number of
such iterations, we necessarily reach σ and σ′ such that

NXT(σ) = σ′ ∧ VLDS(σ) = VLDS(σ′) = "1"∧ |σ| < |σ′|,

because in the standard decimal notation the numeral encoding TOTI(σ′) contains more
digit signs than the numeral encoding TOTI(σ), whence

(∃n > 3)
{

s← (=)→ n ∧ DBGR(σi1 , sn) = tcap

}
.

We now prove

Theorem 2. Let D be an FMD debuggable relative to L and A . Then, there exists f : Rm 7→ R
such that SGNCFA ,L ( f , Pk), Pk ∈ P ˆ̈FA ,L

, and, for some (r1, . . . , rm) ∈ dom( f ), if

σ ∈ A +
L ∧

STARTSA ,L ,D (σ) = "1" ∧
PROGA ,L ,D (σ) = Pk ∧
IVVA ,L ,D (σ, tij)← (=)A ,L → rj ∧
tij ← (=)A ,L → j ∧
1 ≤ j ≤ m ∈ Z+ ∧
¬(∃ s) DBGRA ,L ,D (σ, s) = terr,

Then,

(∃m ∈ Z+)(∀n ∈ Z+)
{

m ≤ n ∧ n← (=)A ,L → s ∧ DBGRA ,L ,D ,(σ, s) = tcap

}
.

Proof. We omit the subscripts A , L , D for brevity. Let f : N 7→ Z+ such that f (x) = x + 1.
Then, SGNCF( f , Pk), Pk ∈ P ˆ̈FA ,L

(cf., e.g., Pj in Figure 1). Let z ∈ Z+ be the smallest positive

integer such that z← (=)→ w and |w| > CCAP(D). Let

σ ∈ A +
L ∧

STARTS(σ) = "1" ∧
PROG(σ) = Pk ∧
IVV(σ, ti1)← (=)→ 0 ∧
ti1 ← (=)→ 1.
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Since STARTS(σ) = "1", then, by (50),

(∃m)
{

1 ≤ m ≤ z ∧ m← (=)→ v ∧ DBGR(σ, v) = tcap

}
.

Corollary 2.1. Let D be an FMD debuggable relative to L and A . Let f in Theorem (2) be
such that if (r1, . . . , rm), (r′1, . . . , r′m) ∈ dom( f ) and r1 < r′1, . . . , rm < r′m, then f (r1, . . . , rm) <

f (r′1, . . . , r′m). Then, for some (y1, . . . , yn) ∈ dom( f ), if

σ ∈ A +
L ∧

STARTSA ,L ,D (σ) = "1" ∧
PROGA ,L ,D (σ) = Pk ∧
IVVA ,L ,D (σ, tij)← (=)A ,L → yj ∧
tij ← (=)A ,L → j ∧
1 ≤ j ≤ m ∈ Z+ ∧
¬(∃ s) DBGRA ,L ,D (σ, s) = terr,

then

(∃m ∈ Z+)(∀n ∈ Z+)
{

m ≤ n ∧ n← (=)A ,L → v ∧ DBGRA ,L ,D ,(σ, v) = tcap

}
.

10. Discussion
The proposed axiomatization broadens the scope of CCT Axiom A0 in that it makes

the properties computable and partially computable apply to functions on discretely finite real
numbers (cf. Definitions 15 and 16 and Lemma 5). The ontology of functions on discretely
finite real numbers implied by the proposed axiomatization distinguishes three classes
of functions: signifiable, signifiably computable, and signifiably partially computable.
Per Lemma 5, signifiably computable functions are signifiably partially computable, but
not vice versa. Per Lemma 6, there are signifiable functions that are not signifiably par-
tially computable.

The proposed axiomatization characterizes signifiable computation on discretely finite
real numbers in terms of two formal systems: the Former ˆ̈FA ,L that generates texts in L in
A and the Transformer ˆ̈TA ,L that transforms texts formed by ˆ̈FA ,L into other texts in L

on A . These systems are co-dependent on each other and cannot exist in isolation. Neither
system is involved in the interpretation of the results insomuch as such interpretation is
outside of their scope. Both systems can be signified as programs in minimally adequate
formalisms and those programs can be executed by different computing agents, such as
human programmers or automated program synthesizers and debuggers. Consequently,
ˆ̈FA ,L and ˆ̈TA ,L are not identical to the computing agent L of CCT Axioms A4, A5, A9 and

A10. All texts produced by these two formal systems are spatiotemporally finite. While
ˆ̈FA ,L always takes a finite amount of physical time, regardless of how time is measured, to
form a text, ˆ̈TA ,L is not guaranteed to take a finite amount of physical time to transform
a text into another text. The formation and transformation of texts can be signed by both
systems and verified by third parties.

Programs that use continuous, random or analogue methods are evidently inconsistent
with CCT Axioms A4 and A5. However, they are consistent with the proposed axioma-
tization in the following sense. If such programs are signified in a minimally adequate
formalism, then their formation and transformation can be deterministically verified at least
on some inputs in the domains of functions that those programs designate. Furthermore, if
those programs are executed on an FMD debuggable relative to the said formalism, then,
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per the two Debugger Theorems, the programs can be effectively debugged on all signifi-
able inputs. It should be noted that this debugging is effective, because on any signifiable
input, the program that signifies the debugger function in (50) on the said FMD returns
either the output signifying a discretely finite real number, an error message, or a message
that the computation cannot be carried forward, because the FMD’s memory capacity is
exceeded. This integration of error into computation makes the proposed axiomatization
different from the CCT axiomatization.

SCT Axiom 5 of the proposed axiomatization concretizes CCT Axiom A9, because it
states that the computational capacity of a computing agent is a characteristic of not just the
computing agent but also of the programming formalism. SCT Axiom 7 of the proposed
axiomatization also concretizes CCT Axiom A8 by stating that there is an explicit finite
bound on the memory available for signifiable computation whenever the computation
is carried out by a computing agent on an FMD. Furthermore, the Debugger Theorems
(cf. Section 9) indicate that CCT Axioms A6, A7, A8, and A10 do not apply to actual
computability, i.e., situations when the signification of computation is performed on FMDs.

The concept of Debuggable FMD (cf. Definition 23) also bears on CCT Axiom A9
and distinguishes the proposed axiomatization from the CCT axiomatization. Debuggable
FMDs are FMDs on which the debugger function (cf. Equation (50)) can be signified
by a program in a minimally adequate L on A . Intuitively, debuggable FMDs are com-
putational devices with finite amounts of memory available for computation that can be
effectively debugged. Thus, the computational capacity of a computing agent is limited not
only by a finite number of instruction types the agent can perform but also by a concrete
finite amount of memory available for signifiable computation.

A fundamental difference between the proposed axiomatization and the CCT axioma-
tization is the explicit integration of cost into computation through the function TOTI (cf.
Equations (31) and (45)). Cost is different from the standard Big-O analysis of computer
science (cf., e.g., Ch. 2 in [11]). The Big-O analysis is based on two assumptions: (1) the
number of steps can be known ahead of computation as a function of the size of the input,
and (2) constant factors do not matter (e.g., f (n) = kn ∈ O(n), for k ∈ Z+, even when
k = 1058, i.e., the estimated number of photons in the observable universe). A consequence
of the second assumption, almost never explicitly stated, is that the energy is available on
demand to carry forward the prescribed computation. The function TOTI is not based on
either assumption. It simply states that the cost of computation increases by one abstract
unit (e.g., one unit of energy required to obtain a result, one unit of hardware maintenance
cost, one unit of economic unavailability of computed results for decision making, etc.)
with every signified instruction performed by a computing agent. To put it differently, per
Lemma 1, the cost of signifiable computation monotonically increases by one abstract unit
with every new signifiable program state.

Our approach to typed instructions (cf., e.g., Equation (22) and Definition 8) is inspired
by the approach originally proposed by Church in [12]. However, our end objective is
different. We do not aim to integrate λ-calculus (or any other formalism) into Russell’s
hierarchical theory of logical types (cf., e.g., [13,14]). Rather, we aim to formally characterize
what is computable in principle and what is computable with performable processes on
computational devices with finite amounts of memory.

The usage of logically quantified variables in our formalism makes no ontological
commitment that assertions containing the said variables imply that the ranges of the
variables actually exist [15] or that designating texts serve as senses of names [16]. While
our formal apparatus (cf. Section 2) relies on the axiom of choice of the Zermelo–Fraenkel
set theory, the proposed axioms, definitions, lemmas, theorems, and implications thereof
should not be viewed as arguments for or against replacing the Zermelo–Fraenkel set theory
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with the axiom of choice with the modern type theory as the foundation of mathematics
(cf., e.g., [17]). The alternative foundations of mathematics are beyond the scope of our
article.

Finally, we make no claim that the proposed axiomatization has no alternatives. Rather,
it is our hope that this investigation will motivate other computability theory and recursion
theory researchers to take a closer look at the differences between general and actual
computabilities and to seek alternative axiomatizations of computability to gain deeper
insights into the theory and practice of computer science.

11. Conclusions
In our previous investigation [4], we formalized the signification and reference of real

numbers and showed that discretely finite structures representable as tuples of discretely
finite numbers are signifiable on finite memory devices. In this investigation, we offered an
axiomatization of signifiable computation on discretely finite real numbers and proved two
theorems to investigate the computability properties of signifiably and partially signifiably
computable functions on finite memory devices. For the next part of our investigation of
significable computability, which we intend to cover in our next article, we plan to further
investigate connections between signifiable computability and the theory of primitive
recursive functions (cf., e.g., [18,19]) and, if and when possible, to connect signifiable
computability to formal approaches to symbolic AI [10].
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Appendix A
Below are the 11 axioms of the classical computability theory (CCT) based on Chapters

1–3 in [2]. CCT Axiom A0 is based on footnote 2 on p. 2 in [2] that states that the concepts
function and partial function are restricted to mappings on non-negative integers. The
ordinal numbers in the CCT Axioms A1–A10 correspond to the ordinals in the 10-item list
of statements or questions to which affirmative or negative answers are given in Section 1.1
in [2], pp. 2–5. The assumptions reflected in the CCT axioms below are apparent in Chapters
2–8 in [1], another classical text on computability and recursion theory.

CCT Axiom A0. Functions map natural numbers to natural numbers.

CCT Axiom A1. An algorithm is given as a set of instructions of finite size.

CCT Axiom A2. There exists a computing agent that can react to the instructions and carry out
the computations.

CCT Axiom A3. There are facilities for making, storing, and retrieving steps in a computation.

CCT Axiom A4. If P is the set of instructions in an algorithm and L is a computing agent, then,
given an input to P, L reacts to P by performing the computation in a discrete, stepwise fashion
without using continuous methods or analogue devices.

CCT Axiom A5. L reacts to P by performing a computation deterministically, without random
methods or devices.

CCT Axiom A6. There is no fixed finite bound on the size of inputs.
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CCT Axiom A7. There is no fixed finite bound on the size of a set of instructions P.

CCT Axiom A8. There is no fixed finite bound on the amount of memory storage available to L to
carry out a computation in P.

CCT Axiom A9. There is a fixed finite bound on the capacity of the computing agent L.

CCT Axiom A10. There is no fixed finite bound on the length of the computation performed by L
on P; it is only required that the computation terminate after some finite number of steps.

Table A1. Instruction types in IA ,L spatiotemporally finitely formable and transformable in pro-
gramming formalisms that satisfy SCT Axiom 5. The subscripts A and L in the right column are
omitted for brevity.

Instruction Type Semantics

SET(v, t), v ∈ A +, t ∈ A ∗
set the value of the variable
named v to t

ADD(t1, . . . , tk), ti ∈ A +, 1 ≤ i ≤ k, k > 1
ti ← (≈)→ ri ∈ R ∧
Ⅎ(∑k

i=1 ri, t) ∧ ⟲ (∑k
i=1 ri, t, t′) ∧

t′ ← (≈)→ ∑k
i=1 ri

SUB(t1, . . . , tk), ti ∈ A +,1 ≤ i ≤ k, k > 1

ti ← (≈)→ ri ∈ R ∧
Ⅎ(r1 − r2 − . . .− rk, t) ∧
⟲ (r1 − r2 . . .− rk, t, t′) ∧
t′ ← (≈)→ r1 − . . .− rk

MUL(t1, . . . , tk), ti ∈ A +, 1 ≤ i ≤ k, k > 1

ti ← (≈)→ ri ∈ R ∧
Ⅎ(∏k

i=1 ri, t) ∧
⟲ (∏k

i=1 ri, t, t′) ∧
t′ ← (≈)→ ∏k

i=1 ri

DIV(t1, t2), ti ∈ A +,1 ≤ i ≤ 2

t1 ← (≈)→ r1 ∈ R ∧
t2 ← (≈)→ r2 ∈ R ∧ r2 ̸= 0 ∧
Ⅎ
(

r1
r2

, t
)
∧ ⟲

(
r1
r2

, t, t′
)
∧

t′ ← (≈)→ r1
r2

CONC(t1, . . . , tk), ti ∈ A +,1 ≤ i ≤ k, k > 1

Ⅎ
(⊕∣∣∣k

i=1
ti, t

)
∧

⟲
(⊕∣∣∣k

i=1
ti, t, t′

)
∧

t′ =
⊕

A

∣∣∣k
i=1

ti

SUBST(t, v1, t1, . . . , vk, tk), t, ti, vi ∈ A +, 1 ≤ i ≤ k, k > 1
return the text obtained by
substituting in t t1 for v1, . . .,
tk for vk.
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