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Abstract: Conformal maps preserve angles and maintain the local shape of geometric
structures. The osculating curve plays an important role in analyzing the variations in
curvature, providing a detailed understanding of the local geometric properties and the
impact of conformal transformations on curves and surfaces. In this paper, we study
osculating curves on regular surfaces under conformal transformations. We obtained the
conditions required for osculating curves on regular surfaces R and R̃ to remain invariant
when subjected to a conformal transformation ψ : R → R̃. The results presented in this
paper reveal the specific conditions under which the transformed curve σ̃ = ψ ◦ σ preserves
its osculating properties, depending on whether σ̃ is a geodesic, asymptotic, or neither.
Furthermore, we analyze these conditions separately for cases with zero and non-zero
normal curvatures. We also explore the behavior of these curves along the tangent vector
Tσ and the unit normal vector Pσ.

Keywords: Darboux frame; conformal transformation; osculating curve; geodesic; asymptotic
curve

MSC: 53A15; 53A05; 53A04

1. Introduction
A frame field is a fundamental concept in differential geometry that characterizes

the local geometric properties of surfaces and curves [1–3]. At each point in a space, a set
of linearly independent vectors spans the tangent space at that point. These frame fields
can be classified into various types depending on the context of the study. In this study,
we focus specifically on two types of frame fields, namely the Darboux frame and the
Frenet frame.

The Darboux frame is used to study the geometry of a surface curve contained in
three-dimensional Euclidean space (E3). It is spanned by the tangent vector (Tσ) of the
curve and two vectors derived from the surface, the normal vector (Uσ) to the surface
and the principal normal vector (Pσ), which is perpendicular to both Tσ and Uσ. For more
detail about Darboux frame vectors, one can refer to [4–6]. The French mathematician
Jean Gaston Darboux, in his study on the theory of surfaces, introduced the idea of the
Darboux frame [7]. As shown by Düldül et al. [8], further advancements expanded
the Darboux frame into Euclidean 4-space and investigated its invariants. Furthermore,
new characterizations of osculating curves based on the Darboux frame in E3 space were
provided by a recent study of Isah et al. [9].
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On the other hand, the local geometry of a space curve is described by the Frenet–Serret
frame. It is composed of three unit vectors that are mutually orthogonal: the tangent vector
(Tσ), which is along the direction of the motion of a curve at a given point; the normal
vector (Nσ), which points towards the center of curvature of the curve at that point; and
the binormal vector (Bσ), which is perpendicular to both the tangent and the normal vector.
The planes spanned by these vectors in the Serret–Frenet frame are known as the osculating
plane, the normal plane, and the rectifying plane [10–12].

The osculating plane, spanned by the tangent vector and the normal vector, is a plane
tangent to the curve or surface at a given point. Similarly, the normal plane, spanned by the
normal vector and the binormal vector, represents the plane normal to the surface at that
point, whereas the rectifying plane, defined by the tangent vector and the binormal vector,
represents a plane perpendicular to both the osculating plane and the normal plane. The
curves whose position vectors lie in these planes are, respectively, known as the osculating
curve [13–15], the normal curve [16–18], and the rectifying curve [19–21]. For more details
about these curves, one can refer to [22–24].

The behavior of the position vector of a surface curve within Euclidean 3-space was
described by Camci et al. [25], whereas Chen [26] examined the circumstances in which
the position vector of a space curve always lies in its rectifying plane. Moreover, several
characteristics of osculating curves were investigated by Ilarslan and Nesovic, contributing
to the understanding of the Serret–Frenet frame [27–29]. Recently, Lone et al. [30–32]
studied the geometric properties of normal and osculating curves in different spaces.
The work on differential geometry serves as a valuable resource for understanding these
concepts in depth [33–35].

The motivation for this research lies in exploring osculating curves under conformal
transformations. We focus on understanding the behavior of osculating curves and their
invariance properties under conformal transformations. We have investigated the condi-
tions that maintain the invariance of osculating curves under conformal transformations.
Also, we have discussed their behavior along the tangent vector Tσ = aθx + bθy and along
the unit normal vector Pσ = Uσ × Tσ. This study extends the understanding of osculating
curves within the framework of conformal transformations.

2. Preliminaries
Consider a unit speed curve on a regular surface R, σ : I ⊂ R → E3, which is

continuous at least up to its fourth-order derivatives. Let σ : I ⊂ R → E3 be a unit speed
curve on a regular surface R, exhibiting continuity at least up to its fourth-order derivatives.
Let Tσ, Nσ, and Bσ represent the tangent, normal, and binormal vectors, respectively, at each
point of the curve σ. These three vectors constitute the frame known as the Serret–Frenet
frame, and they are related to each other by the Serret–Frenet equations given as follows:

T′
σ(w) = κ(w)Nσ(w),

N′
σ(w) = −κ(w)Tσ(w) + τ(w)Bσ(w),

B′
σ(w) = −τ(w)Nσ(w),

 (1)

where κ represents the curvature, and τ represents the torsion of the curve σ. ′ denotes the
derivative with respect to the arc parameter.

Similarly, at every point on a curve σ, we can also create another frame known as the
Darboux frame, which is made up of three vectors, namely the tangent vector (Tσ), the
normal vector (Uσ) to the surface, and the vector (Pσ), perpendicular to both Tσ and Uσ.
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The relation between the Serret–Frenet frame vectors and the Darboux frame vectors
is given as follows: Tσ

Pσ

Uσ

 =

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ

 ·

Tσ

Nσ

Bσ

, (2)

where Φ is the angle between the vectors Nσ and Pσ.
Consider a parametrized curve σ(w) that lies on a regular surface R. Let θ : R2 → R

be a coordinate chart on R, such that the curve σ(w) is contained within the image of
this coordinate chart. This means that we can describe the curve σ(w) in terms of the
coordinates provided by the chart θ. In particular, we can express the curve σ(w) as
follows:

σ(w) = θ(x(w), y(w)), (3)

where x(w) and y(w) are functions that map the parameter ‘w’ to the coordinate values
on the surface R. This representation allows us to analyze the curve σ(w) using the local
coordinates of the surface R.

Differentiating (3) with respect to parameter ‘w’ of the curve, we obtain

Tσ(w) = σ′(w) = x′θx + y′θy, (4)

represents the tangent vector to the curve. Here, θx and θy are the partial derivatives of the
parameterized function θ with respect to the parameters x and y.

Hence, σ′′ = T′
σ is perpendicular to the tangent vector, which lies in the plane bounded

by the vectors Uσ and Pσ. Thus, we can write it as a linear combination of Uσ and Pσ, i.e.,

σ′′ = κn(w)Uσ(w) + κg(w)Pσ(w), (5)

where κn represents the normal curvature and κg represents the geodesic curvature of the
curve σ.

From (5), we obtain

κn(w) = σ′′ · Uσ(w) and κg(w) = σ′′ · Pσ(w). (6)

However, from the Serret–Frenet equation (Equation (1)), σ′′(w) = T′
σ(w) = κ(w)Nσ(w).

Therefore,

κn(w) = κ(w)Nσ(w) · Uσ(w), and κg(w) = κ(w)Nσ(w) · Pσ(w).

⇒ κn(w) = κ(w) sin Φ, and κg(w) = κ(w) cos Φ. (7)

The unit normal vector Uσ, which is orthogonal to the surface R, can be expressed as
follows:

Uσ(w) =
θx × θy

∥θx × θy∥
=

θx × θy√
EG − F2

. (8)

Here, the terms E = θx · θx, F = θx · θy, and G = θy · θy represent the coefficients of the first
fundamental form of surfaces [36].
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Since the vector Pσ is perpendicular to the plane spanned by Uσ and Tσ, it is obtained
by taking the cross product of Uσ and the tangent vector Tσ.
Equations (4) and (8) yield

Pσ(w) =
1√

EG − F2
(Ex′θy + F(y′θy − x′θx)− Gy′θx). (9)

Definition 1 ([36]). Let R and R̃ be two regular surfaces. A function ψ : R → R̃ is called a local
isometry if for every point q ∈ R and for all tangent vectors t1 and t2 at q. The inner product of the
metric tensors t1 and t2 under ψ at ψ(q) is identical to the inner product of t1 and t2 at q. i.e.,

⟨ψ∗(t1), ψ∗(t2)⟩ψ(q) = ⟨t1, t2⟩q.

If, in addition, ψ is a bijection, then it is called an isometry, and the surfacesR and R̃ are said to
be isometric.

An important property of an isometry ψ : R → R̃ is that it preserves the coefficients of
the first fundamental form. If E, F, and G denote the coefficients of the first fundamental
form for R, and Ẽ, F̃, G̃ denote the corresponding coefficients for R̃, then

E = Ẽ, F = F̃, G = G̃. (10)

Definition 2. Let R and R̃ be two regular surfaces, and a function ψ : R → R̃ is called a conformal
map if, for every point q ∈ R and for all tangent vectors t1 and t2 at q, the inner product of the
metric tensors t1 and t2 under ψ at ψ(q) is proportional to the inner product of t1 and t2 at q.
Formally, this is written as follows:

⟨ψ∗(t1), ψ∗(t2)⟩ψ(q) = ζ⟨t1, t2⟩q.

Here, ζ represents a differential function and is known as a scaling factor or a dilation factor.

A conformal transformation is basically a combination of an isometric map and a
dilation factor; if the dilation factor is one, then a conformal map becomes an isometric map.
In geometric terms, a conformal map maintains the angle both in direction and magnitude
but not necessarily the lengths. For more information on conformal maps, one may refer
to [37–39]. In the case of a conformal map, the coefficients of the first fundamental form are
proportional, i.e.,

ζE = Ẽ, ζF = F̃, ζG = G̃. (11)

Definition 3. A unit speed curve σ, whose position vectors always lie in the orthogonal complement
of the binormal vector, i.e., on the plane orthogonal to the binormal vector, is known as an osculating
curve. In other words, an osculating curve is characterized by its position vector lying in an
osculating plane and satisfying the following equation

σ(w) = α(w)Tσ(w) + β(w)Nσ(w), (12)

for some smooth functions α(w) and β(w).
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Since there exists a relationship between the Serret–Frenet frame vectors and the
Darboux frame vectors, if we convert the Serret–Frenet vector Nσ(w) in (12) to the Darboux
frame vectors from relation (2), we obtain

σ(w) = α(w)Tσ(w) + β(w)Pσ(w) cos Φ − β(w)Uσ(w) sin Φ, (13)

which represents an osculating curve in the Darboux frame.
Using values of Darboux vectors Pσ and Uσ from Equations (8) and (9) in (13), we

obtain a general equation of an osculating curve, i.e.,

σ(w) = α(w){x′θx + y′θy}+
β(w)κg(w)

κ(w)

1√
EG − F2

{Ex′θy

+F(y′θy − x′θx)− Gy′θx} −
β(w)κn(w)

κ(w)

θx × θy√
EG − F2

. (14)

Throughout this paper, we will use this equation to derive our main results. This equation
of an osculating curve does not exhibit a geodesic or an asymptotic character.

If the geodesic curvature κg becomes zero, then the osculating curve σ is said to have
a geodesic character. In that case, κn = κ (from Equation (7)).

Thus, Equation (14) becomes

σ(w) = α(w){x′θx + y′θy} −
β(w)√

EG − F2
θx × θy, (15)

and, if normal curvature κn becomes zero, then the osculating curve σ is said to have an
asymptotic character. Hence, from Equation (7), we obtain κg = κ.

Thus, Equation (14) becomes

σ(w) = α(w){x′θx + y′θy}+
β(w)√

EG − F2
{Ex′θy

+F(y′θy − x′θx)− Gy′θx}. (16)

3. Osculating Curves with Respect to the Conformal Transformation
In Theorems 1 and 2, we explore the conditions under which osculating curves remain

invariant under conformal transformations. The first theorem considers the case where the
osculating curve possesses a non-asymptotic character, while the second theorem addresses
the case where the osculating curve exhibits an asymptotic character.

Theorem 1. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces and
σ(w) is a non-asymptotic osculating curve on R (i.e., κn ̸= 0). Then, σ̃ = ψ ◦ σ is an osculating
curve on R̃ in any of the following conditions:

(a) σ̃ is a geodesic curve on R̃ and satisfies σ̃(w) +
β(w)κg(w)

κ(w)
P̃σ = ζψ∗(σ(w)).

(b) σ̃ is an asymptotic curve on R̃ and satisfies σ̃(w) = ζψ∗(σ(w)) + β(w)κn(w)
κ(w)

Ũσ.

(c) σ̃ is neither geodesic nor asymptotic curve on R̃ such that σ̃(w) = ζψ∗(σ(w)).

Proof. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces
and σ(w) is a non-asymptotic osculating curve on R, i.e., κn ̸= 0.

Suppose that σ̃ is a geodesic curve on R̃ and satisfies σ̃(w) +
β(w)κg(w)

κ(w)
P̃σ = ζψ∗(σ(w)),

which implies
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σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1

ζ
√

EG − F2
ζ2{Ex′ψ∗θy

+F(y′ψ∗θy − x′ψ∗θx)− Gy′ψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ −

β(w)κg(w)

κ(w)
P̃σ.

⇒ σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

{ζEx′ζψ∗θy

+ζF(y′ζψ∗θy − x′ζψ∗θx)− ζGy′ζψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ

−
β(w)κg(w)

κ(w)
P̃σ. (17)

From (11) and (17), it follows that

σ̃(w) = α(w)(x′ θ̃x + y′ θ̃y) +
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

{Ẽx′ θ̃y + F̃(y′ θ̃y

−x′ θ̃x)− G̃y′ θ̃x} −
β(w)κn(w)

κ(w)
Ũσ −

β(w)κg(w)

κ(w)
P̃σ.

⇒ σ̃(w) = α(w)(x′ θ̃x + y′ θ̃y)−
β(w)κn(w)

κ(w)
Ũσ.

⇒ σ̃(w) = α̃(w)(x′ θ̃x + y′ θ̃y)− β̃(w)Ũσ,

which represents an osculating curve exhibiting a geodesic character on the surface R̃,
where α̃(w) = α(w) and β̃(w) = β(w)κn(w)

κ(w)
.

Suppose that σ̃ is an asymptotic curve on R̃ and satisfies σ̃(w) = ζψ∗(σ(w)) +
β(w)κn(w)

κ(w)
Ũσ, which implies

σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1

ζ
√

EG − F2
ζ2{Ex′ψ∗θy

+F(y′ψ∗θy − x′ψ∗θx)− Gy′ψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ +

β(w)κn(w)

κ(w)
Ũσ.

⇒ σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

{ζEx′ζψ∗θy

+ζF(y′ζψ∗θy − x′ζψ∗θx)− ζGy′ζψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ

+
β(w)κn(w)

κ(w)
Ũσ. (18)

From (11) and (18), it follows that

σ̃(w) = α(w)(x′ θ̃x + y′ θ̃y) +
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

{Ẽx′ θ̃y + F̃(y′ θ̃y

−x′ θ̃x)− G̃y′ θ̃x} −
β(w)κn(w)

κ(w)
Ũσ +

β(w)κn(w)

κ(w)
Ũσ.

⇒ σ̃(w) = α(w)(x′ θ̃x + y′ θ̃y) +
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

{Ẽx′ θ̃y + F̃(y′ θ̃y

−x′ θ̃x)− G̃y′ θ̃x}.

⇒ σ̃(w) = α̃(w)(x′ θ̃x + y′ θ̃y) + β̃(w)
1√

ẼG̃ − F̃2
{Ẽx′ θ̃y + F̃(y′ θ̃y − x′ θ̃x)

−G̃y′ θ̃x},
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which represents an osculating curve exhibiting an asymptotic character on the surface R̃,

where α(w) = α̃(w) and β̃(w) =
β(w)κg(w)

κ(w)
.

Suppose σ̃ is neither geodesic nor asymptotic curve on R̃ such that σ̃(w) = ζψ∗(σ(w)),
which implies

σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1

ζ
√

EG − F2
ζ2{Ex′ψ∗θy

+F(y′ψ∗θy − x′ψ∗θx)− Gy′ψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ.

⇒ σ̃(w) = α(w)(x′ζψ∗θx + y′ζψ∗θy) +
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

{ζEx′ζψ∗θy

+ζF(y′ζψ∗θy − x′ζψ∗θx)− ζGy′ζψ∗θx} −
β(w)κn(w)

κ(w)
ζψ∗Uσ. (19)

From (11) and (19), it follows that

σ̃(w) = α(w)(x′ θ̃x + y′ θ̃y) +
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

{Ẽx′ θ̃y

+F̃(y′ θ̃y − x′ θ̃x)− G̃y′ θ̃x} −
β(w)κn(w)

κ(w)
Ũσ.

⇒ σ̃(w) = α̃(w)(x′ θ̃x + y′ θ̃y) +
β̃(w)κ̃g(w)

κ̃(w)

1√
ẼG̃ − F̃2

{Ẽx′ θ̃y

+F̃(y′ θ̃y − x′ θ̃x)− G̃y′ θ̃x} −
β̃(w)κ̃n(w)

κ̃(w)
Ũσ, (20)

which represents an osculating curve on the surface R̃ that neither exhibits a geodesic

character nor an asymptotic character, where α̃(w) = α(w) , β̃(w)κ̃g(w)

κ̃(w)
=

β(w)κg(w)

κ(w)
and

β̃(w)κ̃n(w)
κ(w)

= β(w)κn(w)
κ(w)

.

Theorem 2. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces
and σ(w) is an asymptotic osculating curve on R (i.e., κn = 0). Then, σ̃ = ψ ◦ σ is an osculating
curve on R̃ if any of the following conditions are satisfied:

(a) σ̃ is an asymptotic curve on R̃ and satisfies σ̃(w) = ζψ∗(σ(w)).

(b) σ̃ is not an asymptotic curve on R̃ and satisfies σ̃(w) + β̃(w)κ̃n(w)
κ̃(w)

Ũσ = ζψ∗(σ(w)).

Proof. The process for proving this theorem is the same as that used for proving Theorem 1.
All that is needed to obtain the expected results is to set kn = 0 in the proof of Theorem 1.

After analyzing the conditions under which an osculating curve remains invariant
under a conformal transformation, we now extend our analysis to discuss its behavior
along the tangent vector, Tσ(w) = aθx + bθy, and along the unit normal vector Pσ = Uσ × Tσ.
In the following theorems, Theorems 3 and 4, we examine their behavior along Tσ by
considering the cases of non-zero and zero normal curvature, respectively. Subsequently,
in Theorems 5 and 6, we will discuss their behavior along the unit normal vector Pσ by
considering their non-asymptotic and asymptotic characteristics, respectively.

Theorem 3. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces,
and let σ be a non-asymptotic osculating curve on R (i.e., κn ̸= 0), and let σ̃ be its corresponding
osculating curve on the transformed surface R̃. Then, we have the following:
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(a) If σ̃ exhibits a geodesic character on R̃, then

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w) +
β(w)κg(w)

κ(w)

√
ẼG̃ − (F̃)2(ay′ − bx′).

(b) If σ̃ shows an asymptotic character on R̃, then

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w).

(c) If σ̃ neither shows a geodesic character nor an asymptotic character on R̃, then

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w),

where Tσ(w) = aθx + bθy denotes a tangent vector at point σ(w) on surface R.

Proof. Let ψ : R → R̃ be a conformal transformation, and let σ and σ̃ be osculating curves
on R and R̃, respectively, with κn ̸= 0. Then,

σ̃(w) · T̃σ(w)− ζσ(w) · Tσ(w) = a(σ̃(w) · θ̃x − ζσ(w) · θx) + b(σ̃(w) · θ̃y − ζσ(w) · θy). (21)

Thus, in order to prove required results, we have to calculate the values of (σ̃(w) · θ̃x −
ζσ(w) · θx) and (σ̃(w) · θ̃y − ζσ(w) · θy).

Now, from Equation (14), we obtain

σ(w) · θx = α(w)(x′θx · θx + y′θy · θx)−
β(w)κn(w)

κ(w)

1√
EG − F2

(θx × θy) · θx

+
β(w)κg(w)

κ(w)

1√
EG − F2

{Ex′θy · θx + Fy′θy · θx − Fx′θx · θx

−Gy′θx · θx}.

⇒ σ(w) · θx = α(w)(x′E + y′F) +
β(w)κg(w)

κ(w)

1√
EG − F2

{x′EF + y′F2 − x′EF

−y′EG}.

⇒ σ(w) · θx = α(w)(x′E + y′F) +
β(w)κg(w)

κ(w)

1√
EG − F2

(F2 − EG)y′. (22)

Similarly,

σ(w) · θy = α(w)(x′F + y′G) +
β(w)κg(w)

κ(w)

1√
EG − F2

(EG − F2)x′. (23)

In order to prove (a), let us suppose that a curve σ̃(w) exhibits geodesic characteristics
on R̃.

So, by using Equation (15), we obtain

σ̃(w) · θ̃x = α̃(w)(x′Ẽ + y′ F̃), (24)

and

σ̃(w) · θ̃y = α̃(w)(x′ F̃ + y′G̃). (25)

From Equations (22) and (24), we obtain

σ̃(w) · θ̃x − ζσ(w) · θx = α̃(w)(x′Ẽ + y′ F̃)− α(w)(x′ζE + y′ζF)
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−
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

((ζF)2

−ζEζG)y′.

⇒ σ̃(w) · θ̃x − ζσ(w) · θx = (α̃(w)− α(w))(x′Ẽ + y′ F̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′. (26)

Similarly, from (23) and (25), we obtain

σ̃(w) · θ̃y − ζσ(w) · θy = (α̃(w)− α(w))(x′ F̃ + y′G̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′. (27)

Therefore,

σ̃(w)T̃σ(w)− ζσ(w) · Tσ(w) = a{(α̃(w)− α(w))(x′Ẽ + y′ F̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′}

+b{(α̃(w)− α(w))(x′ F̃ + y′G̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′}.

⇒ σ̃(w)T̃σ(w)− ζσ(w) · Tσ(w) = (α̃(w)− α(w)){a(x′Ẽ + y′ F̃) + b(x′ F̃

+y′G̃)}+
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(ẼG̃

−F̃2)(ay′ − bx′).

Since σ and σ̃ are osculating curves on R and R̃, respectively, then α̃(w) = α(w).
Hence,

σ̃ · T̃σ(w) = ζσ(w) · Tσ(w) +
β(w)κg(w)

κ(w)

√
ẼG̃ − F̃2 (ay′ − bx′).

For (b), suppose that σ̃ exhibits an asymptotic character on R̃. Then,

σ̃(w) · θ̃x = α̃(w)(x′Ẽ + y′ F̃) + β̃(w)
1√

ẼG̃ − F̃2
(F̃2 − ẼG̃)y′, (28)

and

σ̃(w) · θ̃y = α̃(w)(x′Ẽ + y′ F̃) + β̃(w)
1√

ẼG̃ − F̃2
(ẼG̃ − F̃2)x′. (29)

From Equations (22) and (28), we obtain

σ̃(w) · θ̃x − ζσ(w) · θx = α̃(w)(x′Ẽ + y′ F̃) + β̃(w)
1√

ẼG̃ − F̃2
(F̃2 − ẼG̃)y′

−α(w)(x′ζE + y′ζF)−
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

((ζF)2

−ζEζG)y′.

⇒ σ̃(w) · θ̃x − ζσ(w) · θx = (α̃(w)− α(w))(x′Ẽ + y′ F̃)− (β̃(w)
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−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)y′. (30)

Similarly, from (23) and (29), we obtain

σ̃(w) · θ̃y − ζσ(w) · θy = α̃(w)(x′ F̃ + y′G̃) + β̃(w)
1√

ẼG̃ − F̃2
(ẼG̃ − F̃2)x′

−α(w)(x′ζF + y′ζG)−
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

(ζEζG

−(ζF)2)x′.

⇒ σ̃(w) · θ̃y − ζσ(w) · θy = (α̃(w)− α(w))(x′ F̃ + y′G̃) + (β̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′. (31)

Therefore,

σ̃(w) · T̃σ(w)− ζσ(w) · Tσ(w) = a{(α̃(w)− α(w))(x′Ẽ + y′ F̃)− (β̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)y′}

+b{(α̃(w)− α(w))(x′ F̃ + y′G̃) + (β̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′}.

⇒ σ̃(w) · T̃σ(w)− ζσ(w) · Tσ(w) = (α̃(w)− α(w)){a(x′Ẽ + y′ F̃) + b(x′ F̃

+y′G̃)}+ (β̃(w)−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)(bx′ − ay′).

Since σ(w) and σ̃(w) are normal curves on R and R̃, respectively, then α̃(w) = α(w) and

β̃(w) =
β(w)κg(w)

κ(w)
.

Hence,

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w).

For (c), suppose that σ̃ exhibits neither a geodesic character nor an asymptotic character on
R̃. Then,

σ̃(w) · θ̃x = α̃(w)(x′Ẽ + y′ F̃) +
β̃(w)κ̃g(w)

κ̃(w)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′, (32)

and

σ̃(w) · θ̃y = α̃(w)(x′ F̃ + y′G̃) +
β̃(w)κ̃g(w)

κ̃(w)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′. (33)

Therefore,

σ̃(w) · θ̃x − ζσ(w) · θx = α̃(w)(x′Ẽ + y′ F̃) +
β̃(w)κ̃g(w)

κ̃(w)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′
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−α(w)(x′ζE + y′ζF)−
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

((ζF)2

−ζEζG)y′.

⇒ σ̃(w) · θ̃x − ζσ(w) · θx = (α̃(w)− α(w))(x′Ẽ + y′ F̃) + (
β̃(w)κ̃g(w)

κ̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′. (34)

Similarly,

σ̃(w) · θ̃y − ζσ(w) · θy = α̃(w)(x′ F̃ + y′G̃) +
β̃(w)κ̃g(w)

κ̃(w)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′

−α(w)(x′ζF + y′ζG)−
β(w)κg(w)

κ(w)

1√
ζEζG − (ζF)2

((ζEζG

−(ζF)2)x′.

⇒ σ̃(w) · θ̃y − ζσ(w) · θy = (α̃(w)− α(w))(x′ F̃ + y′G̃) + (
β̃(w)κ̃g(w)

κ̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′. (35)

Therefore,

σ̃(w)T̃σ(w)− ζσ(w) · Tσ(w) = a{(α̃(w)− α(w))(x′Ẽ + y′ F̃) + (
β̃(w)κ̃g(w)

κ̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′}

+b{(α̃(w)− α(w))(x′ F̃ + y′G̃) + (
β̃(w)κ̃g(w)

κ̃(w)

−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′}.

⇒ σ̃(w)T̃σ(w)− ζσ(w) · Tσ(w) = (α̃(w)− α(w)){a(x′Ẽ + y′ F̃) + b(x′ F̃ + y′G̃)}

+(
β̃(w)κ̃g(w)

κ̃(w)
−

β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃

−F̃2)(bx′ − ay′).

Since σ(w) and σ̃(w) are normal curves on R and R̃, respectively, then α̃(w) = α(w) and
β̃(w)κ̃g(w)

κ̃(w)
=

β(w)κg(w)

κ(w)
.

Hence,

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w).

Theorem 4. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces,
and let σ be an asymptotic osculating curve on R (i.e., κn = 0) and let σ̃ be its corresponding
osculating curve on the transformed surface R̃. Then, we have the following:

(a) If σ̃ exhibits an asymptotic character on R̃, then

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w).
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(b) If σ̃ does not exhibits an asymptotic curve on R̃, then

σ̃(w) · T̃σ(w) = ζσ(w) · Tσ(w),

where Tσ(w) = aθx + bθy denotes a tangent vector at point σ(w) on surface R.

Proof. We can prove this theorem by setting κn = 0 in the proof of Theorem 3.

Theorem 5. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces,
and let σ be a non-asymptotic osculating curve on R (i.e., κn ̸= 0) and let σ̃ be its corresponding
osculating curve on the transformed surface R̃. Then, we have the following:

(a) If σ̃ exhibits a geodesic character on R̃, then

σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w)−
β(w)κg(w)

κ(w)
((aẼ + bF̃)x′ + (aF̃ + bG̃)y′).

(b) If σ̃ exhibits an asymptotic character on R̃, then

σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w).

(c) If σ̃ neither shows a geodesic character nor an asymptotic character on R̃, then

σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w),

where Pσ(w) = Uσ(w)× Tσ(w) in which Tσ(w) = aθx + bθy denotes a tangent vector at point
σ(w) on surface R.

Proof. Let F : R → R̃ be a conformal transformation and let σ and σ̃ be osculating curves
on R and R̃ with κn ̸= 0. Then,

σ(w) · Pσ(w) =
(aE + bF)√

EG − F2
σ(w) · θy −

(aF + bG)√
EG − F2

σ(w) · θx. (36)

Similarly,

σ̃(w) · P̃σ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
σ̃(w) · θ̃y −

(aF̃ + bG̃)√
ẼG̃ − F̃2

σ̃(w) · θ̃x. (37)

Thus, from (36) and (37), we obtain

σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
σ̃(w) · θ̃y −

(aF̃ + bG̃)√
ẼG̃ − F̃2

σ̃(w) · θ̃x

− (aζE + bζF)√
ζEζG−(ζF)2

ζσ(w) · θy −
(aζF + bζG)√
ζEζG − (ζF)2

ζσ(w) · θx.

⇒ σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
(σ̃(w) · θ̃y − ζσ(w) · θy)

− (aF̃ + bG̃)√
ẼG̃ − F̃2

(σ̃(w) · θ̃x − ζσ(w) · θx). (38)

Thus, in order to prove required results, we have to calculate the values of (σ̃(w) · θ̃x −
ζσ(w) · θx) and (σ̃(w) · θ̃y − ζσ(w) · θy).
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For (a), suppose that σ̃ is a geodesic curve on R̃. Then, from (26), (27) and (38), we
obtain

σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
{(α̃(w)− α(w))(x′ F̃ + y′G̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)x′}

− (aF̃ + bG̃)√
ẼG̃ − F̃2

{(α̃(w)− α(w))(x′Ẽ + y′ F̃)

−
β(w)κg(w)

κ(w)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′}.

⇒ σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) = (α̃(w)− α(w))
1√

ẼG̃ − F̃2
{(aẼ + bF̃)(x′ F̃

+y′G̃) + (aF̃ + bG̃)(x′Ẽ + y′ F̃)}

−
β(w)κg(w)

κ(w)
{(aẼ + bF̃)(x′ F̃ + y′G̃) + (aF̃

+bG̃)(x′Ẽ + y′ F̃)}.

Since σ and σ̃ are osculating curves on R and R̃, respectively, then α̃(w) = α(w).
Hence,

σ̃ · P̃σ(w) = ζσ(w) · Pσ(w)−
β(w)κg(w)

κ(w)
{(aẼ + bF̃)(x′ F̃

+y′G̃) + (aF̃ + bG̃)(x′Ẽ + y′ F̃)}.

For (b), suppose that σ̃ is an asymptotic curve on R̃. Then, from (30), (31) and (38), we
obtain

σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
{(α̃(w)− α(w))(x′ F̃ + y′G̃)

+(β̃(w)−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃

−F̃2)x′} − (aF̃ + bG̃)√
ẼG̃ − F̃2

{(α̃(w)− α(w))(x′Ẽ + y′ F̃)

−(β̃(w)−
β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃ − F̃2)y′}.

⇒ σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) = (α̃(w)− α(w))
1√

ẼG̃ − F̃2
{(aẼ + bF̃)(x′ F̃ + y′G̃)

+(aF̃ + bG̃)(x′Ẽ + y′ F̃)}+

(β̃(w)−
β(w)κg(w)

κ(w)
){(aẼ + bF̃)x′ + (aF̃ + bG̃)y′}.

Since σ(w) and σ̃(w) are osculating curves on R and R̃, respectively, then α̃(w) =
α(w)κg(w)

κ(w)

and β̃(w)− β(w)κg(w)

κ(w)
. Hence,

σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w).

For (c), suppose that σ̃ is neither a geodesic nor asymptotic curve on R̃. Then, from (34),
(35) and (38), we obtain
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σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) =
(aẼ + bF̃)√

ẼG̃ − F̃2
{(α̃(w)− α(w))(x′ F̃ + y′G̃)

+(
β̃(w)κ̃g(w)

κ̃(w)
−

β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(ẼG̃

−F̃2)x′} − (aF̃ + bG̃)√
ẼG̃ − F̃2

{(α̃(w)− α(w))(x′Ẽ + y′ F̃)

+(
β̃(w)κ̃g(w)

κ̃(w)
−

β(w)κg(w)

κ(w)
)

1√
ẼG̃ − F̃2

(F̃2 − ẼG̃)y′}.

⇒ σ̃(w) · P̃σ(w)− ζσ(w) · Pσ(w) = (α̃(w)− α(w))
1√

ẼG̃ − F̃2
{(aẼ + bF̃)(x′ F̃ + y′G̃)

−(aF̃ + bG̃)(x′Ẽ + y′ F̃)}+ (
β̃(w)κ̃g(w)

κ̃(w)

−
β(w)κg(w)

κ(w)
){(aẼ + bF̃)x′ + (aF̃ + bG̃)y′}.

Since σ(w) and σ̃(w) are osculating curves on R and R̃, respectively, then α̃(w) = α(w) and
β̃(w)κ̃g(w)

κ̃(w)
=

β(w)κg(w)

κ(w)
. Hence,

σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w).

Theorem 6. Let ψ : R → R̃ be a conformal transformation, where R and R̃ are regular surfaces,
and let σ be an asymptotic osculating curve on R (i.e., κn = 0) and let σ̃ be its corresponding
osculating curve on the transformed surface R̃. Then, we have the following:

(a) If σ̃ exhibits an asymptotic character on R̃, then σ̃ · P̃σ(w) = ζσ(w) · Pσ(w).
(b) If σ̃ does not exhibits an asymptotic curve on R̃, then σ̃(w) · P̃σ(w) = ζσ(w) · Pσ(w),

where Tσ(w) = aθx + bθy denotes a tangent vector at point σ(w) on surface R.

Proof. Refer to Theorem 5 for proof by setting κn = 0.

4. Conclusions
In this paper, we have studied the geometric features of osculating curves with re-

spect to the conformal transformation. We have obtained the specific conditions under
which osculating curves remain invariant under such transformations, depending on their
properties and whether they are geodesic or asymptotic. We also proved these conditions
separately for the cases with zero and non-zero normal curvatures. Furthermore, we have
explored the behavior of osculating curves along the unit tangent and unit normal vectors
with reference to the conformal transformations between the regular surfaces in Euclidean
3-space. In the future, we will try to obtain the geometric properties of Darboux osculating,
Darboux normal, and Darboux rectifying curves together with the recent results in [40–42]
and under conformal transformation between surfaces in Euclidean 4-space.
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11. Gür Mazlum, S.; Şenyurt, S.; Grilli, L. The dual expression of parallel equidistant ruled surfaces in Euclidean 3-space. Symmetry

2022, 14, 1062. [CrossRef]
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