
Received: 5 February 2025

Revised: 21 February 2025

Accepted: 25 February 2025

Published: 6 March 2025

Citation: Emre, T.; Erol, R. A

Column-Generation-Based Exact

Algorithm to Solve the Full-Truckload

Vehicle-Routing Problem. Mathematics

2025, 13, 876. https://doi.org/

10.3390/math13050876

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Column-Generation-Based Exact Algorithm to Solve the
Full-Truckload Vehicle-Routing Problem
Toygar Emre * and Rizvan Erol

Department of Industrial Engineering, Faculty of Engineering, Cukurova University,
Saricam 01330, Adana, Turkey; rerol@cu.edu.tr
* Correspondence: toygar.emre@gmail.com

Abstract: This study addresses a specialized variant of the full-truckload delivery problem
inspired by a Turkish logistics firm that operates in the liquid transportation sector. An
exact algorithm is proposed for the relevant problem, to which no exact approach has been
applied before. Multiple customer and trailer types, as well as washing operations, are
introduced simultaneously during the exact solution process, bringing new aspects to the
exact algorithm approach among full-truckload systems in the literature. The objective
is to minimize transportation costs while addressing constraints related to multiple time
windows, trailer types, customer types, product types, a heterogeneous fleet with limited
capacity, multiple departure points, and various actions such as loading, unloading, and
washing. Additionally, the elimination or reduction of waiting times is provided along
transportation routes. In order to achieve optimal solutions, an exact algorithm based
on the column generation method is proposed. A route-based insertion algorithm is also
employed for initial routes/columns. Regarding the acquisition of integral solutions in
the exact algorithm, both dynamic and static sets of valid inequalities are incorporated. A
label-setting algorithm is used to generate columns within the exact algorithm by being
accelerated through bi-directional search, ng-route relaxation, subproblem selection, and
heuristic column generation. Due to the problem-dependent structure of the column
generation method and acceleration techniques, a tailored version of them is included in
the solution process. Performance analysis, which was conducted using artificial input sets
based on the real-life operations of the logistics firm, demonstrates that optimality gaps of
less than 1% can be attained within reasonable times even for large-scale instances relevant
to the industry, such as 120 customers, 8 product and 8 trailer types, 4 daily time windows,
and 40 departure points.

Keywords: vehicle routing; full-truck load; column generation; labeling algorithms;
construction heuristic

MSC: 90C06

1. Introduction
In today’s world, people and organizations are living in vast interconnected net-

works and the importance of transportation within these networks is growing dramatically.
Vehicle-routing problems (VRP) constitute a significant proportion of these network chal-
lenges due to their critical role in the logistics sector. Insufficient fleet management or
inaccurate calculations may culminate in substantial financial losses and impinge on many
organizations within the supply chain. Therefore, sustainable and efficient transportation
systems have become essential in the modern era.

Mathematics 2025, 13, 876 https://doi.org/10.3390/math13050876

https://doi.org/10.3390/math13050876
https://doi.org/10.3390/math13050876
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2577-5879
https://doi.org/10.3390/math13050876
https://www.mdpi.com/article/10.3390/math13050876?type=check_update&version=1

Mathematics 2025, 13, 876 2 of 32

The liquid transportation company that has inspired our problem has the largest fleet
among Turkish logistics companies with 600 trucks. Due to the high volume of customer
demands, consisting of contracted and non-contracted ones, they deploy both owned
and rented trucks to meet service needs. In short, their operations consistently involve
large-scale instances. The company endeavors to cover a wide variety of demands having a
higher number of product types compared to its competitors in the sector. Thus, a diverse
range of trailer types is utilized to manage these distinct product categories at the same
time. However, frequent washing operations are also required to avoid contamination.
Due to the fact that their operations impose an enormous number of decisions posing great
difficulties for the company, a problem-specific exact algorithm is imperative.

Given the complexity of logistics operations, the VRP encompasses numerous variants
(see Konstantakopoulos et al. [1] for an extensive review), necessitating the development
and implementation of problem-specific solutions. One variant of the VRP is full-truckload
(FTL) operations, in which large shipments require the full capacity of a truck. Currently,
FTL operations may involve the transportation of containers from ports to production
facilities, the delivery of cement to construction sites, debris removal from construction sites
or mining sites, and liquid transportation. Furthermore, the application of FTL principles
can be examined in the healthcare sector. For instance, an ambulance fleet departing from
multiple locations may need to pick up patients at specific points and transport them to
hospitals, minimizing the total time spent by vehicles rather than transportation costs due
to the urgency of the situation.

This study addresses a specialized FTL problem inspired by the operations of a
prominent Turkish logistics firm that engages in liquid transportation with 600 trucks.
In many of their activities, a network is involved where a limited number of rented and
owned vehicles remain idle at multiple departure points and are ready to return to the
garage by being equipped with various types of trailers. Simultaneously, these vehicles
may be assigned to transport products from supply points (loading zones) to customer
locations (unloading zones), and designated vehicles serving customer locations must
return to the terminal/garage point after completing their routes. Vehicles must adhere to
time window constraints specified for those zones. Furthermore, in order to accommodate
the transportation of different product types, vehicles are entailed to visit washing centers
to clean their trailers, ensuring readiness for the next load. During the switch between two
product types, the washing process must be performed according to the washing matrix,
which outlines the required washing times. Vehicles also transport products in trailers that
conform to a trailer–product matrix specifying which product types are compatible with
which trailer types. In the logistics market, orders originating from contracted customers are
mandatory and must be prioritized while optional orders from non-contracted customers
arise occasionally. Thus, the primary objective is to optimize routing for the current fleet
by minimizing overall transportation costs and eliminating or reducing waiting times at
visited nodes.

The incorporation of multiple time windows, departure nodes, diverse customer types,
a heterogeneous fleet, and washing operations significantly increases the number of deci-
sion variables for logistics firms. These factors considerably contribute to route complexity
or route combination, making the optimal vehicle decisions exceedingly challenging. Sub-
optimal decisions among those combinations may lead to high fixed or variable costs of
vehicles and unsatisfied customers. Thus, a logistics firm may experience a massive loss of
profits, market shares, and demands, being deprived of competitiveness against its rivals.

Due to the significant complexity of VRP, numerous heuristic algorithms, such as
genetic algorithms (Holland [2]), ant colony algorithms (Dorigo et al. [3]), large neigh-
borhood search algorithms, and tabu search algorithms (Glover [4]), are widely used to

Mathematics 2025, 13, 876 3 of 32

generate initial solutions and improve them accordingly. However, these algorithms were
not designed to guarantee optimality. Instead, they just provide upper-bound solutions.

Exact algorithms are used in VRP less frequently than heuristic methods. Their
application to FTL problems is even more uncommon since the FTL variant has been
studied less extensively within the VRP domain. In this study, both exact algorithm
structures and heuristic methods are integrated to address the specified FTL problem.
A modified route-based insertion heuristic (Solomon [5]) is utilized to generate initial
routes/columns providing a starting point for an exact algorithm based on the column
generation (CG) method inspired by Dantzig and Wolfe [6].

In order to enhance the exact algorithm, valid inequalities, such as arc flow inequalities
(Costa, Contardo, and Desaulniers [7]) and k-path inequalities (Desaulniers, Lessard, and
Hadjar [8]), are incorporated. These inequalities strengthen the CG algorithm by generating
promising routes through the use of diverse dual variables. Additionally, four acceleration
techniques are deployed to expedite the process. The first acceleration technique, intro-
duced by Righini and Salani [9], employs a bi-directional search within the label-setting
algorithm to accelerate the solution of the elementary shortest path problem with resource
constraints (ESPPRCs). The second technique uses ng-route relaxation, developed by Bal-
dacci, Mingozzi, and Roberti [10], allowing the inclusion of non-elementary paths alongside
elementary ones in the relaxed -master problem (RMP) of the CG algorithm. The third
technique focuses on subproblem selection to prioritize the identification of subproblems
that are likely to contain promising columns/routes. While it is primarily heuristic, this
technique can evaluate all subproblems when necessary. The final technique involves a
heuristic column generator inspired by Desaulniers et al. [8], which identifies the first
promising column encountered within the given subproblem. When it is required, this
approach can also systematically evaluate all possible routes to ensure comprehensive
exploration.

To sum up, a relevant FTL transportation network structure that has been widely
encountered in the logistics market was analyzed by considering the important aspects
of VRP in both literature and real life. Therefore, our contributions can be expressed
as follows:

• This study addresses various characteristics simultaneously, such as multiple time
windows, departure points, product types, trailer types, a heterogeneous fleet, and a
limited number of vehicles at each departure point within the FTL network, distin-
guishing itself from other studies in the literature.

• This study uniquely incorporates washing operations for trailers to facilitate product
changeovers during liquid transportation. Additionally, it integrates washing costs
and washing times within the FTL network.

• The integration of the CG method, designed to solve the problem exactly, was uniquely
implemented in this study, taking the distinctive aspects of the problem into account.
For instance, the label-setting algorithm used for CG was specifically adapted to the
FTL network, which is the focus of this research.

• Acceleration techniques such as ng-route relaxation and bi-directional search mech-
anism were uniquely modified to align with the specific characteristics of the FTL
network considered in this study.

• The study includes a comprehensive performance analysis of the exact algorithm
across a wide range of instances for the specified FTL structure.

The remainder of this paper is organized as follows: Section 2 presents a detailed liter-
ature review with a particular focus on FTL transportation systems. Section 3 introduces
the problem definition, mathematical model, and network representation. Subsequently,
Section 4 elaborates on the construction heuristic procedures, CG method, and the associ-

Mathematics 2025, 13, 876 4 of 32

ated acceleration techniques. In Section 5, the computational performance results of the
proposed exact approach are presented with respect to problem instances. Finally, Section 6
provides concluding remarks and discusses potential future research directions.

2. Literature Review
It should be noted that research on FTL systems is relatively scarce in the literature.

While a limited number of studies delve into the specifics of the FTL concept, its operations
are evident in many critical areas. These studies predominantly focus on problem-specific
heuristic algorithms, whereas solutions based on exact algorithms remain uncommon.
Recently, machine learning, deep learning, and agent-based techniques have been applied
to the VRP. However, studies integrating heuristic or learning algorithms or agent-based
techniques with exact algorithm enhancements are still notably underrepresented. There-
fore, in our study, we aim to solve our specified FTL problem encompassing both exact and
heuristic algorithms with relevant acceleration techniques.

The FTL problem was first introduced by Ball et al. [11] and aimed to find the optimal
fleet size obtaining vehicle routes while satisfying maximum route-time restrictions. They
managed to formulate the problem and described some approximate solution strategies
discussing important implementation issues. Then, Desrosiers et al. [12] used an asym-
metrical traveling salesman problem with two types of restrictions in order to present an
effective approach to FTL systems.

The literature actually contains a wealth of heuristic algorithms applied to FTL prob-
lems, and researchers continue to favour these approaches due to their ease of implementa-
tion and low computational complexity. Agent-based simulations are also appealing for
tackling complicated FTL operations.

Soleilhac et al. [13] studied the VRP involving both FTL and less than truck load
(LTL) shipments. Their objective was to identify the optimal combination of FTL and
LTL shipments to minimize transportation costs. They proposed a large neighborhood
search heuristic algorithm to manage the computational complexity. Ghilas et al. [14]
focused on the tendering process related to FTL transportation and used a tailored adaptive
large neighborhood search to overcome the computational issues created by the problem.
El Bouyahyiouy [15] investigated the selective FTL system with multi-depot and time
windows. A formulation based on mixed-integer modeling was provided, and a genetic
algorithm was also created for comparison. Ghorpade et al. [16] proposed an order-first
split-second heuristic for an alternative routing strategy for freight railways, modeling the
system according to pickup and delivery with customer-specified origin and destination
and multiple FTL demands by each customer. Fadda et al. [17] analyzed port visitation with
a heterogeneous fleet including vessels and small ships. While their work resembled FTL
and LTL operations, they focused on maritime transport instead of trucks. A mixed-integer
model with problem-specific valid inequalities was developed to achieve optimality, and a
large neighborhood search heuristic was applied to solve large-scale instances efficiently.
Çabuk, Selin, and Rızvan Erol [18] examined a specific problem characterized by stochastic
conditions on the management of FTL operations. A dynamic optimization approach
was embraced, incorporating intelligent-agent-based modeling to assign vehicles and
determine their routes. Door-to-door deliveries are becoming widespread in populations.
Thus, Lu et al. [19] employed a crowdsource delivery model to overcome uncertainties
utilizing bounded rationality. The whale optimization algorithm was also combined with
that model to design an effective heuristic.

The literature contains relatively few studies focusing on exact algorithms for FTL
transportation. Most approaches employ mixed-integer linear programming (MILP) mod-
els. In order to solve large-scale instances, valid inequalities, branch and bound, or branch

Mathematics 2025, 13, 876 5 of 32

and cut algorithms are commonly utilized. However, CG-based methods have been applied
to FTL systems less frequently.

Masmoudi et al. [20] addressed container truck transportation based on FTL opera-
tions involving a mixed-fleet heterogeneous dial-a-ride problem. They developed a MILP
method to minimize transportation costs and reduce the associated environmental impact.
Nasr et al. [21] studied the agri-fresh food supply chain between farmers and markets
where FTL and LTL transportations can take place. A MILP model was developed for
small-scale instances, while Lagrange relaxation and the genetic algorithm were used in
large-scale ones. However, these two previous works did not include the CG method,
which is considerably effective in large-scale instances of VRP as opposed to our work.
Aickelin et al. [22] proposed a hybrid pricing and cutting approach for the multi-shift FTL
VRP. They combined CG techniques with metaheuristics to achieve satisfactory solutions.
However, their study lacks extremely efficient and widely used acceleration techniques,
such as bi-directional search and ng-route relaxation, with respect to the CG method in
VRP as opposed to our work. Baller et al. [23] studied the automotive inbound logistic
problem in which transportations should be handled with LTL or FTL or express services.
A scalable MILP method was deployed, bringing along problem-specific valid inequalities
to find the exact solution more effectively. Bellabdaoui and El Bouyahyiouy [24] focused on
the FTL-routing problem, aiming to maximize the total profit generated by trucks during
their return journeys under time window constraints. They employed a genetic algorithm
to identify feasible routes followed by a MILP model to determine the optimal sequence of
commodities for each truck route. Melchiori, Luciana, et al. [25] studied resource synchro-
nization in an FTL problem using an exact algorithm based on integer linear programming
(ILP). Symmetry-breaking cuts and additional valid inequalities were also included to
be effective in large-scale instances. Bouyahyiouy et al. [26] investigated a lexicographic
approach for the robust selective FTL problem using a MILP-based algorithm under op-
erational constraints to minimize transportation costs. These previous four studies only
involve loading and unloading operations without any other actions, such as washing,
while they are devoid of a significantly effective CG method and its acceleration techniques
in contrast to our study.

According to the literature, our work distinguishes itself from pure heuristic-based
FTL studies by having a prominent exact algorithm. Nevertheless, studies that have an
exact algorithm can achieve solving at most medium-scale instances. Therefore, they always
resort to heuristics when addressing the large-scale ones. Undoubtedly, there are very few
FTL studies that focused on the CG method in large-scale instances efficiently. However,
our FTL network structure and problem concept are notably distinct and unique, requiring
a unique design and implementation of the CG method. This is due to the inherently
problem-dependent nature of the CG method, which tends to vary significantly based on
the specific characteristics of the problem.

3. Problem Description
3.1. Problem Definition

This study aims to provide an exact solution for an FTL delivery vehicle-scheduling
problem. The problem involves multiple departure points/nodes and a single terminal
point/node, multiple time window constraints, a limited number of vehicles, different types
of vehicles and trailers, distinct product types, and a mix of selective (non-contracted) and
non-selective (contracted) customers. Contracted customers’ demands must be fulfilled,
whereas non-contracted customers’ demands may remain unmet if serving them does not
contribute to a reduction in overall costs. With respect to multiple time windows of a
relevant node, each represents a distinct time interval that is completely separated from

Mathematics 2025, 13, 876 6 of 32

other intervals of that node. If a vehicle arrives at a loading or unloading zone earlier
than the specified time window, it must wait until the window opens to begin service.
Conversely, if the vehicle arrives later, the visit in that time window becomes infeasible for
that vehicle. Additionally, logistics companies may consolidate demands for subsequent
service to achieve lower costs because incorporating multiple time windows of supply
(loading zones) and customer nodes (unloading zones) increases the number of feasible
route combinations for the satisfaction of customers without violating their deadlines. For
instance, customers may ask to be satisfied in at most three or four days. That is why our
work involves daily based multiple time windows.

In addition, FTL networks often include vehicles that have been stationed in multiple
departure areas with a connected trailer after the completion of their previous routes
resulting from previous orders. These idle vehicles introduce further complexity to the
problem since decisions must be made regarding the departure locations. The problem also
includes a limited number of vehicles categorized into two distinct types and assigned to
each departure point. In FTL logistics, companies commonly rent vehicles in addition to
their own fleet to alleviate costs. Nevertheless, despite the cost savings, logistics companies
must maintain their owned fleet to reduce reliance on external providers. Thus, the efficient
utilization of the entire fleet is a serious challenge and critical for achieving optimal costs.

Product compatibility is another vital consideration in FTL deliveries. Our work
was inspired by the practices of a local logistics company that has specialized in liquid
transportation. Therefore, trailers in the study are capable of transporting different types of
products, requiring preparation to prevent any contamination during liquid transportation.
Otherwise, contamination would decrease the quality of the product and create displeasure
between the logistics firm and its customers. For this reason, washing centers are incor-
porated into the problem, and trailers should comply with the structure of the relevant
trailer–product matrix and washing matrix. The trailer–product matrix indicates which
trailers can carry which products, while the washing matrix specifies the time required
to clean a trailer after unloading one product type and before loading another type. For
instance, if a rented vehicle is equipped with a trailer that can transport both oil and acid,
and the vehicle is scheduled to load acid after unloading oil, then that trailer must undergo
a washing process to ensure adequate preparation for the new load. Furthermore, com-
partmentalization is mostly forbidden because of safety issues. Loaded liquid types with
distinct densities tend to deteriorate the weight distribution on the vehicle, disrupting the
weight–volume balance. According to road regulations, a vehicle should avoid stability
issues. Additionally, some liquid types may be so hazardous that vehicles may be required
to travel along different routes that do not pose a threat to the environment during acci-
dents. Even bridge selection becomes significant during transportation. Process time of
loading and unloading times for liquid products also tend to change uniquely due to liquid
viscosity or pumping capacity. For instance, highly inflammable liquids are preferred to be
pumped slowly to reduce the friction effect, avoiding any explosion.

Moreover, FTL deliveries always involve loading and unloading locations, correspond-
ing to supply and demand points, respectively. In this study, demand points refer to
customer points since demands are met at those points, whereas supply points represent
entities that request the logistics company to transport products to their customers. Hence,
unloading zones or demand points are associated with customer points, and loading zones
refer to supply points throughout this work.

Lastly, the minimization of redundant waiting times is one of the significant challenges
for logistic firms. For example, adjusting the departure time of a vehicle to allow it to leave
the departure node later can eliminate or decrease the redundant waiting times at nodes

Mathematics 2025, 13, 876 7 of 32

on the potential route without affecting the overall route cost. This ensures more efficient
route execution and better utilization of resources such as time.

The objective, as outlined in the problem description, is to minimize the total trans-
portation cost while maintaining a low optimality gap within reasonable computational
times and ensuring optimal routing for the relevant vehicles with reduced or eliminated
waiting times at the visited nodes.

Based on the aforementioned definition, basic characteristics of the relevant FTL
problem can be summarized as follows:

• The transportation network consists of washing nodes, multiple departure nodes, a
terminal/garage node, supply nodes, and demand nodes.

• For each product type, there is one supply node and multiple demand nodes
• There are multiple time windows for both supply nodes/loading zones and demand

nodes/unloading zones
• Vehicles have two different types; they are either rented or owned by the logistics firm
• Certain types of trailers can be used to transport specified products
• Whenever a trailer is required to carry a different product type, a washing process

takes place, imposing washing costs and washing time

Throughout the problem and execution of algorithms that will be explained in the
Methodology Section, the following are assumed:

• Environmental factors, such as congestion or accidents, are ignored.
• Multiple time windows are separated and limited.
• Time windows are consecutive and daily based.
• There is a limited number of owned and rented vehicles at each departure point.
• Arc costs and washing costs are predetermined.
• Certain revenues exist for the selection of a non-contracted customer.
• Loading at supply points and unloading at customer points can only occur.
• Trailers are identical except for their ability to carry distinct products.
• The arc cost for a loaded vehicle is two times higher than an unloaded one.
• A predetermined number of washing centers, supply points, customer points, and

departure points are included.
• Predetermined travel times and washing times exist.
• The trailer–product matrix and washing matrix structures remain constant and predetermined.
• A certain number of product types and trailer types are included.

Undoubtedly, accidents may happen and compel the logistics firm to take instant
actions using real-time optimization concepts (which are irrelevant to our work) that
mostly consist of agent-based modeling. However, those do not occur frequently in real life
scenarios. Nevertheless, FTL-based logistics firms, which mostly need to deal with changing
types of customer, do not schedule over a long time horizon due to the requirements of
crucial setups. Instead, 2-, 3-, or 4-day horizons are mostly involved. Therefore, the
probability of a dramatic change in the environment or factors that have a significant effect
on logistics firms is rather less.

It is also important to note that each unit of time in our problem represents a thirty-
minute interval. Thus, the multiple time windows are defined in alignment with the
working hours at supply points and customer points, while departure points, terminal
points, and washing centers are not subject to time window constraints. Travel times
and processing times are also adjusted accordingly to maintain consistency with this
time structure.

Mathematics 2025, 13, 876 8 of 32

3.2. Mathematical Model

Our mathematical model is based on the CG framework introduced by Dantzig and
Wolfe [6]. In the existing literature, MILP methods are commonly employed to solve
small-scale instances of VRP(s). For medium-sized problems, branch and cut algorithms
are often utilized. However, as the problem size increases, computational time escalates
significantly. Consequently, CG method often outperforms MILP, branch and cut, or branch
and bound algorithms in providing exact solutions for large-scale VRP instances. Moreover,
the incorporation of acceleration techniques reduces complexity, enhancing the efficiency
of the CG process.

The notation used for the model in this study is summarized in Table 1 as follows:

Table 1. Notation of column generation model.

Sets

C set of contracted customers
C′ set of non-contracted customers
S set of suppliers
W set of washing nodes
D set of departure nodes
G terminal/garage node
J set of vehicle types
O set of trailer types
Io set of departure nodes at which trailer type o ∈ O can depart while Io ⊆ D
Hoij number of idle vehicles at the relevant departure node for given o ∈ O, i ∈ Io and j ∈ J
K set of feasible routes

A∗(SC) for each arc (i, j), where i ∈ S and j ∈ C
⋃

C′, A∗(i, j) includes just (i, j) if (j, i) does not exist,
otherwise it includes both (i, j) and (j, i)

A∗(CW)
for each arc (i, j), where i ∈ C

⋃
C′, and j ∈ W, A∗(i, j) includes just (i, j) if (j, i) does not exist,

otherwise it includes both (i, j) and (j, i)
P(C) set of subsets each of which consists of two contracted customers
A−(U) subset of inward arcs for U ∈ P(C)

Variables

θoijk binary route variable

Parameters

aoijkq how many times q ∈ C exists in θoijk
aoijkq′ how many times q′ ∈ C′ exists in θoijk
boijkmn how many times an arc (m, n) takes place in θoijk
coijk cost of θoijk

In line with the notations, the CG model was designed as follows:

min ∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

coijkθoijk (1)

subject to

∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

aoijkq ∗ θoijk = 1, ∀q ∈ C (2)

∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

aoijkq′ ∗ θoijk ≤ 1, ∀q′ ∈ C′ (3)

∑
k∈K

θoijk ≤ Hoij , ∀o ∈ O, ∀i ∈ Io , ∀j ∈ J (4)

Mathematics 2025, 13, 876 9 of 32

∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

∑
(m,n) ∈ A−(U)

boijkmn ∗ θoijk ≥ 2, ∀U ∈ P(C) (5)

∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

∑
(m,n) ∈ A∗(m′ ,n′)

boijkmn ∗ θoijk ≤ 1, ∀
(
m′, n′) ∈ A∗(CW) (6)

∑
o∈O

∑
i∈Io

∑
j∈J

∑
k∈K

∑
(m,n) ∈ A∗(m′ ,n′)

boijkmn ∗ θoijk ≤ 2, ∀
(
m′, n′) ∈ A∗(SC) (7)

θoijk is integer, ∀o ∈ O, ∀i ∈ Io , ∀j ∈ J, ∀k ∈ K (8)

Function (1) is the objective to minimize transportation cost. Constraint (2) is cov-
ering the visit number of contracted customers. Due to contractual obligations, these
customers are given priority, and their demands must be fulfilled. Therefore, exactly one
visit is required. Additionally, in Constraint (3), non-contracted customers should be opted
in accordance with the profitability case, so their visit number should be at most one.
Constraint (4) imposes the limit of rented and owned vehicles at each departure point
with respect to the trailer. Constraint (5) involves k-path (k = 2) inequalities (Desaulniers,
Guy, François Lessard, and Ahmed Hadjar [8]). Furthermore, all subsets U ∈ P(C) were
created such that they have no common contracted customers. Constraints (6) and (7)
are arc flow constraints (Costa, Luciano, Claudio Contardo, and Guy Desaulniers [7]),
while Constraint (8) enforces an integer constraint for feasible binary route variables in our
FTL network. In order to avoid managing all inequalities simultaneously during the CG
process, arc flow cuts were incrementally incorporated after a certain number of iterations
within the CG algorithm. This approach helps generate distinct dual variables from various
inequalities, aiding in identifying promising routes during subproblem solutions.

According to the VRP literature, it must be noted that k-path inequalities were de-
signed to strengthen the RMP during the CG process, decreasing the optimal gap of the
solutions. Thus, this circumstance enables us to improve the lower bound of the origi-
nal problem, contributing to a decrease in the optimality gap. Desaulniers, Lessard, and
Hadjar [8] clearly expressed how 2-path inequalities yield a considerably improved lower
bound in CG methods. Undoubtedly, one can include 3-path, 4-path, or 5-path inequalities
in the RMP as much as possible to diminish the optimal gap further. However, the addition
of these large numbers of inequalities would decelerate the RMP execution. It must be
recalled that the simplex algorithm takes place during the RMP iterations. In fact, accord-
ing to a complexity analysis, the simplex algorithm is not considered a good algorithm.
Therefore, during the addition of excessive constraints, the basis matrix iterations of the
simplex algorithm are negatively affected and tend to decrease the RMP performance.
Branch-price-cut-oriented algorithms, which are the leading exact solution concept in the
current VRP literature, are more focused on 2-path inequalities than other k-path ones. If
the optimality gap is low, then the whole process is terminated. However, if that gap is
not adequately low despite the 2-path inequalities, different valid inequality concepts or
clever branching strategies (see Kohl et al. [27] and Kallehauge et al. [28] for an extensive
review) are applied instead of other k-path inequalities. This is because, for instance, these
strategies, such as network branching, are capable of decreasing the optimality gap without
increasing the number of constraints in the RMP. The application of even a few branching
cuts can reduce the remaining gap significantly. For our work, no branching strategy is in
existence due to the very low optimality gap.

3.3. Network Representation

According to the problem definition in our study, one can examine how vehicles may
travel along the routes in Figure 1. The figure illustrates two different vehicles, the first of
which is blue and is connected to a blue trailer, and the second of which is red connected

Mathematics 2025, 13, 876 10 of 32

to a green trailer. The blue vehicle represents the owned vehicle of the logistic company,
whereas the red one is the rented vehicle. Wi is the washing node for vehicles that have
recently carried the ith product type, and the ith product type can only be washed at Wi.
Di implies the departure node of vehicles that have just carried the ith product type at
that time. Si is the supply node or loading zone for the ith product type, whereas Ci is
the customer node or unloading node for the ith product type. Finally, G represents the
terminal/garage node. Additionally, in that figure, the blue trailer is capable of transporting
0th, 1st, and 2nd type of product, while the green trailer can only carry the 0th and 2nd
type of product. Thus, the customer points/nodes of the 2nd type of product can be served
by both the blue trailer and the green trailer.

Mathematics 2025, 13, x FOR PEER REVIEW 10 of 34

an extensive review) are applied instead of other k-path inequalities. This is because, for

instance, these strategies, such as network branching, are capable of decreasing the opti-

mality gap without increasing the number of constraints in the RMP. The application of

even a few branching cuts can reduce the remaining gap significantly. For our work, no

branching strategy is in existence due to the very low optimality gap.

3.3. Network Representation

According to the problem definition in our study, one can examine how vehicles may

travel along the routes in Figure 1. The figure illustrates two different vehicles, the first of

which is blue and is connected to a blue trailer, and the second of which is red connected

to a green trailer. The blue vehicle represents the owned vehicle of the logistic company,

whereas the red one is the rented vehicle. 𝑊௜ is the washing node for vehicles that have

recently carried the ith product type, and the ith product type can only be washed at 𝑊௜.

𝐷௜ implies the departure node of vehicles that have just carried the ith product type at

that time. 𝑆௜ is the supply node or loading zone for the ith product type, whereas 𝐶௜ is
the customer node or unloading node for the ith product type. Finally, 𝐺 represents the
terminal/garage node. Additionally, in that figure, the blue trailer is capable of transport-

ing 0th, 1st, and 2nd type of product, while the green trailer can only carry the 0th and

2nd type of product. Thus, the customer points/nodes of the 2nd type of product can be

served by both the blue trailer and the green trailer.

Undoubtedly, in real-world operations based on our FTL network, the number of

possible route combinations can grow exponentially due to factors such as multiple prod-

uct types, diverse trailer types, numerous departure points, and high volume of orders.

Consequently, the implementation of efficient heuristic and exact algorithms is essential

to achieve optimal solutions.

Figure 1. Example of routes that can be traveled by vehicles connected to relevant trailers departing

from relevant departure nodes.

Figure 1. Example of routes that can be traveled by vehicles connected to relevant trailers departing
from relevant departure nodes.

Undoubtedly, in real-world operations based on our FTL network, the number of
possible route combinations can grow exponentially due to factors such as multiple prod-
uct types, diverse trailer types, numerous departure points, and high volume of orders.
Consequently, the implementation of efficient heuristic and exact algorithms is essential to
achieve optimal solutions.

Before presenting our approach to heuristic and exact solution methods, a small-scale
network structure is illustrated in Figure 2. As shown in the network representation
figure, the system consists of multiple departure nodes, washing nodes, customer nodes,
supply nodes, and vehicles that are capable of traversing the connecting arcs. In real-world
operations, suppliers often require that logistics companies should refrain themselves from
using trucks that have previously transported another product type even if that product
type is similar to the suppliers’ product type by necessitating the inclusion of washing
processes during transportation.

Additionally, in Figure 2, the green box represents the first type of trailer, while the
blue box denotes the second type of trailer. The blue vehicle indicates the number of owned
vehicles at a departure point, whereas the red vehicle represents the number of rented
vehicles at the same departure point. It is evident from Figure 2 that the green trailer is

Mathematics 2025, 13, 876 11 of 32

capable of transporting all product types, whereas the blue trailer is restricted and cannot
carry the second type of product.

Mathematics 2025, 13, x FOR PEER REVIEW 11 of 34

Before presenting our approach to heuristic and exact solution methods, a small-scale

network structure is illustrated in Figure 2. As shown in the network representation fig-

ure, the system consists of multiple departure nodes, washing nodes, customer nodes,

supply nodes, and vehicles that are capable of traversing the connecting arcs. In real-

world operations, suppliers often require that logistics companies should refrain them-

selves from using trucks that have previously transported another product type even if

that product type is similar to the suppliers’ product type by necessitating the inclusion

of washing processes during transportation.

Additionally, in Figure 2, the green box represents the first type of trailer, while the

blue box denotes the second type of trailer. The blue vehicle indicates the number of

owned vehicles at a departure point, whereas the red vehicle represents the number of

rented vehicles at the same departure point. It is evident from Figure 2 that the green

trailer is capable of transporting all product types, whereas the blue trailer is restricted

and cannot carry the second type of product.

As depicted in Figure 2, vehicles are forced to visit washing nodes before visiting

supply nodes in order to avoid contamination after their departure. If a vehicle has com-

pleted its task with the current product type after unloading and needs to transport an-

other product type, then that vehicle should visit the supply node of the next product

type. However, the vehicle is compelled to visit the relevant washing node utilizing the

arc structure depicted in Figure 2 before visiting that supply node.

In summary, a relevant idle vehicle type connected to a relevant trailer type can be

observed at departure nodes in Figure 2. In the study, each washing center is a collection

of 𝑊௜ nodes for all product types because it is assumed that a washing center is capable

of washing every vehicle regardless of what they have carried previously. However, mul-

tiple washing centers can exist in a network due to their different locations. For example,

𝑊଴, 𝑊ଵ, 𝑊ଶ in Figure 2 constitute a washing center (meaning the network in the figure

has just one washing center in total).

Figure 2. Network representation.

It is important to note that washing nodes do not operate under time window con-

straints, allowing a vehicle to initiate its washing process at any time upon arrival. The

Figure 2. Network representation.

As depicted in Figure 2, vehicles are forced to visit washing nodes before visiting
supply nodes in order to avoid contamination after their departure. If a vehicle has
completed its task with the current product type after unloading and needs to transport
another product type, then that vehicle should visit the supply node of the next product
type. However, the vehicle is compelled to visit the relevant washing node utilizing the arc
structure depicted in Figure 2 before visiting that supply node.

In summary, a relevant idle vehicle type connected to a relevant trailer type can be
observed at departure nodes in Figure 2. In the study, each washing center is a collection of
Wi nodes for all product types because it is assumed that a washing center is capable of
washing every vehicle regardless of what they have carried previously. However, multiple
washing centers can exist in a network due to their different locations. For example,
W0, W1, W2 in Figure 2 constitute a washing center (meaning the network in the figure
has just one washing center in total).

It is important to note that washing nodes do not operate under time window con-
straints, allowing a vehicle to initiate its washing process at any time upon arrival. The
duration of the washing process, however, may vary depending on the washing matrix.
Therefore, when a trailer that has just carried product X requires washing to carry prod-
uct Y, the absolute difference between the minimum washing time for product X in the
washing matrix and the washing time required for transitioning from product X to product
Y is taken subsequently. This difference is then added to the travel time between the
current washing node and the supply node of product Y. Thus, the washing node always
has a constant washing time for product X without loss of generality throughout the CG
algorithm. In this study, it is important to recall that product X can only be washed at Wx.

Figure 3 illustrates examples of the washing matrix and trailer–product matrix. Each
entry in the washing matrix represents the number of time units required to enable the
transition of a trailer from carrying one product type to another type. Additionally, each
entry in the trailer–product matrix indicates whether a specific trailer type is capable of
loading the corresponding product.

Mathematics 2025, 13, 876 12 of 32

Mathematics 2025, 13, x FOR PEER REVIEW 12 of 34

duration of the washing process, however, may vary depending on the washing matrix.

Therefore, when a trailer that has just carried product 𝑋 requires washing to carry prod-

uct 𝑌, the absolute difference between the minimum washing time for product 𝑋 in the
washing matrix and the washing time required for transitioning from product 𝑋 to prod-
uct 𝑌 is taken subsequently. This difference is then added to the travel time between the

current washing node and the supply node of product 𝑌. Thus, the washing node always

has a constant washing time for product 𝑋 without loss of generality throughout the CG

algorithm. In this study, it is important to recall that product 𝑋 can only be washed at

𝑊௫.

Figure 3 illustrates examples of the washing matrix and trailer–product matrix. Each

entry in the washing matrix represents the number of time units required to enable the

transition of a trailer from carrying one product type to another type. Additionally, each

entry in the trailer–product matrix indicates whether a specific trailer type is capable of

loading the corresponding product.

Figure 3. Trailer–product and washing matrices.

In Figure 2, it should be noted that the blue box denotes the second type of trailer,

whereas the blue vehicle indicates the number of owned vehicles at the relevant departure

point. Additionally, the blue trailer is restricted and cannot carry the second type of prod-

uct. When considering a subproblem and its network where a blue vehicle with blue type

of trailer is about to depart from the relevant departure point, the inward arcs for the

second-product-type-based supply node and second-product-type-based washing nodes

have been removed (as can be seen in Figure 2, second-product-type-based customer

nodes can only be visited after visiting the second-product-type-based supply node; there-

fore, these customers cannot be visited after the removal of the inward arcs of the second-

product-type-based supply node). Thus, the relevant trailer is forced to visit relevant sup-

ply nodes on the subproblem network without violating the trailer–product matrix.

4. Methodology

4.1. Construction Heuristic

For the problem described in the network representation in Figure 2, we utilize an

insertion-based method inspired by Solomon [5] that incrementally adds nodes on a route

in a feasible manner until all contracted customers are served. Non-contracted customers,

on the other hand, are not required to be served because they do not have to be satisfied

by definition. Therefore, excluding them can reduce the heuristic’s execution time to find

feasible routes.

It is well established that a CG method cannot start off without the presence of initial

columns. This limitation arises because CG algorithms rely on dual variables derived from

the current RMP to identify promising columns from the associated subproblem as noted

by Dantzig et al. [6]. Consequently, a computationally efficient construction heuristic pro-

posed by Solomon [5] was employed to generate the first columns required to initiate the

CG process.

Figure 3. Trailer–product and washing matrices.

In Figure 2, it should be noted that the blue box denotes the second type of trailer,
whereas the blue vehicle indicates the number of owned vehicles at the relevant departure
point. Additionally, the blue trailer is restricted and cannot carry the second type of product.
When considering a subproblem and its network where a blue vehicle with blue type of
trailer is about to depart from the relevant departure point, the inward arcs for the second-
product-type-based supply node and second-product-type-based washing nodes have
been removed (as can be seen in Figure 2, second-product-type-based customer nodes can
only be visited after visiting the second-product-type-based supply node; therefore, these
customers cannot be visited after the removal of the inward arcs of the second-product-
type-based supply node). Thus, the relevant trailer is forced to visit relevant supply nodes
on the subproblem network without violating the trailer–product matrix.

4. Methodology
4.1. Construction Heuristic

For the problem described in the network representation in Figure 2, we utilize an
insertion-based method inspired by Solomon [5] that incrementally adds nodes on a route
in a feasible manner until all contracted customers are served. Non-contracted customers,
on the other hand, are not required to be served because they do not have to be satisfied
by definition. Therefore, excluding them can reduce the heuristic’s execution time to find
feasible routes.

It is well established that a CG method cannot start off without the presence of initial
columns. This limitation arises because CG algorithms rely on dual variables derived
from the current RMP to identify promising columns from the associated subproblem as
noted by Dantzig et al. [6]. Consequently, a computationally efficient construction heuristic
proposed by Solomon [5] was employed to generate the first columns required to initiate
the CG process.

In the construction heuristic method, each vehicle is assigned to a route, ensuring that
all vehicles depart from a designated departure node and arrive at a terminal or garage
node. Therefore, arcs are added from supply nodes to garage nodes, washing nodes to
garage nodes, and departure nodes to garage nodes to complete routes for each vehicle
rapidly. A vehicle must adhere to time window constraints, the trailer–product matrix for
product transitions and the washing matrix for washing process times until it reaches the
terminal/garage node during insertions of nodes on the potential route of that vehicle. In
fact, Solomon insertion method [5] decides to extend routes, creating weighted averages
for each feasible extension using arc cost and travel times. However, we only care about
feasible extensions during the insertion. This is because the construction heuristic is just
aimed at providing initial columns/routes for CG. For the extension/insertion process in
the algorithm, we display how arcs are selected for the route extension (that also means
node insertion because an added node should be connected to the current route with an
arc) in Algorithm 1, line 9. While there is a route and intention to insert a node, all arcs that
have an intersection with the last node of the route are ordered randomly. Subsequently,

Mathematics 2025, 13, 876 13 of 32

the first encountered arc that ensures the feasible extension is used during the for loop in
line 9 of Algorithm 1. Furthermore, a list of contracted customers is maintained during the
construction heuristic execution. Each time a contracted customer is visited, it is removed
from the list. In summary, non-contracted customers are not visited on these routes, while
contracted customers are visited exactly once.

At the conclusion of the insertion process, it is possible that not all contracted cus-
tomers have been included in the routes. Consequently, the algorithm is re-executed from
the beginning until all contracted customers are successfully covered. Due to the presence
of multiple time windows, the insertion heuristic prioritizes selecting the closest time
window for each node during the connection process. For example, while the last node
on a route is about to be connected to another node during the extension/insertion, the
first daily time window of another node is checked. If infeasibility happens, violating that
time window, then the second daily time window is checked. This approach enhances the
potential for a route to include a greater number of customer nodes. This implementation is
critical because failing to select a time window efficiently would necessitate a significantly
larger number of routes (also meaning a larger number of vehicles) to cover all contracted
customers. Given the limited number of vehicles available, this implementation is essential.
In addition, prior to connecting a node to another node on the current route, all potential
arcs for the extension are randomly ordered. These arcs are then evaluated sequentially
based on this order to enhance the diversification in the heuristic algorithm.

By employing Algorithm 1, the initial routes/columns generated through the heuristic
method will facilitate the execution of the exact algorithm based on CG. However, during
the initial solution phase, undesirable routes, such as those which have connections between
supply nodes and garage nodes or between washing nodes and garage nodes, may emerge.
For example, if a vehicle is loaded, then it should proceed to unload the cargo rather than
traveling to a garage or terminal node. Similarly, if a vehicle has just been washed, then it
should travel to load a product instead of heading to the terminal node/garage.

Algorithm 1: Route Based Construction Heuristic

Mathematics 2025, 13, x FOR PEER REVIEW 14 of 34

Algorithm 1: Route Based Construction Heuristic
1: Create the list 𝐿
2: while 𝐿 ് ∅ do
3: for all vehicles do
4: Set empty route
5: Initialize the route adding the related departure node for the vehicle
6: LN ← last node of the route
7: while node 𝐿𝑁 is not the terminal/garage node
8: Node_Addition ← false
9: for all arc ሺ𝐿𝑁, 𝑗ሻ for the vehicle do (arcs always randomly ordered)
10: If Node_Addition = true, then
11: break
12: for all time windows of node 𝑗 do (closest time window checked first)
13: if extension is feasible, then
14: Node_Addition ← true
15: Update LN
16: if node 𝑗 ∈ 𝐶, then
17: Erase node 𝑗 from the list L
18: Remove all arcs which includes node 𝑗
19: break
20:
21: Put back removed arcs
22: if 𝐿 ് ∅, then
23: Create the list 𝐿 again
24: Delete the current routes
25: return the initial routes as initial column set for column generation algorithm

Feasible extensions/insertions in Algorithm 1 are applied benefiting from the label

updating procedure in forward labeling using Equations (12)–(17) during the label-setting

algorithm below. Additionally, the list 𝐿 in Algorithm 1 contains all the contracted cus-
tomers in the problem, and until the list becomes empty, the algorithm tries to assign

routes for the vehicles. This is because each vehicle represents a route in the whole prob-

lem.

4.2. Column Generation Algorithm

According to the literature, CG methods work rather efficiently in partitioning prob-

lems such as the generalized assignment problem (Savelsbergh [29]) or the cutting stock

problem (de Carvalho et al. [30]) and VRP, while an exact algorithm is aimed at reaching

optimality. Particularly, in VRP, CG methods create a leap (Desrosiers et al. [31]) in large

instances compared to other exact solution techniques, such as mixed-integer program-

ming or branch and bound or branch and cut due to their extreme efficiency. That is why

the recent VRP literature is revolving around branch-price-cut algorithms based on the

CG method while focusing on exact solutions. The pricing part of those algorithms is

aimed at generating columns using the CG method, whereas the cutting concept is opted

to obtain solutions close to integer values as in our exact algorithm for the relevant FTL

transportation. Branching strategies are preferred to decrease the optimality gap further.

However, our algorithm does not have any branching concept due to the fact that it al-

ready finds a low optimality gap at the root node. In short, it can be expressed that our

exact algorithm can be deemed to be a part of branch-price-cut algorithms.

In VRP, the CG method needs an initial column/route set to start off; hence, construc-

tion and improvement heuristics can be deployed to reach them. Subsequently, the CG

method continues to iterate itself until it attains the RMP optimality, which is a lower

bound for the original problem. It is well known that the label-setting algorithm, which is

employed to generate columns/routes in CG methods, has a high pseudo-polynomial time

complexity due to the fact that it is the multi-dimensional version of the label-correcting

Mathematics 2025, 13, 876 14 of 32

To prevent the mentioned infeasible routes above from being included in the solution
during the CG method, prohibitive costs (Big M values) are imposed on such connections
in RMP. Subsequently, arcs connecting supply nodes to garage nodes, washing nodes
to garage nodes, and departure nodes to garage nodes are removed just before the CG
algorithm to ensure the generation of logical and meaningful routes for the problem.

Feasible extensions/insertions in Algorithm 1 are applied benefiting from the label
updating procedure in forward labeling using Equations (12)–(17) during the label-setting
algorithm below. Additionally, the list L in Algorithm 1 contains all the contracted cus-
tomers in the problem, and until the list becomes empty, the algorithm tries to assign routes
for the vehicles. This is because each vehicle represents a route in the whole problem.

4.2. Column Generation Algorithm

According to the literature, CG methods work rather efficiently in partitioning prob-
lems such as the generalized assignment problem (Savelsbergh [29]) or the cutting stock
problem (de Carvalho et al. [30]) and VRP, while an exact algorithm is aimed at reaching
optimality. Particularly, in VRP, CG methods create a leap (Desrosiers et al. [31]) in large
instances compared to other exact solution techniques, such as mixed-integer programming
or branch and bound or branch and cut due to their extreme efficiency. That is why the
recent VRP literature is revolving around branch-price-cut algorithms based on the CG
method while focusing on exact solutions. The pricing part of those algorithms is aimed at
generating columns using the CG method, whereas the cutting concept is opted to obtain
solutions close to integer values as in our exact algorithm for the relevant FTL transporta-
tion. Branching strategies are preferred to decrease the optimality gap further. However,
our algorithm does not have any branching concept due to the fact that it already finds a
low optimality gap at the root node. In short, it can be expressed that our exact algorithm
can be deemed to be a part of branch-price-cut algorithms.

In VRP, the CG method needs an initial column/route set to start off; hence, con-
struction and improvement heuristics can be deployed to reach them. Subsequently, the
CG method continues to iterate itself until it attains the RMP optimality, which is a lower
bound for the original problem. It is well known that the label-setting algorithm, which is
employed to generate columns/routes in CG methods, has a high pseudo-polynomial time
complexity due to the fact that it is the multi-dimensional version of the label-correcting
algorithm (Dial et al. [32]). The label-setting algorithm consistently aims to derive promis-
ing columns/routes by utilizing the dual variables identified by RMP while adhering to
the resource constraints defined for the routes/columns in the given VRP (Feillet, Do-
minique, et al. [33]). However, construction or improvement heuristics have polynomial
time complexity. In our work, the construction heuristic and CG are serially executing
algorithms and the whole solution complexity equals the maximum complexity among
serial algorithms according to complexity analysis. Therefore, the overall complexity
becomes pseudo-polynomial. Thus, the label-setting algorithm creates a bottleneck in
the whole solution process, which is why acceleration techniques are used to generate
columns faster, alleviating the impact of that bottleneck. Bi-directional search (Righini and
Salani [9]), heuristic column generation (Desaulniers et al. [8]), and ng-route relaxation
(Baldacci et al. [10]) techniques are aimed at accelerating the generation of promising
column/route whereas the subproblem selection (an extension of the heuristic column
generation technique) focuses on prioritizing the relevant subproblem, which will be ca-
pable of yielding promising columns without searching all subproblems. Regarding the
exact approach, these acceleration techniques give the best performance and are widely
used compared to others in current VRP literature when merged with CG methods. Thus,
in our work, the most promising exact algorithm based on the CG method and the most

Mathematics 2025, 13, 876 15 of 32

promising acceleration techniques or concepts regarding that method in VRP literature are
involved after an efficient route-based Solomon insertion method [5] has been employed.
Furthermore, it must be noted that CG method and its acceleration techniques are inher-
ently problem-dependent. Hence, this situation forces one to modify them while having a
unique problem concept as we did in our work.

If all route variables were already available, the optimization of the model (1)–(8)
would yield the optimal integer solution. However, the number of route variables is
exceedingly large. Consequently, the optimization of the RMP is employed as an impor-
tant step to compute a suitable lower bound for the original problem (1)–(8) by relaxing
integer constraints. This process utilizes subproblems to identify and extract promising
columns/routes so as to add them to the RMP structure. RMP is critical because of the fact
that its optimal value results in a lower bound, and an upper bound can be acquired using
columns generated so far.

The fundamental procedure of the CG algorithm, inspired by the Dantzig–Wolfe
decomposition method [6], is presented in Algorithm 2 for further examination.

Algorithm 2: Basic Column Generation

Mathematics 2025, 13, x FOR PEER REVIEW 15 of 34

algorithm (Dial et al. [32]). The label-setting algorithm consistently aims to derive prom-

ising columns/routes by utilizing the dual variables identified by RMP while adhering to

the resource constraints defined for the routes/columns in the given VRP (Feillet,

Dominique, et al. [33]). However, construction or improvement heuristics have polyno-

mial time complexity. In our work, the construction heuristic and CG are serially execut-

ing algorithms and the whole solution complexity equals the maximum complexity

among serial algorithms according to complexity analysis. Therefore, the overall complex-

ity becomes pseudo-polynomial. Thus, the label-setting algorithm creates a bottleneck in

the whole solution process, which is why acceleration techniques are used to generate

columns faster, alleviating the impact of that bottleneck. Bi-directional search (Righini and

Salani [9]), heuristic column generation (Desaulniers et al. [8]), and ng-route relaxation

(Baldacci et al. [10]) techniques are aimed at accelerating the generation of promising col-

umn/route whereas the subproblem selection (an extension of the heuristic column gen-

eration technique) focuses on prioritizing the relevant subproblem, which will be capable

of yielding promising columns without searching all subproblems. Regarding the exact

approach, these acceleration techniques give the best performance and are widely used

compared to others in current VRP literature when merged with CG methods. Thus, in

our work, the most promising exact algorithm based on the CG method and the most

promising acceleration techniques or concepts regarding that method in VRP literature

are involved after an efficient route-based Solomon insertion method [5] has been em-

ployed. Furthermore, it must be noted that CG method and its acceleration techniques are

inherently problem-dependent. Hence, this situation forces one to modify them while

having a unique problem concept as we did in our work.

If all route variables were already available, the optimization of the model (1)–(8)

would yield the optimal integer solution. However, the number of route variables is ex-

ceedingly large. Consequently, the optimization of the RMP is employed as an important

step to compute a suitable lower bound for the original problem (1)–(8) by relaxing integer

constraints. This process utilizes subproblems to identify and extract promising col-

umns/routes so as to add them to the RMP structure. RMP is critical because of the fact

that its optimal value results in a lower bound, and an upper bound can be acquired using

columns generated so far.

The fundamental procedure of the CG algorithm, inspired by the Dantzig–Wolfe de-

composition method [6], is presented in Algorithm 2 for further examination.

Algorithm 2: Basic Column Generation

1: Initialize RMP with initial columns
2: Optimal = false
3: while Optimal == false do
4: Solve relaxed master problem (RMP)
5: Solve pricing problem
6: if there is no promising reduced cost column found then
7: Optimal = true
8: else
9: Add column to RMP
10: return RMP solution

In this study, the pricing problem always needs to be solved for the given subprob-

lem. According to the CG model (1)–(8), the total number of subproblems is

∑ ∑ ∑ 1௝∈௃௜∈ூ೚௢∈ை . Each subproblem is based on a given trailer 𝑜 ∈ 𝑂 and a given departure
node 𝑖 ∈ 𝐼௢ for that trailer and a given vehicle type 𝑗 ∈ 𝐽 connected with that trailer.

Moreover, each subproblem has its own network where a relevant vehicle type connected

to a relevant trailer can travel, departing from the relevant departure point. For a given

In this study, the pricing problem always needs to be solved for the given subproblem.
According to the CG model (1)–(8), the total number of subproblems is ∑o∈O ∑i∈Io ∑j∈J 1.
Each subproblem is based on a given trailer o ∈ O and a given departure node i ∈ Io

for that trailer and a given vehicle type j ∈ J connected with that trailer. Moreover, each
subproblem has its own network where a relevant vehicle type connected to a relevant
trailer can travel, departing from the relevant departure point. For a given subproblem
network under a certain o ∈ O, i ∈ Io, j ∈ J, a pricing problem can be defined as follows:

min
k∈P

coijk

The equation above is subject to the following:
Time windows constraints are respected;
Customer points should be visited at most once.
In the pricing problem above, P is the subset of all routes that can exist in the given

subproblem, visiting each customer node at most once as well as not violating time win-
dow structures.

coijk = coijk − ∑
q∈C

aoijkq ∗ αq − ∑
q′∈C′

aoijkq′ ∗ αq′ − ∑
U∈P(C)

∑
(m,n) ∈ A−(U)

boijkmn ∗ λU

− ∑
(m′ ,n′) ∈ A∗(CW)

∑
(m,n) ∈ A∗(m′ ,n′)

boijkmn ∗ p1m′n′

− ∑
(m′ ,n′) ∈ A∗(SC)

∑
(m,n) ∈ A∗(m′ ,n′)

boijkmn ∗ p2m′n′ − β

(9)

In Equation (9), coijk is the cost of the route, whereas αq, αq′ , λU , p1m′n′ , p2m′n′ are the
dual variables of (2), (3), (5), (6), and (7), respectively. β is the dual variable that belongs

Mathematics 2025, 13, 876 16 of 32

to (4), corresponding to the current subproblem. Finally, coijk is the reduced cost, which
belongs to the route.

4.2.1. Label-Setting Algorithm

In our study, the label-setting algorithm is aimed at extracting promising routes/columns
from the pricing problem. This algorithm needs to be applied to every subproblem that
we have in the CG model (1)–(8). In total, there are ∑o∈O ∑i∈Io ∑j∈J 1 subproblems, each
of which is based on a given trailer o ∈ O, a given departure node i ∈ Io for that trailer,
and a given vehicle type j ∈ J connected with that trailer. In fact, each subproblem has
its own network in itself, and vehicles that can travel that network have a limit of Hoij in
(4). Therefore, the networks of all subproblems are being analyzed using the label-setting
algorithm to identify promising columns/routes that have the potential to enhance the
RMP. If no subproblem yields a promising column, it indicates that the optimal solution for
the RMP has already been attained. Consequently, a lower bound for the CG model (1)–(8)
has been established.

Michelini, Stefano, Yasemin Arda, and Hande Küçükaydin [34] addressed the VRP
with time windows and variable departure times using branch price algorithms. Given that
the reduction in redundant waiting times at visited nodes on routes is also a focus of our
study, we adapted and applied a modified version of their approach. Furthermore, we were
inspired by the work of Feillet; Dominique et al. [33]; and Righini, Giovanni, and Matteo
Salani [9,35], who developed effective labeling procedures that are known as forward and
backward labeling for solving elementary shortest-path problems with resource constraints.
These adaptations enabled us to incorporate a tailored version of their methodologies into
our problem. Table 2 summarizes the notation for the label-setting algorithm.

Table 2. Notation of label-setting algorithm.

Sets

N set of whole nodes

Variables

vi, vb
i

representation of ith vertex/node during forward labeling and backward labeling,
respectively

PF = (. . . , . . . , . . . , vi) forward path for vi during forward labeling while using forward arcs
PB =

(
. . . , . . . , . . . , vb

i

)
backward path for vi

b during backward labeling while using reverse arcs

θk, θk
b cumulative time amount until vk and its backward labeling version until vk

b in the forward
path and backward path, respectively

µi earliest starting time at vi while having PF = (. . . , . . . , . . . , vi)

µi
b backward labeling version of µi at vi

b while having PB =
(

. . . , . . . , . . . , vb
i

)(
Ek

i

)
k∈N

indicate whether PF = (. . . , . . . , . . . , vi) has visited vk or not so far(
Ek,b

i

)
k∈N

backward labeling version of
(

Ek
i

)
k∈N

at vi
b while having PB =

(
. . . , . . . , . . . , vb

i

)
ζi minimum duration for starting at vi while having PF = (. . . , . . . , . . . , vi)

ζi
b backward labeling version of ζi at vi

b while having PB =
(

. . . , . . . , . . . , vb
i

)
ci, ci

b reduced cost value of PF = (. . . , . . . , . . . , vi) and PB =
(

. . . , . . . , . . . , vb
i

)
, respectively

Li(. . .), Li
b(. . .) forward and backward label, respectively

Parameters

[ai, bi] time windows boundaries of vi during forward labeling[
ab

i , bb
i

]
time windows boundaries of vi

b during backward labeling

Mathematics 2025, 13, 876 17 of 32

Now, consider a forward path such as PF = (v0, v1 . . . , vi), where v0 is one of the all
departure nodes (departure node of the network in the current subproblem), and all nodes
on that path have been visited within one of their multiple time windows, that is, [ai, bi] for
each node vi. Because vehicles can leave the departure node later, let νi be the latest feasible
start time from the departure node. The latest feasible start time can be written as follows:

νi = min
1≤k≤i

{bk − θk}, (10)

where θk is the cumulative time and always updated with θk = θk−1 + tk−1,k, while
tk−1,k = sk−1 + tk−1,k. Arc travel times from vk−1 to vk are depicted as tk−1,k, whereas sk−1

is the process time at vk−1. Additionally, the earliest feasible start time at node vi can be
calculated as µi = max

{
ai, µi−1 + ti−1,i

}
. When the forward path PF = (v0, v1 . . . , vi) is in

existence, the minimum duration for starting at vi, which is defined as ζi, takes place while
the vehicle employs the latest feasible start time from the departure node, which is ν0.

Due to the triangle inequality structure, the optimal path should be an elementary path
in terms of customer points/nodes that means at the optimality an optimal route cannot
visit a customer node multiple times. So, the label

(
Ek

i

)
is employed for ∀k ∈ N, where N

is the set of whole nodes in the problem. If the partial path PF = (v0, v1 . . . , vi) has visited
customer node k, then

(
Ek

i

)
becomes 1 and 0 otherwise. However, in this study, there also

washing and supply points/nodes instead of pure customer points/nodes. Therefore, if
a node, for example, is a washing or supply node, and it has been already visited by the
partial path, then

(
Ek

i

)
may remain as 0 due to the fact that non-customer nodes do not

need to be visited at most once in the CG model.
In short, PF = (v0, v1 . . . , vi) also can be expressed as Li(ν i, µi, ζi,

(
Ek

i

)
k∈N

, ci, θi

)
,

where ci is the reduced cost of the partial forward path. In order to calculate the reduced
cost over a partial path, original arc costs and dual variables coming from RMP must be
merged together. Therefore,

cij = cij − αi − ∑
U ∈P(C)| (i,j)∈A−(U)

λU − ∑
(i′ ,j′)∈A∗(CW)| (i,j)∈A∗(i′ ,j′)

p1i′ j′

− ∑
(i′ ,j′)∈A∗(SC)| (i,j)∈A∗(i′ ,j′)

p2i′ j′ , ∀(i, j) ∈ A
(11)

where αi is the dual variable for contracted or non-contracted customer visiting constraints
coming from (2) and (3), λU is the dual variable for k-path (k = 2) inequalities (5), p1i′ j′ and
p2i′ j′ are dual variables of the relevant arc flow constraints (6) and (7), respectively, cij is the
cost which has been found after Floyd–Warshall algorithm with the addition of extra costs
such as washing costs, and A is the set of all arcs that can exist in the current subproblem.
Therefore, the reduced cost of a partial forward path called PF = (v0, v1 . . . , vi) can be
written as ci = ∑(k,l)∈PF ck,l − β. Here, β is the constant dual variable corresponding to
∑k∈K θoijk ≤ Hoij for a given o ∈ O, i ∈ Io , j ∈ J originating in constraint (4). Recall that
each subproblem in our study corresponds to a given o ∈ O, i ∈ Io , j ∈ J, and the network
belonging to that subproblem is being taken into account to generate promising routes.

During the extension of label to node j, Lj(ν j, µj, ζ j,
(

Ek
j

)
k∈N

, cj, θj

)
is obtained using

the following label-updating procedure:

cj = ci + cij (12)

ζ j = max
{

ζi + ti,j , µj − νj
}

(13)

µj = max
{

ai, µi + ti,j
}

(14)

Mathematics 2025, 13, 876 18 of 32

νj = min
{

νi, bj − θj
}

(15)

θj = θi + ti,j (16)

(
Ek

j

)
=


(

Ek
i

)
+ 1(

Ek
i

) i f k = j and j ∈ (C ∪ C′)

i f k ̸= j or j /∈ (C ∪ C′)
(17)

When
(

Ek
j

)
> 1 for a customer node k, then Lj(ν j, µj, ζ j,

(
Ek

j

)
k∈N

, cj, θj

)
is elimi-

nated. For washing and supply nodes,
(

Ek
j

)
always remains 0 due to the fact that those

nodes can always be visited more than once, as opposed to customer nodes. However,
each time a label Li is extended to create a new label Lj, the elementarity resource Ek

j
is set to zero for k /∈ Mj, where Mj is the predetermined ng-set for node j. In forward
labeling, ng-sets are constructed based on supply nodes because a customer node can only
be reached from supply nodes, but in the backward labeling, those sets are constituted
based on supply and washing nodes because, using a reverse arc, one can travel from
supply or washing nodes to customer nodes (see Figure 2). All those sets are relaxation for
the elementarity of customer points; thus, the lower bound may become slightly lower, but
an increase in the CG algorithm’s convergence rate is established. Furthermore, if µj > bj,

then Lj(ν j, µj, ζ j,
(

Ek
j

)
k∈N

, cj, θj

)
is eliminated again. Additionally, the forward label is

initialized as Lo(ν 0 = ∞, µ0 = 0, ζ0 = 0,
(

Ek
0

)
k∈N

= 0, c0 = 0, θ0 = 0
)

for the relevant

departure node at the beginning. It must also be noted that forward extension from vi is
happening for each time window of vj due to multiple time windows of nodes in our study;
therefore, this situation may yield multiple forward labels by its nature.

The similar forward label procedure above can also be applied to the backward path,
such as PB =

(
vb

0, vb
1 . . . , vb

i

)
, due to symmetry, where vb

0 is the garage node. Also, using
a sufficiently large enough positive constant M, the time window [ai, bi] for each node
vi becomes

[
ab

i , bb
i

]
= [M − bi − si , M − ai − si] during backward labeling. For example,

M can be taken as max
q

max
i∈(C∪C′)

(
biq + si + tig

)
, where tig is the travel time from node i to

garage node g (which is vb
0 at the same time), q is the time window index (recall that

customer and supply points’/nodes’ multiple time windows are on daily basis), and biq

is the upper bound of qth time windows for a given node i. It is important to reiterate
that arcs can be directed exclusively to the garage node from only customer nodes since
connections from other nodes to the garage node are not meaningful, as has been previously
stated. Accordingly, νi

b = min
1≤k≤i

{
bk

b − θk
b
}

, where θb
k = θb

k−1 + sk−1 + tk,k−1. In short,

PB =
(

vb
0, vb

1 . . . , vb
i

)
can be expressed as Li

b
(

vb
i , µi

b, ζi
b,
(

Ek,b
i

)
k∈N

, ci
b, θi

b
)

, where ci
b is

the reduced cost of the partial backward path. During the extension of label to node j using
the reverse arc (i, j), Lj

b(vb
j , µj

b, ζ j
b,
(

Ek,b
j

)
k∈N

, cj
b, θj

b) is obtained using the following

label-updating procedure:
cj

b = ci
b + cji (18)

ζ j
b = max

{
ζi

b + si + tj,i , µi
b − vb

i

}
(19)

µj
b = max

{
aj

b, µi
b + si + tj,i

}
(20)

vb
j = min

{
vb

i , bj
b − θj

b
}

(21)

θj
b = θi

b + si + tj,i (22)

Mathematics 2025, 13, 876 19 of 32

(
Ek,b

j

)
=


(

Ek,b
i

)
+ 1(

Ek,b
i

) i f k = j and j ∈ (C ∪ C′)

i f k ̸= j or j /∈ (C ∪ C′)
(23)

In forward labeling, ng-sets are generated based on supply nodes since customer
nodes can only be reached from supply nodes. Conversely, in backward labeling, these
sets are constructed based on both supply and washing nodes since reverse arcs can enable
travel from supply or washing nodes to customer nodes. Additionally, the initialization
of backward labels is analogous to that of forward labels, owing to the symmetry in the
problem structure.

Concatenation of backward and forward paths is crucial because of the fact that, for
an efficient CG, the first negative reduced cost path is employed. But label dominance is
required to avoid tremendous amount of labels. Otherwise, their concatenation would
be so hard and time consuming. Therefore, while there are two forward labels called
L1

i (νi
1, µi

1, ζi
1,
(

Ek,1
i

)
k∈N

, ci
1, θi

1) and L2
i (νi

2, µi
2, ζi

2,
(

Ek,2
i

)
k∈N

, ci
2, θi

2), the following

dominance rules (24)–(29) make L1
i (νi

1, µi
1, ζi

1,
(

Ek,1
i

)
k∈N

, ci
1, θi

1) more dominant com-

pared to L2
i (νi

2, µi
2, ζi

2,
(

Ek,2
i

)
k∈N

, ci
2, θi

2) regarding the forward labeling:

νi
1 ≥ νi

2 (24)

µi
1 ≤ µi

2 (25)

ζi
1 ≤ ζi

2 (26)

ci
1 ≤ ci

2 (27)

θi
1 ≤ θi

2 (28)

Ek,1
i ≤ Ek,2

j , ∀k ∈ N (29)

Thus, whenever L1
i and L2

i are extended to same node j for a specific time window of
that node using extension Equations (12)–(17), then νj

1 ≥ νj
2 , µj

1 ≤ µj
2 , ζ j

1 ≤ ζ j
2, cj

1 ≤ cj
2,

θj
1 ≤ θj

2, Ek,1
J ≤ Ek,2

j for all k ∈ N are obtained regarding L1
j and L2

j . The same dominance
rules are again applied during backward labeling because of the symmetric concept.

Whereas forward labels are derived, according to Michelini et al. [34], ζi becomes a
critical resource and forward label Li can be extended to node j, having a new forward label
Lj when ζ j ≤ M/2. The same things are again applied to backward labeling smoothly.

Label concatenation is obligatory to create new promising routes for the CG method.
Therefore, the connection of forward label Li(ν i, µi, ζi,

(
Ek

i

)
k∈N

, ci, θi) and backward label

Li
b(vb

i , µi
b, ζi

b,
(

Ek,b
i

)
k∈N

, ci
b, θi

b), which correspond to the same node, can occur under

the following conditions:
ci + ci

b < 0 (30)

µi + si ≤ M − µi
b (31)

Ek
i + Ek,b

i ≤ 1, ∀k ∈ N \{vi} ∩
(
C ∪ C′) (32)

Thus, after suitable concatenation, the column is generated, and it is added to the RMP.

4.2.2. Acceleration Techniques

In spite of the fact that the VRP literature heavily focuses on CG methods to achieve
exactness in large-scale instances, acceleration techniques for those methods also draw
attention considerably. For instance, in the label-setting algorithm, enormous numbers of
labels are typically generated and management of them imposes a significant computa-

Mathematics 2025, 13, 876 20 of 32

tional burden. Additionally, when numerous subproblems are present, their prioritization
becomes crucial since searching through all potential columns within a given subproblem
and identification of no promising candidates would be highly time-consuming for the
solution process.

During CG methods in VRP, the label-setting algorithm must perform to feed the RMP
with pseudo-polynomial complexity for each identified promising column. Therefore, a
substantial acceleration for a CG implies a significant reduction in overall complexity. Thus,
we incorporated four widely used acceleration techniques to enhance the convergence rate
of the RMP in our study.

Heuristic Column Generator

In linear programming, the reduced cost provides a mechanism to improve the ob-
jective function, and the best reduced cost is typically prioritized to achieve optimal
improvement. However, in the label-setting algorithm, identification of the column with
the best reduced cost based on the dual variables of the RMP can be computationally
intensive due to the fact that this circumstance requires the investigation of huge number
of labels (Desaulniers et al. [8]). This is because, when an enormous number of labels exists,
computationally management of those during the search for the column/route with the
best reduced cost becomes exhaustive.

In order to save computational time, we adopted a heuristic approach by selecting
the first encountered column/route with a promising reduced cost within the network
of a subproblem rather than exhaustively searching for the best one. If no promising
column is identified in a subproblem, other subproblems are sequentially considered. If
none of the subproblems yield a promising column, it indicates that the RMP has already
reached its optimal solution. The effectiveness of this approach was demonstrated by
Desaulniers et al. [8] allowing the rapid identification of a promising column. The identified
column is then incorporated into the RMP to generate new dual variables ensuring the
continuation of the CG process. The pseudo-code of that method can also be examined in
Algorithm 3 below.

Algorithm 3: Heuristic Column Generation

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 34

of the CG process. The pseudo-code of that method can also be examined in Algorithm 3

below.

Algorithm 3: Heuristic Column Generation

1: Obtain dual variables from the current RMP
2: Select a subproblem to derive a promising column/route
3: Promising_Column_Found = False
4: Label_Setting_Algorithm_Convergence = False
5: Start the execution of the label setting algorithm
6: while Promising_Column_Found = False do
7: Continue to execute the label setting algorithm
8: If Promising_Column_Found = True then
9: break
10: If Label_Setting_Algorithm_Convergence = True then
11: break
12: If Promising_Column_Found = True then
13: Add that column to RMP and solve it to obtain new dual variables
14: else
15: Search other subproblems to generate a promising column/route

Subproblem Selection

Because of the fact that our problem has high number of subproblems, which is

∑ ∑ ∑ 1௝∈௃௜∈ூ೚௢∈ை , a strategy needs to be developed to effectively make a decision on sub-

problem choice. Typically, it is possible to evaluate all subproblems sequentially in a pre-

determined order until a promising column is identified. However, this approach can sig-

nificantly increase the time required to find such a column. For example, after a certain

number of iterations in the RMP, some subproblems may lose their effectiveness in gen-

erating columns that can improve the RMP. Thus, solving these subproblems would result

in wasted computational time. In order to address this issue, subproblem selection prior-

itizes the last subproblem that most recently contributed a promising column to the RMP

rather than checking all subproblems sequentially.

It is important to note that subproblem selection is an extension of the heuristic col-

umn generation method (Desaulniers et al. [8]). This is because, in cases where there is

only a single subproblem in the overall problem, heuristic column generation focuses on

identifying the first promising column. However, subproblem selection aims to identify

the first promising column across multiple subproblems. In short, subproblem selection

is capable of reinforcing the heuristic column generation method and enables it to perform

across multiple subproblems. The process can also be seen in Algorithm 4 as pseudo-code.

Subproblem Selection

Because of the fact that our problem has high number of subproblems, which is
∑o∈O ∑i∈Io ∑j∈J 1, a strategy needs to be developed to effectively make a decision on
subproblem choice. Typically, it is possible to evaluate all subproblems sequentially in
a predetermined order until a promising column is identified. However, this approach
can significantly increase the time required to find such a column. For example, after a

Mathematics 2025, 13, 876 21 of 32

certain number of iterations in the RMP, some subproblems may lose their effectiveness in
generating columns that can improve the RMP. Thus, solving these subproblems would
result in wasted computational time. In order to address this issue, subproblem selection
prioritizes the last subproblem that most recently contributed a promising column to the
RMP rather than checking all subproblems sequentially.

It is important to note that subproblem selection is an extension of the heuristic
column generation method (Desaulniers et al. [8]). This is because, in cases where there is
only a single subproblem in the overall problem, heuristic column generation focuses on
identifying the first promising column. However, subproblem selection aims to identify
the first promising column across multiple subproblems. In short, subproblem selection is
capable of reinforcing the heuristic column generation method and enables it to perform
across multiple subproblems. The process can also be seen in Algorithm 4 as pseudo-code.

Algorithm 4: Subproblem Selection

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 34

Algorithm 4: Subproblem Selection
1: Create an order for subproblems to be solved before the start of RMP
2: Find initial dual variables in RMP
3: Last_Subproblem_Rank ← 1
4: Column_Is_Found ← false
5: while RMP is not converged do
6: for all subproblems do
7: If Current Subproblem Rank < Last_Subproblem_Rank, then
8: next
9: Embed dual variables into the current subproblem
10: Use label setting algorithm with heuristic column generator to get promising column
11: If promising column has been found, then
12: Last_Subproblem_Rank ← Current Subproblem Rank
13: Column_Is_Found = true
14: break
15: else
16: next
17: If Column_Is_Found = false and Last_Subproblem_Rank > 1, then
18: Last_Subproblem_Rank = 1
19: next
20: If Column_Is_Found = false and Last_Subproblem_Rank = 1, then
21: break (it means RMP already reached optimal)
22: If Column_Is_Found = true, then
23: Add column to RMP and solve RMP again
24: Obtain new dual varibles
25: Column_Is_Found = false

NG-Route Relaxation

Baldacci, Roberto, Aristide Mingozzi, and Roberto Roberti [10] introduced the ng-

route relaxation technique for VRP(s) with time windows. While elementary paths (visit-

ing customer nodes/points at most once) are required in the label-setting algorithm to en-

sure the elementary structure of optimal paths, their approach incorporates non-elemen-

tary paths (visiting customer nodes/points multiple times) to expedite the convergence of

the RMP. This relaxation substantially accelerates convergence, albeit at the cost of loos-

ening the RMP’s lower bound. However, their study demonstrates that the loosening ef-

fect is not significant. Thus, their works can provide the addition of promising col-

umns/routes more frequently, decreasing the convergence time of the RMP. In their

method, the ng-set is defined for each node with its predetermined size, and its elements

comprise neighboring nodes. Nodes within the ng-set are restricted to a single visit,

whereas other nodes may be visited multiple times during the label-setting process.

Inspired by this relaxation technique, we also allow promising routes to include non-

elementary paths to a limited extent, leveraging the ng-route concept. Unlike VRP(s) that

consist solely of customer nodes, our problem includes additional node types, such as

washing and supply nodes in addition to departure and garage nodes. Consequently, in

forward paths during forward labeling, ng-sets are created based on supply nodes since

customer nodes can only be reached from supply nodes using forward arcs. Conversely,

in backward paths during backward labeling, ng-sets are constructed based on supply

and washing nodes since reverse arcs enable traversal from supply or washing nodes to

customer nodes. Thus, all ng-sets include customer points in themselves. Algorithm 5 pre-

sents the pseudo-code of that technique as follows:

NG-Route Relaxation

Baldacci, Roberto, Aristide Mingozzi, and Roberto Roberti [10] introduced the ng-
route relaxation technique for VRP(s) with time windows. While elementary paths (visiting
customer nodes/points at most once) are required in the label-setting algorithm to ensure
the elementary structure of optimal paths, their approach incorporates non-elementary
paths (visiting customer nodes/points multiple times) to expedite the convergence of the
RMP. This relaxation substantially accelerates convergence, albeit at the cost of loosening
the RMP’s lower bound. However, their study demonstrates that the loosening effect is
not significant. Thus, their works can provide the addition of promising columns/routes
more frequently, decreasing the convergence time of the RMP. In their method, the ng-set is
defined for each node with its predetermined size, and its elements comprise neighboring
nodes. Nodes within the ng-set are restricted to a single visit, whereas other nodes may be
visited multiple times during the label-setting process.

Inspired by this relaxation technique, we also allow promising routes to include non-
elementary paths to a limited extent, leveraging the ng-route concept. Unlike VRP(s) that
consist solely of customer nodes, our problem includes additional node types, such as

Mathematics 2025, 13, 876 22 of 32

washing and supply nodes in addition to departure and garage nodes. Consequently, in
forward paths during forward labeling, ng-sets are created based on supply nodes since
customer nodes can only be reached from supply nodes using forward arcs. Conversely,
in backward paths during backward labeling, ng-sets are constructed based on supply
and washing nodes since reverse arcs enable traversal from supply or washing nodes to
customer nodes. Thus, all ng-sets include customer points in themselves. Algorithm 5
presents the pseudo-code of that technique as follows:

Algorithm 5: NG-Route Relaxation

Mathematics 2025, 13, x FOR PEER REVIEW 23 of 34

Algorithm 5: NG-Route Relaxation

1: Create ng-sets for relevant nodes

2: Start the label setting algorithm

3: Obtain a label for node 𝑖 as 𝐿௜ሺ𝜈௜ , … , ൫𝐸௜
௞൯

௞∈ே
, … ሻ whose partial path is 𝑃𝐹 ൌ ሺ… … , 𝑣௜ሻ

4: Extend 𝐿௜ሺ𝜈௜ , … , ൫𝐸௜
௞൯

௞∈ே
, … ሻ towards node 𝑗 in a feasible way

5: Update 𝑃𝐹 ൌ ሺ… … , 𝑣௜ሻ and obtain 𝑃𝐹′ ൌ ሺ… … , 𝑣௜, 𝑣௝ሻ

6: for all 𝑘 ∈ 𝑁 do

7: If 𝑘 ൌ 𝑗 then

8: Set ൫𝐸௝
௞൯ ൌ 1

9: If 𝑘 ് 𝑗 and 𝑘 ∉ 𝑁𝐺௝ then (𝑁𝐺௝ is the ng-set for node 𝑗)

10: Set ൫𝐸௝
௞൯ ൌ 0

11: If 𝑘 ∈ 𝑁𝐺௝ then

12: Set ൫𝐸௝
௞൯ ൌ ൫𝐸௜

௞൯

13: Update other resources and obtain 𝐿௝ሺ𝜈௝ , … , ൫𝐸௝
௞൯

௞∈ே
, … ሻ

14: Continue to label setting algorithm

Bi-Directional Search

In our study, we employ both forward and backward labeling to implement a bi-

directional search strategy, as proposed by Righini and Salani [9]. During forward label-

ing, feasible forward paths are identified using extension rules (12)–(17) while progressing

towards the terminal/garage node. Conversely, backward labeling aims to identify feasi-

ble backward paths using extension rules (18)–(23) and to move towards the departure

node of the current network as defined by the relevant subproblem. Righini and Salani [9]

demonstrated that bi-directional search significantly outperforms mono-directional

search in terms of computational efficiency. This is because they create routes using both

the starting node (departure node) and terminal node (garage node), employing forward

and backward labeling procedures simultaneously. In fact, the bi-directional search em-

braces two-dimensional perspectives during the creation of routes instead of a one-dimen-

sional perspective like the mono-directional search. Consequently, concatenation rules are

employed to combine forward and backward paths, generating promising col-

umns/routes for the RMP.

Undoubtedly, the concatenation of forward and backward paths identified through

the label-setting algorithm in the bi-directional search should encompass all paths that

could be generated by the mono-directional search. To enhance efficiency, Righini and

Salani [9] proposed bounding rules for forward and backward paths, which serve to re-

strict the further extension of these paths. In our study, we employed a resource-based

bounding procedure and designated 𝜁௜ to become a critical resource of paths, as was also

carried out by Michelini et al. [34]. Thus, our forward paths and backward paths in the

study were bounded by 𝜁௝ ൑ 𝑀/2 , guaranteeing all paths which the mono-directional

search would also involve. The algorithm of the bi-directional search can be examined in

Algorithm 6. In this algorithm, it is assumed that the current subproblem has its network,

whose departure node is the 0th node and terminal/garage node is the nth node in the

whole node set that is 𝑁.
In Algorithm 6, 𝑈𝐿௜ and 𝑇𝐿௜ imply untreated labels and treated labels in the for-

ward labeling, respectively, while 𝑈𝐿௝
௕and 𝑇𝐿௝

௕ indicate untreated and treated labels in

the backward labeling. 𝐿௜ means the forward label regarding the node 𝑖, and 𝐿௝
௕ is the

backward label for node 𝑗 . EXTEND (𝐿௜ , 𝑗ሻ implies the forward extension of label 𝐿௜
along the arc ሺ𝑖, 𝑗ሻ to yield label 𝐿௝ using Equations (12)–(17), whereas EXTEND (𝐿௝

௕, 𝑘ሻ

Bi-Directional Search

In our study, we employ both forward and backward labeling to implement a bi-
directional search strategy, as proposed by Righini and Salani [9]. During forward labeling,
feasible forward paths are identified using extension rules (12)–(17) while progressing
towards the terminal/garage node. Conversely, backward labeling aims to identify feasible
backward paths using extension rules (18)–(23) and to move towards the departure node
of the current network as defined by the relevant subproblem. Righini and Salani [9]
demonstrated that bi-directional search significantly outperforms mono-directional search
in terms of computational efficiency. This is because they create routes using both the
starting node (departure node) and terminal node (garage node), employing forward and
backward labeling procedures simultaneously. In fact, the bi-directional search embraces
two-dimensional perspectives during the creation of routes instead of a one-dimensional
perspective like the mono-directional search. Consequently, concatenation rules are em-
ployed to combine forward and backward paths, generating promising columns/routes for
the RMP.

Undoubtedly, the concatenation of forward and backward paths identified through
the label-setting algorithm in the bi-directional search should encompass all paths that
could be generated by the mono-directional search. To enhance efficiency, Righini and
Salani [9] proposed bounding rules for forward and backward paths, which serve to restrict
the further extension of these paths. In our study, we employed a resource-based bounding
procedure and designated ζi to become a critical resource of paths, as was also carried out
by Michelini et al. [34]. Thus, our forward paths and backward paths in the study were
bounded by ζ j ≤ M/2, guaranteeing all paths which the mono-directional search would
also involve. The algorithm of the bi-directional search can be examined in Algorithm 6. In

Mathematics 2025, 13, 876 23 of 32

this algorithm, it is assumed that the current subproblem has its network, whose departure
node is the 0th node and terminal/garage node is the nth node in the whole node set that
is N.

In Algorithm 6, ULi and TLi imply untreated labels and treated labels in the forward
labeling, respectively, while ULj

b and TLj
b indicate untreated and treated labels in the

backward labeling. Li means the forward label regarding the node i, and Lj
b is the backward

label for node j. EXTEND (Li, j) implies the forward extension of label Li along the arc
(i, j) to yield label Lj using Equations (12)–(17), whereas EXTEND (Lj

b, k) is the backward
version of extension using Equations (18)–(23). DOMINANCE () enables the bi-directional
algorithm to be relieved of many labels using the dominance rules and inequalities (24)–(29).
Moreover, CONCATENATION () can be examined in Algorithm 7 based on Algorithm 6
with the inclusion of inequalities (30)–(32).

Algorithm 6: Bi-directional Search

Mathematics 2025, 13, x FOR PEER REVIEW 24 of 34

is the backward version of extension using Equations (18)–(23). DOMINANCE ሺ ሻ ena-
bles the bi-directional algorithm to be relieved of many labels using the dominance rules

and inequalities (24)–(29). Moreover, CONCATENATION ሺ ሻ can be examined in Algo-

rithm 7 based on Algorithm 6 with the inclusion of inequalities (30)–(32).

Algorithm 6: Bi-directional Search

1: Create an initial forward label 𝐿଴ሺ∞, 0,0, … 0,0, 0,0ሻ and backward label 𝐿௡
௕ሺ∞, 0,0, … 0,0, 0,0ሻ

2: Set 𝑈𝐿଴ ൌ ሼ𝐿଴ሽ and 𝑇𝐿଴ ൌ ∅

3: for all 𝑖 ∈ 𝑁\ሼ0ሽ do

4: Set 𝑈𝐿௜ ൌ ∅ and 𝑇𝐿௜ ൌ ∅

5: while ⋃௜∈ே𝑈𝐿௜ ് ∅ do

6: Choose a label 𝐿௜ ∈ 𝑈𝐿௜ (where 𝑈𝐿௜ ് ∅)

7: for all arc ሺ𝑖, 𝑗ሻ do

8: EXTEND (𝐿௜, 𝑗ሻ and obtain label 𝐿௝, if 𝐿௝ is infeasible, then delete 𝐿௝

9: if label 𝐿௝ is feasible, then

10: Set 𝑈𝐿௝ ൌ 𝑈𝐿௝ ∪ 𝐿௝

11: Eliminate dominated labels using DOMINANCE ሺ𝑈𝐿௝ ∪ 𝑇𝐿௝ሻ

12: Set 𝑈𝐿௜ ൌ 𝑈𝐿௜ \ ሼ𝐿௜ሽ

13: Set 𝑇𝐿௜ ൌ 𝑇𝐿௜ ∪ ሼ𝐿௜ሽ

14: Set 𝑈𝐿௡
௕ ൌ ሼ𝐿௡

௕ሽ and 𝑇𝐿௡
௕ ൌ ∅

15: for all 𝑗 ∈ 𝑁\ሼ𝑛ሽ do

16: Set 𝑈𝐿௝
௕ ൌ ∅ and 𝑇𝐿௝

௕ ൌ ∅

17: while ⋃௝∈ே𝑈𝐿௝
௕ ് ∅ do

18: Choose a label 𝐿௝
௕ ∈ 𝑈𝐿௝

௕ (where 𝑈𝐿௝
௕ ് ∅)

19: for all arc ሺ𝑗, 𝑘ሻ do

20: EXTEND (𝐿௝
௕, 𝑘ሻ and obtain label 𝐿௞

௕, if 𝐿௞
௕ is infeasible, then delete 𝐿௞

௕

21: if label 𝐿௞
௕ is feasible, then

22: Set 𝑈𝐿௞
௕ ൌ 𝑈𝐿௞

௕ ∪ 𝐿௞
௕

23: Eliminate dominated labels using DOMINANCE ሺ𝑈𝐿௞
௕ ∪ 𝑇𝐿௞ሻ௕

24: Set 𝑈𝐿௝
௕ ൌ 𝑈𝐿௝

௕ \ ሼ𝐿௝
௕ሽ

25: Set 𝑇𝐿௝
௕ ൌ 𝑇𝐿௝

௕ ∪ ሼ𝐿௝
௕ሽ

26: Π = ∅

27: for all 𝑖 ∈ 𝑁 do

28: P = CONCATENATION (𝑇𝐿௜ ,𝑇𝐿௜
௕)

29: Π = Π ∪ P

30: return the best path in Π

Mathematics 2025, 13, 876 24 of 32

Algorithm 7: CONCATENATION (TLi, TLi
b)

Mathematics 2025, 13, x FOR PEER REVIEW 25 of 34

Algorithm 7: CONCATENATION (𝑇𝐿௜, 𝑇𝐿௜௕)

1: if node 𝑖 = 𝑛, then

2: return 𝑇𝐿௜
3: if node 𝑖 = 0, then

4: return 𝑇𝐿௜௕

5: if node 𝑖 ∉ (𝑛 ∪ 0), then

6: if concatenation is feasible according to the conditions (30)–(32), then

7: return (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝐿௜ 𝑎𝑛𝑑 𝑇𝐿௜௕)

It must be emphasized that we do not strive for finding the best path, as shown in
line 30 of Algorithm 6. In fact, we employ the bi-directional search during the label-setting
algorithm instead of the mono-directional one without any effort to find the best promis-
ing column/route due to the usage of the heuristic column generation method at the same
time.

5. Computational Study
5.1. Details of Experiments

Due to the absence of instances related to our problem concept in VRP literature, we
generated instance sets artificially. Nevertheless, the operations of a prominent local lo-
gistics company in Turkey, which has been in the business of large-scale liquid transpor-
tation with 600 vehicles, were considered, and their processes were examined. Conse-
quently, ranges were established for arc costs, travel times, process times, washing costs
and profits associated with non-contracted customers. Random numbers were generated
within these ranges using a uniform distribution.

In order to ensure the triangle inequality (as in real life cases) among arc costs and
travel times within the network, the Floyd–Warshall all-pairs shortest-path algorithm
(Floyd, Robert W [36]) was applied. Following this algorithm, additional costs related to
washing operations or loaded positions and extra profits associated with serving the non-
contracted customers were incorporated into the arc costs, which had been derived from
the Floyd–Warshall [36] algorithm. Furthermore, each type of trailer was designed to ac-
commodate at least 50% of the product types based on the trailer–product matrix, while
each product type could be transported by at least one trailer type, mirroring real-life sce-
narios. The washing matrix was also artificially generated to reflect real-world operations
closely.

The instances used in this study consist of 80% contracted customers and 20% non-
contracted customers. The total number of customer points/nodes considered across dif-
ferent instances is {30, 60, 120}. At departure nodes, the proportion of owned to rented
vehicle types varies between 65–35% and 50–50%. This circumstance happened because
whenever a trailer was associated with a product type, two owned vehicles and one rented
vehicle, one owned vehicle and one rented vehicle, or three owned and two rented vehi-
cles connected to that trailer were assigned to the corresponding departure node, which
contained vehicles that had previously transported that product type. Additionally, due
to the presence of multiple departure nodes, the total number of departure nodes across
instances is {20, 30, 40}.

This study incorporates multiple daily time windows for customers and suppliers
whose number of time windows is 2, 3, or 4 during instances. For washing operations, the
number of washing centers in the network was set to 3, 5, or 7 per instance. It is important
to note that each washing center consists of a number of nodes equivalent to the total

It must be emphasized that we do not strive for finding the best path, as shown in
line 30 of Algorithm 6. In fact, we employ the bi-directional search during the label-setting
algorithm instead of the mono-directional one without any effort to find the best promising
column/route due to the usage of the heuristic column generation method at the same time.

5. Computational Study
5.1. Details of Experiments

Due to the absence of instances related to our problem concept in VRP literature, we
generated instance sets artificially. Nevertheless, the operations of a prominent local logis-
tics company in Turkey, which has been in the business of large-scale liquid transportation
with 600 vehicles, were considered, and their processes were examined. Consequently,
ranges were established for arc costs, travel times, process times, washing costs and profits
associated with non-contracted customers. Random numbers were generated within these
ranges using a uniform distribution.

In order to ensure the triangle inequality (as in real life cases) among arc costs and
travel times within the network, the Floyd–Warshall all-pairs shortest-path algorithm
(Floyd, Robert W [36]) was applied. Following this algorithm, additional costs related
to washing operations or loaded positions and extra profits associated with serving the
non-contracted customers were incorporated into the arc costs, which had been derived
from the Floyd–Warshall [36] algorithm. Furthermore, each type of trailer was designed
to accommodate at least 50% of the product types based on the trailer–product matrix,
while each product type could be transported by at least one trailer type, mirroring real-
life scenarios. The washing matrix was also artificially generated to reflect real-world
operations closely.

The instances used in this study consist of 80% contracted customers and 20% non-
contracted customers. The total number of customer points/nodes considered across
different instances is {30, 60, 120}. At departure nodes, the proportion of owned to rented
vehicle types varies between 65–35% and 50–50%. This circumstance happened because
whenever a trailer was associated with a product type, two owned vehicles and one
rented vehicle, one owned vehicle and one rented vehicle, or three owned and two rented
vehicles connected to that trailer were assigned to the corresponding departure node, which
contained vehicles that had previously transported that product type. Additionally, due
to the presence of multiple departure nodes, the total number of departure nodes across
instances is {20, 30, 40}.

This study incorporates multiple daily time windows for customers and suppliers
whose number of time windows is 2, 3, or 4 during instances. For washing operations, the
number of washing centers in the network was set to 3, 5, or 7 per instance. It is important
to note that each washing center consists of a number of nodes equivalent to the total
number of product types as illustrated in Figure 2. Moreover, the CG model (1)–(8) includes

Mathematics 2025, 13, 876 25 of 32

numerous cuts associated with constraints (6) and (7). In order to manage them, every
50 iterations (50 column generations), these cuts were progressively added one at a time.

The total number of product types and trailer types is {4, 6, 8} across all instances.
Predetermined ng-sets in forward labeling were constructed based on supply nodes since
customer nodes can only be reached from supply nodes. These ng-sets contain only
customer nodes within the neighborhood of the relevant supply node, having sizes of {2, 4,
8} for the instances whose total number of customer is {30, 60, 120}, respectively. Similarly,
in backward labeling, these ng-sets consist of customer nodes in the neighborhood of the
relevant supply or washing node, having sizes of {2, 4, 8} for the instances whose total
number of customers is {30, 60, 120}, respectively.

After RMP optimality had been reached, we called the objective zlb, recalling that RMP
during the CG method gives the lower bound of the model (1)–(8). Then, we found integer
solutions using the columns/routes located in RMP, and an upper bound for our problem
called z∗ was found, benefiting from those solutions. In order to find the optimality gap,
we calculated 100 ∗ z∗−zlb

z∗ accordingly.

5.2. Results of Experiments

In total, 117 instances were generated, and their performance analysis was conducted.
For each instance, the inputs included the number of time windows, product types, trailer
types, washing centers, customer number, departure point, and idle vehicles. The com-
putational time and optimality gap results were obtained based on the given inputs. All
instances generated for the computational performance analysis can be examined in Table 3.

Table 3. Results of all generated instances.

Number of
Time

Windows

Number of
Product
Types

Number of
Trailer Types

Number of
Washing
Centers

Total
Customer
Number

Number of
Departure

Points
Time (s) Optimality

Gap (%)
Idle Vehicle

Number

2 4 6 3 30 20 66 0 211
2 4 6 3 30 30 68 0.001504 285
2 4 6 3 30 40 154 0.013464 416
2 4 6 3 60 20 192 0.007409 205
2 4 6 3 60 30 304 0.006892 282
2 4 6 3 60 40 358 0.002384 336
2 4 6 3 120 20 868 0.000409 204
2 4 6 3 120 30 1056 0.001095 250
2 4 6 3 120 40 1291 0.001936 381
2 4 6 5 30 20 70 0.001042 213
2 4 6 5 30 30 150 0.00543 296
2 4 6 5 30 40 173 0.003775 406
2 4 6 5 60 20 231 0.005543 213
2 4 6 5 60 30 335 0.000714 282
2 4 6 5 60 40 432 0.005336 406
2 4 6 5 120 20 1068 0.000648 175
2 4 6 5 120 30 1085 0.001259 282
2 4 6 5 120 40 1854 0.00038 400
2 4 6 7 30 20 81 0 202
2 4 6 7 30 30 154 0 268
2 4 6 7 30 40 209 0.000136 442
2 4 6 7 60 20 261 0.003445 162
2 4 6 7 60 30 293 0.002451 245
2 4 6 7 60 40 500 0.004101 319
2 4 6 7 120 20 896 0.001153 213
2 4 6 7 120 30 1147 0.002981 278
2 4 6 7 120 40 1588 0 361
2 6 4 3 30 20 38 0.001683 110
2 6 4 3 30 30 86 0.003185 205
2 6 4 3 30 40 103 0.00774 286
2 6 4 3 60 20 150 0.001646 117
2 6 4 3 60 30 301 0.001703 185
2 6 4 3 60 40 378 0.007842 283
2 6 4 3 120 20 778 0.000172 150
2 6 4 3 120 30 1239 0.000251 184
2 6 4 3 120 40 1318 0.00192 290
2 6 4 5 30 20 77 0.012292 135
2 6 4 5 30 30 119 0.011543 216
2 6 4 5 30 40 162 0.016198 312
2 6 4 5 60 20 229 0.000325 119
2 6 4 5 60 30 393 0.001269 195

Mathematics 2025, 13, 876 26 of 32

Table 3. Cont.

Number of
Time

Windows

Number of
Product
Types

Number of
Trailer Types

Number of
Washing
Centers

Total
Customer
Number

Number of
Departure

Points
Time (s) Optimality

Gap (%)
Idle Vehicle

Number

2 6 4 5 60 40 431 0.009255 212
2 6 4 5 120 20 846 0.00145 177
2 6 4 5 120 30 1434 0.002015 219
2 6 4 5 120 40 2014 0.000335 208
2 6 4 7 30 20 86 0 152
2 6 4 7 30 30 169 0.004965 216
2 6 4 7 30 40 209 0.00317 249
2 6 4 7 60 20 268 0.00387 130
2 6 4 7 60 30 489 0 197
2 6 4 7 60 40 558 0 276
2 6 4 7 120 20 1084 0.000349 155
2 6 4 7 120 30 2009 0.002035 176
2 6 4 7 120 40 1673 0.000583 272
3 4 8 3 30 20 79 0.01133 283
3 4 8 3 30 30 115 0.02052 368
3 4 8 3 30 40 209 0 486
3 4 8 3 60 20 320 0.011837 250
3 4 8 3 60 30 362 0.008242 337
3 4 8 3 60 40 723 0.007918 555
3 4 8 3 120 20 1663 0.003991 282
3 4 8 3 120 30 2183 0.002882 348
3 4 8 3 120 40 2984 0.005002 416
3 4 8 5 30 20 109 0.008376 262
3 4 8 5 30 30 165 0.003161 370
3 4 8 5 30 40 300 0.004484 516
3 4 8 5 60 20 358 0.006682 247
3 4 8 5 60 30 505 0.010832 445
3 4 8 5 60 40 649 0.004283 432
3 4 8 5 120 20 2103 0 222
3 4 8 5 120 30 2588 0.003251 424
3 4 8 5 120 40 2999 0.002644 484
3 4 8 7 30 20 149 0.00176 233
3 4 8 7 30 30 190 0.000787 438
3 4 8 7 30 40 263 0.001167 564
3 4 8 7 60 20 410 0.010249 252
3 4 8 7 60 30 642 0.004233 367
3 4 8 7 60 40 896 0.006561 446
3 4 8 7 120 20 1888 0.000835 256
3 4 8 7 120 30 2492 0.000828 324
3 4 8 7 120 40 3329 0.001285 572
3 8 4 3 30 20 79 0.003928 122
3 8 4 3 30 30 152 0.006709 222
3 8 4 3 30 40 261 0.002199 262
3 8 4 3 60 20 306 0.004119 122
3 8 4 3 60 30 336 0.007213 173
3 8 4 3 60 40 749 0.001538 260
3 8 4 3 120 20 1703 0.005609 190
3 8 4 3 120 30 2101 0.006464 214
3 8 4 3 120 40 3114 0.007332 272
3 8 4 5 30 20 173 0.00079 115
3 8 4 5 30 30 174 0.011344 219
3 8 4 5 30 40 363 0.005943 257
3 8 4 5 60 20 441 0.003685 128
3 8 4 5 60 30 594 0.007789 190
3 8 4 5 60 40 1116 0.01452 280
3 8 4 5 120 20 2322 0.006227 148
3 8 4 5 120 30 2741 0.003363 169
3 8 4 5 120 40 3472 0.005986 297
3 8 4 7 30 20 181 0 132
3 8 4 7 30 30 283 0 157
3 8 4 7 30 40 362 0.001083 304
3 8 4 7 60 20 749 0.020051 108
3 8 4 7 60 30 857 0.005443 143
3 8 4 7 60 40 1384 0.009679 252
3 8 4 7 120 20 2811 0.007037 188
3 8 4 7 120 30 3337 0.004302 213
3 8 4 7 120 40 4948 0.006645 304
4 8 8 7 30 20 421 0.011281 271
4 8 8 7 30 30 742 0.012467 400
4 8 8 7 30 40 1136 0.005035 553
4 8 8 7 60 20 1824 0.010742 292
4 8 8 7 60 30 1973 0.012757 380
4 8 8 7 60 40 3502 0.010559 502
4 8 8 7 120 20 8663 0.005802 244
4 8 8 7 120 30 10,641 0.008517 403
4 8 8 7 120 40 11,457 0.004953 486

Mathematics 2025, 13, 876 27 of 32

5.3. Discussion of Results

It can be seen in the VRP literature that CG-based exact algorithms analyze CPU(s)
mostly with one dimension, the total number of customers. This is because, for example,
their networks mostly consist of just one time window for each node and one departure
node. However, in our work, we have multiple time windows for each node as well
as multiple departure nodes, and those structures aggravate CPU(s) as well. Therefore,
investigation of CPU(s) with multi-dimensions makes sense. In our study, Tables 4 and 5
present a three-dimensional perspective towards CPU(s).

Table 4. CPU(s) analysis compounded by number of total customers, product types, and trailer types.

Customer Size 30 60 120

Number of
Trailer Types 4 6 8 4 6 8 4 6 8

Number of
Product Types

4

Avg CPU(s) 125 175 323 541 1206 2470

Min CPU(s) 66 79 192 320 868 1663

Max CPU(s) 209 300 500 896 1854 3329

Number of
Instances 9 9 9 9 9 9

6

Avg CPU(s) 117 355 1377

Min CPU(s) 38 150 778

Max CPU(s) 209 558 2014

Number of
Instances 9 9 9

8

Avg CPU(s) 225 766 726 2433 2950 10,253

Min CPU(s) 79 421 306 1824 1703 8663

Max CPU(s) 363 1136 1384 3502 4948 11,457

Number of
Instances 9 3 9 3 9 3

Table 5. CPU(s) analysis compounded by number of total customers, washing centers, and fleet size.

Customer Size 30 60 120

Fleet Size L M S L M S L M S

Number of
Washing
Centers

3

Avg CP(s) 159 133 67 723 412 257 2153 1788 1388

Min CPU(s) 115 68 38 723 304 150 1291 1056 778

Max CPU(s) 209 261 86 723 749 336 2984 3114 2101

Number of
Instances 3 5 4 1 6 5 3 4 5

5

Avg CPU(s) 213 196 123 529 603 387 2480 2220 1738

Min CPU(s) 165 109 70 432 335 229 1854 1085 846

Max CPU(s) 300 363 174 649 1116 594 2999 3472 2741

Number of
Instances 3 4 5 3 3 6 3 3 6

7

Avg CPU (s) 508 259 160 1753 828 525 6754 3469 2027

Min CPU(s) 190 149 81 642 293 261 1588 1147 896

Max CPU(s) 1136 421 283 3502 1824 857 11,457 8663 3337

Number of
Instances 5 5 5 4 6 5 4 6 5

In Table 4, due to the extensive number of breakdowns originating from multiple
dimensions of inputs, it was not feasible to include all possible instances. We have six input
parameters: number of time windows, product types, trailer types, washing centers, total
customers, and departure points. Each of them takes three different values, which implies
that a huge number of breakdowns is in existence. Nevertheless, gathering a sufficient
amount of data for each breakdown would require a tremendous amount of computational

Mathematics 2025, 13, 876 28 of 32

time. Therefore, a selected subset of instances (117 instances in total) was analyzed to
provide sufficient insights for the problem. Instances that were excluded are represented by
blanks in the table. It is observed that the instance with 120 total customers, 8 trailer types,
and 8 product types exhibits the highest average computational time. Additionally, when
the number of trailer types or product types increases while the number of customers are
30, 60, or 120, the computational time tends to rise significantly. Specifically, when the total
number of customers is 120 and the number of product types is fixed at 8, a substantial
percentage increase in computational time can be observed, while the number of trailer
types goes up from 4 to 8. That increase in CPU, which is approximately 350%, is almost
the same when the total number of customers is 30 or 60 instead of 120. Similarly, when
the total number of customers is 120 and the number of trailer types is fixed at 8, a marked
increase in the computational time occurs, whereas the number of product types increases
from 4 to 8. An approximately 450% difference in the CPU time emerges during that
increase in the number of product types. The same circumstance with the same percentage
increase can also be observed, while the number of total customers is 30 or 60.

In Table 5, it is evident that the highest computational times occur when there are
120 customers, 7 washing centers, and a large fleet size. A significant percentage increase
in computational time is observed when the number of washing centers is going up from 3
to 7 while having 120 customers with a large fleet size. Furthermore, for 120 customers and
7 washing centers, the computational time undergoes a huge percentage increase, whereas
the fleet size shifts from small to large. However, those two percentage increases are so
close to each other; the first of them is approximately 313%, and the second one is almost
333%. The same observation can also be made when the total number of customers is
30 instead of 120, and a 317% increase takes place for both cases. Although, these percentage
increases become different, whereas the same observation with 60 customers is in existence.
It is important to note that, in Table 4, a small-sized fleet (S) comprises a maximum of
220 vehicles, whereas a medium-sized fleet (M) consists of 221 to 340 vehicles. A large-sized
fleet (L) includes more than 340 vehicles but fewer than 600.

Recalling that our problem involves high-dimensional structures and each input has its
own breakdowns, one can examine the CPU(s) in a multi-dimensional frame. Thus, Figure 4
enables one to investigate the two-dimensional variation of CPU(s) among instances. In
Figure 4, one of those dimensions is always labeled the number of customer points, as
the VRP literature is familiar with. However, in order to complete the two-dimensional
frame, the other dimension is selected among fleet size, the number of time windows,
departure points, the number of product types, trailer types, and washing centers. The
VRP literature widely acknowledges that an increase in the number of customer nodes
significantly escalates the solution time in VRP. However, as illustrated in Figure 4, other
factors, such as fleet size, the number of time windows, the number of washing centers,
the number of departure nodes, and the number of product and trailer types, can further
exacerbate the challenges posed by a large number of customers. In short, we aim to
examine how the CPU time reacts when extra complexities are added to our specified FTL
network. For example, instances that have a high number of time windows and a high
number of customer points increases the CPU time more exponentially than ones which
have a high number of washing centers and high number of customer points. In particular,
Figure 4b demonstrates that the increase in the number of time windows intensifies the
solution time more substantially compared to Figure 4a–f, while the number of customers
grows. This effect is evident because the divergence between lines in Figure 4b becomes
more pronounced as the customer size increases. In contrast, Figure 4d reveals that an
increase in the number of departure points results in an almost linear shift in solution
time as opposed to others, whereas the number of customers rises due to the fact that

Mathematics 2025, 13, 876 29 of 32

the divergence between lines is not growing considerably. Additionally, with respect to
Figure 4e,f, it can be inferred that CPU time is more sensitive in Figure 4f. This is because
the divergence between lines is more apparent in Figure 4f. This situation implies that
while instances with a high number of customers are observed, the CPU time tends to react
more significantly with the rising number of trailer types than with the growing number of
product types. Regarding Figure 4a,c, it can be deduced that the reaction of the CPU time
tends to be more elevated in Figure 4a due to the divergence between lines being more
obvious. This circumstance indicates that while instances with a high number of customers
are observed, the CPU time tends to respond more visibly to the increase in fleet size than
to the increase in washing centers.

Mathematics 2025, 13, x FOR PEER REVIEW 31 of 34

to Figure 4e,f, it can be inferred that CPU time is more sensitive in Figure 4f. This is be-

cause the divergence between lines is more apparent in Figure 4f. This situation implies

that while instances with a high number of customers are observed, the CPU time tends

to react more significantly with the rising number of trailer types than with the growing

number of product types. Regarding Figure 4a,c, it can be deduced that the reaction of the

CPU time tends to be more elevated in Figure 4a due to the divergence between lines

being more obvious. This circumstance indicates that while instances with a high number

of customers are observed, the CPU time tends to respond more visibly to the increase in

fleet size than to the increase in washing centers.

(a) (b)

(c) (d)

(e) (f)

Figure 4. CPU(s) analysis with the number of total customers compounded by the fleet size (a).

CPU(s) analysis with the number of total customers compounded by the number of time windows

(b). CPU(s) analysis with the number of total customers compounded by the number of washing

centers (c). CPU(s) analysis with the number of total customers compounded by the number of de-

parture points (d). CPU(s) analysis with the number of total customers compounded by the number

of product types (e). CPU(s) analysis with the number of total customers compounded by the num-

ber of trailer types (f).

Nevertheless, our algorithms were implemented on Visual Studio (2020), and linear

programming models were solved with IBM ILOG CPLEX 12.9. (IBM 2020) using a com-

puter with 2.4 GHz Intel i7-13700 processor and 32 GB RAM running on a Windows 11

Figure 4. CPU(s) analysis with the number of total customers compounded by the fleet size (a).
CPU(s) analysis with the number of total customers compounded by the number of time windows (b).
CPU(s) analysis with the number of total customers compounded by the number of washing centers
(c). CPU(s) analysis with the number of total customers compounded by the number of departure
points (d). CPU(s) analysis with the number of total customers compounded by the number of
product types (e). CPU(s) analysis with the number of total customers compounded by the number
of trailer types (f).

Nevertheless, our algorithms were implemented on Visual Studio (2020), and linear
programming models were solved with IBM ILOG CPLEX 12.9. (IBM 2020) using a
computer with 2.4 GHz Intel i7-13700 processor and 32 GB RAM running on a Windows

Mathematics 2025, 13, 876 30 of 32

11 operating system. One can also observe all detailed results regarding our instances in
Table 5.

6. Conclusions
This study addresses the FTL problem, which is a critical and widely encountered

operation in the logistics sector. The proposed algorithm can be applied to reach the exact
solution when information related to vehicles and customers is apparent. If demands owned
by the logistic firm have been categorized as contractual or non-contractual, specifying the
product types and the number of time windows within which those orders can be met, then
those inputs can be put into the algorithm. Furthermore, the information regarding which
type of available vehicle can depart with which type of trailer from a specific location can
be embedded into the inputs of the algorithm as well as the details of washing centers.
Afterwards, involving relevant transportation costs, travel times, and profits originating
from satisfying non-contracted customers, a logistic firm can find out the optimal total
transportation cost and optimal routes for designated vehicles by arranging the departure
time of those vehicles to reduce waiting times at relevant locations on their routes as well.

The performance results indicate that small optimality gaps of less than 1% can be
achieved within reasonable computational times even in the large-scale instances of the
logistic firm that inspired our work. Specifically, optimality can be attained within three
and a half hours for instances involving up to one-hundred-and-twenty customer points,
eight product and trailer types, seven washing centers, four time windows, and forty
departure points. Furthermore, it can be noted that the computational time required for
optimization over extended time horizons with a large number of customers tends to rise
substantially. This is mainly due to the fact that the CPU time is most affected by the
increase in the number of time windows as the number of customers increases, as shown
in the Computational Study Section. Undoubtedly, the computational time can also be
reduced significantly by employing enterprise processors or servers in chip markets.

However, one of the limitations of this study is the absence of a benchmark dataset for
the relevant FTL problem concept, which necessitated the creation of artificial instances.
Furthermore, the large number of breakdowns caused by the high number of parameters
entails a huge consumption of time to collect a sufficient amount of data for each breakdown
regarding further analysis.

Future research could explore more complex networks, diverse vehicle types, driver
constraints, and dynamic optimization in FTL operations. This includes incorporating
electric vehicles and drones, considering driver rest requirements, and applying stochastic
and dynamic optimization techniques to address uncertainties in transportation processes.
Overall, future studies should focus on evolving vehicle, driver, and network concepts in
FTL transportation.

Author Contributions: Conceptualization, methodology, formal analysis, writing—original draft,
writing—review and editing, T.E. and R.E.; software, validation, T.E.; supervision, R.E. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article, and further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2025, 13, 876 31 of 32

References
1. Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution:

A literature review and classification. Oper. Res. 2022, 22, 2033–2062.
2. Sampson, J.R. Adaptation in natural and artificial systems (John H. Holland). SIAM Rev. 1976, 18, 529. [CrossRef]
3. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 1996, 26, 29–41. [CrossRef] [PubMed]
4. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.

[CrossRef]
5. Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 1987, 35,

254–265. [CrossRef]
6. Dantzig, G.B.; Philip, W. Decomposition principle for linear programs. Oper. Res. 1960, 8, 101–111. [CrossRef]
7. Costa, L.; Contardo, C.; Desaulniers, G. Exact branch-price-and-cut algorithms for vehicle routing. Transp. Sci. 2019, 53, 946–985.

[CrossRef]
8. Desaulniers, G.; Lessard, F.; Hadjar, A. Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle

routing problem with time windows. Transp. Sci. 2008, 42, 387–404. [CrossRef]
9. Righini, G.; Salani, M. Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem

with resource constraints. Discret. Optim. 2006, 3, 255–273. [CrossRef]
10. Baldacci, R.; Mingozzi, A.; Roberti, R. New route relaxation and pricing strategies for the vehicle routing problem. Oper. Res.

2011, 59, 1269–1283. [CrossRef]
11. Ball, M.O.; Golden, B.; Assad, A.A.; Bodin, L. Planning for truck fleet size in the presence of a common-carrier option. Decis. Sci.

1983, 14, 103–120. [CrossRef]
12. Desrosiers, J.; Laporte, G.; Sauve, M.; Soumis, F.; Taillefer, S. Vehicle routing with full loads. Comput. Oper. Res. 1988, 15, 219–226.

[CrossRef]
13. Soleilhac, G.; Lehuédé, F.; Medina, J.; Péton, O. The Vehicle Routing Problem with FTL and LTL Carriers. Ph.D. Thesis, IMT

Atlantique, Nantes, France, 2022.
14. Ghilas, V.; Hedtke, I.; Weise, J.; Van Woensel, T. Spot market versus full charter fleet: Decision support for full truck load tenders.

EURO J. Decis. Process. 2022, 10, 100022. [CrossRef]
15. El Bouyahyiouy, K.; Bellabdaoui, A. The selective full truckload multi-depot vehicle routing problem with time windows:

Formulation and a genetic algorithm. Int. J. Supply Oper. Manag. 2022, 9, 299–320.
16. Ghorpade, T.; Rangaraj, N. Order first split second heuristic for alternative routing strategy for freight railways. Transp. Policy

2022, 124, 139–148. [CrossRef]
17. Fadda, P.; Mancini, S.; Serra, P.; Fancello, G. The heterogeneous fleet vehicle routing problem with draft limits. Comput. Oper. Res.

2023, 149, 106024. [CrossRef]
18. Çabuk, S.; Erol, R. Solving Dynamic Full-Truckload Vehicle Routing Problem Using an Agent-Based Approach. Mathematics 2024,

12, 2138. [CrossRef]
19. Lu, F.; Du, Z.; Wang, Z.; Wang, L.; Wang, S. Towards enhancing the crowdsourcing door-to-door delivery: An effective model in

Beijing. J. Ind. Manag. Optim. 2025, 21, 2371–2395. [CrossRef]
20. Masmoudi, M.A.; Anna Kuzmicz, K.; Pesch, E.; Demir, E.; Hosny, M. Container truck transportation routing as a mixed fleet

heterogeneous dial-a-ride problem. In Proceedings of the 9th International Conference on Engineering, Project, and Production
Management (EPPM2018), Cape Town, South Africa, 24–26 November 2018; Volume 312.

21. Nasr, N.; Niaki ST, A.; Hussenzadek Kashan, A.; Seifbarghy, M. An efficient solution method for an agri-fresh food supply chain:
Hybridization of Lagrangian relaxation and genetic algorithm. Environ. Sci. Pollut. Res. 2021, 1–19. [CrossRef]

22. Xue, N.; Bai, R.; Qu, R.; Aickelin, U. A hybrid pricing and cutting approach for the multi-shift full truckload vehicle routing
problem. Eur. J. Oper. Res. 2021, 292, 500–514. [CrossRef]

23. Baller, R.; Fontaine, P.; Minner, S.; Lai, Z. Optimizing automotive inbound logistics: A mixed-integer linear programming
approach. Transp. Res. Part E Logist. Transp. Rev. 2022, 163, 102734. [CrossRef]

24. El Bouyahyiouy, K.; Bellabdaoui, A. A Genetic-Based Algorithm for Commodity Selection and Full Truckload Vehicle Routing
Problem. In International Conference on Digital Technologies and Applications; Springer Nature: Cham, Switzerland, 2023; pp. 806–816.

25. Melchiori, L.; Nasini, G.; Montagna, J.M.; Corsano, G. Resources synchronization in a full truckload pickup and delivery problem:
An exact approach. Comput. Oper. Res. 2023, 151, 106118. [CrossRef]

26. El Bouyahyiouy, K.; Annouch, A.; Bellabdaoui, A. An MILP-based Lexicographic Approach for Robust Selective Full Truckload
Vehicle Routing Problem. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 642–650. [CrossRef]

27. Kohl, N.; Desrosiers, J.; Madsen, O.B.; Solomon, M.M.; Soumis, F. 2-path cuts for the vehicle routing problem with time windows.
Transp. Sci. 1999, 33, 101–116. [CrossRef]

28. Kallehauge, B.; Larsen, J.; Madsen, O.B.; Solomon, M.M. Vehicle Routing Problem with Time Windows; Springer: Greer, SC, USA, 2005.

https://doi.org/10.1137/1018105
https://doi.org/10.1109/3477.484436
https://www.ncbi.nlm.nih.gov/pubmed/18263004
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1287/trsc.2018.0878
https://doi.org/10.1287/trsc.1070.0223
https://doi.org/10.1016/j.disopt.2006.05.007
https://doi.org/10.1287/opre.1110.0975
https://doi.org/10.1111/j.1540-5915.1983.tb00172.x
https://doi.org/10.1016/0305-0548(88)90034-2
https://doi.org/10.1016/j.ejdp.2022.100022
https://doi.org/10.1016/j.tranpol.2019.10.010
https://doi.org/10.1016/j.cor.2022.106024
https://doi.org/10.3390/math12132138
https://doi.org/10.3934/jimo.2024175
https://doi.org/10.1007/s11356-021-13718-8
https://doi.org/10.1016/j.ejor.2020.10.037
https://doi.org/10.1016/j.tre.2022.102734
https://doi.org/10.1016/j.cor.2022.106118
https://doi.org/10.14569/IJACSA.2023.0140967
https://doi.org/10.1287/trsc.33.1.101

Mathematics 2025, 13, 876 32 of 32

29. Savelsbergh, M. A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 1997, 45, 831–841. [CrossRef]
30. de Carvalho, J.M.V. Exact solution of cutting stock problems using column generation and branch-and-bound. Int. Trans. Oper.

Res. 1998, 5, 35–44. [CrossRef]
31. Desrosiers, J.; Soumis, F.; Desrochers, M. Routing with time windows by column generation. Networks 1984, 14, 545–565.

[CrossRef]
32. Dial, R.; Glover, F.; Karney, D.; Klingman, D. A computational analysis of alternative algorithms and labeling techniques for

finding shortest path trees. Networks 1979, 9, 215–248. [CrossRef]
33. Feillet, D.; Dejax, P.; Gendreau, M.; Gueguen, C. An exact algorithm for the elementary shortest path problem with resource

constraints: Application to some vehicle routing problems. Netw. Int. J. 2004, 44, 216–229. [CrossRef]
34. Michelini, S.; Yasemin, A.; Hande, K. Branch-and-price algorithms for a VRP with time windows and variable departure times. In

Proceedings of the IFORS 2017-21st Conference of the International Federation of Operational Research Societies, Québec City,
QC, Canada, 17–21 July 2017.

35. Righini, G.; Matteo, S. New dynamic programming algorithms for the resource constrained elementary shortest path problem.
Netw. Int. J. 2008, 51, 155–170. [CrossRef]

36. Floyd, R.W. Algorithm 97: Shortest path. Commun. ACM 1962, 5, 345. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1287/opre.45.6.831
https://doi.org/10.1111/j.1475-3995.1998.tb00100.x
https://doi.org/10.1002/net.3230140406
https://doi.org/10.1002/net.3230090304
https://doi.org/10.1002/net.20033
https://doi.org/10.1002/net.20212
https://doi.org/10.1145/367766.368168

	Introduction
	Literature Review
	Problem Description
	Problem Definition
	Mathematical Model
	Network Representation

	Methodology
	Construction Heuristic
	Column Generation Algorithm
	Label-Setting Algorithm
	Acceleration Techniques

	Computational Study
	Details of Experiments
	Results of Experiments
	Discussion of Results

	Conclusions
	References

