
Academic Editor: Victor Mitrana

Received: 4 February 2025

Revised: 1 March 2025

Accepted: 3 March 2025

Published: 4 March 2025

Citation: Zhang, W.; Zhang, J.

Hallucination Mitigation for

Retrieval-Augmented Large Language

Models: A Review. Mathematics 2025,

13, 856. https://doi.org/10.3390/

math13050856

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Hallucination Mitigation for Retrieval-Augmented Large
Language Models: A Review
Wan Zhang and Jing Zhang *

School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China; zhangwan@seu.edu.cn
* Correspondence: jingz@seu.edu.cn

Abstract: Retrieval-augmented generation (RAG) leverages the strengths of information
retrieval and generative models to enhance the handling of real-time and domain-specific
knowledge. Despite its advantages, limitations within RAG components may cause hallu-
cinations, or more precisely termed confabulations in generated outputs, driving extensive
research to address these limitations and mitigate hallucinations. This review focuses on
hallucination in retrieval-augmented large language models (LLMs). We first examine the
causes of hallucinations from different sub-tasks in the retrieval and generation phases.
Then, we provide a comprehensive overview of corresponding hallucination mitigation
techniques, offering a targeted and complete framework for addressing hallucinations in
retrieval-augmented LLMs. We also investigate methods to reduce the impact of hallu-
cination through detection and correction. Finally, we discuss promising future research
directions for mitigating hallucinations in retrieval-augmented LLMs.

Keywords: large language models; hallucination; retrieval-augmented generation;
hallucination mitigation

MSC: 68T07

1. Introduction
In recent years, large language models (LLMs) such as GPT-4 [1], LLaMA [2], and

Gemini [3] have rapidly advanced, achieving significant progress in the field of natural
language processing (NLP). These models learn statistical representations of linguistic patterns
and word distributions through complex deep learning architectures and pre-training on vast
datasets and adapt to domain-specific tasks through supervised fine-tuning. They are widely
used for various tasks, including semantic analysis [4], text generation [5], and reasoning [6].
However, due to their reliance on fixed parameters, LLMs often produce task-irrelevant
outputs or generate factually inconsistent responses when faced with tasks beyond the scope
of their training data. This limitation can be understood as the knowledge boundary of
LLMs, which refers to the extent of their knowledge derived solely from the patterns and
associations in the training data. This phenomenon, where the model generates responses that
are inconsistent with facts or appear meaningless, is commonly referred to as hallucination
or confabulation. Hallucinations undermine the reliability and trustworthiness of LLMs,
and in scenarios requiring precise information, they can lead to severe consequences. To
address the limitations of LLMs’ knowledge boundaries and the high training costs, retrieval-
augmented generation (RAG) [7] aims to alleviate knowledge deficiencies by retrieving
external information and providing it to the LLM, improving the quality of domain-specific
responses and reducing hallucinations. While RAG technology has shown great promise in
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mitigating hallucinations, the RAG paradigm itself also has limitations, with the insufficient
capabilities of its components contributing to the generation of hallucinations.

Investigating the root causes of hallucinations in the RAG paradigm helps to under-
stand the mechanisms of its components at different stages and how their limitations affect
LLM-generated responses. It also provides guidance for developing hallucination mitigation
strategies for retrieval-augmented LLMs. Based on the retrieval and generation phases of
RAG, we categorize the sub-tasks in each phase and analyze the fundamental issues causing
hallucinations in each sub-task. This classification spans the entire RAG process, allowing a
comprehensive analysis of the root causes and mechanisms of hallucinations at each stage.
Specifically, in the retrieval phase, we focus on data source, query, retriever, and retrieval
strategy problems. In the generation phase, we address context noise, context conflict, and the
middle curse in long contexts, alignment problems, and model capability boundary problems.

In addition, based on the causes of hallucinations, we surveyed and categorized
corresponding hallucination mitigation methods. We found that prompt engineering plays
a significant role in mitigating hallucinations, addressing tasks such as designing prompts
to directly reduce hallucinations, using prompt techniques to automate the construction
of resources like demonstrations and labeled datasets for hallucinations mitigation, and
evaluating model performance on specific tasks to further guide the tuning of generative
models. Given its simplicity, efficiency, universality, and interpretability compared to model
optimization and supervised fine-tuning, most of the hallucination mitigation methods we
reviewed extensively utilize prompt techniques. This review aims to encourage researchers
to further explore the potential of prompt engineering in hallucination mitigation tasks
while consciously adhering to the norms of using prompt engineering for various research
tasks [8]. Considering that hallucinations are still unavoidable even after optimizing
each subtask of RAG, it is also worth investigating methods to reduce the impact of
hallucinations through detection and correction.

Finally, we also discuss the challenges faced by existing methods, provide some
promising directions to mitigate hallucinations in retrieval-augmented LLMs, and offer
suggestions for future research.

1.1. Comparison with Existing Reviews and Surveys

The hallucination or confabulation issue in generative artificial intelligence (GAI)
has had a significant impact on the reliability and trustworthiness of many existing ap-
plications based on generative AI, making it a major challenge in the field. Numerous
reviews and surveys have been conducted on this topic [9–14]. These surveys explore the
hallucination problem from various perspectives and offer valuable insights. However,
our review specifically focuses on hallucinations within the RAG paradigm. Liu et al. [9]
provided an in-depth investigation of hallucinations in large visual language models
(LVLMs), introducing innovative evaluation methods and benchmarks, analyzing the
root causes of hallucinations, and discussing corresponding mitigation techniques. Sa-
hoo et al. [10] established a precise definition and structured classification of hallucinations,
offering a comprehensive overview of hallucination detection and mitigation techniques
for multimodal foundation models. Alghamdi et al. [11] discussed knowledge graph-based
enhancement techniques from three perspectives, knowledge-aware inference, training,
and knowledge-aware validation, assessing their effectiveness in reducing hallucinations.
Tonmoy et al. [12] classified hallucination mitigation techniques into prompt engineering
and model design, providing a thorough review. Huang et al. [13] offered a hierarchical
classification method for hallucinations and presented a detailed, coherent introduction
to their causes and solutions across data, training, and inference stages. Zhang et al. [14]
analyzed the causes of hallucinations in LLMs and provided a comprehensive review of
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mitigation methods across four stages: pre-training, supervised fine-tuning, reinforcement
learning from human feedback (RLHF), and inference. However, our review specifically
focuses on classifying and analyzing the root causes and mechanisms of hallucinations
in the sub-tasks of the RAG paradigm and provides corresponding mitigation methods.
These methods emphasize the potential of prompt engineering in reducing hallucinations.

1.2. Organization of the Review

This paper reviews recent research on hallucinations in retrieval-augmented LLMs.
Figure 1 shows the internal organizational principles of this review, which include the
causes of hallucinations and corresponding mitigation methods in retrieval-augmented
LLMs. Specifically, the causes of hallucination mitigation in different subtasks of the
generation deficiency and retrieval failure stages in Figure 1 are analyzed in detail in
Section 3. Sections 4 and 5 review hallucination mitigation methods corresponding to the
causes in the subtasks of the retrieval and generation stages, respectively. Additionally,
Section 2 introduces the classical RAG pipeline, delineates the conceptual distinctions
between hallucination and confabulation, summarizes existing taxonomies of hallucina-
tion phenomena, and overviews prompt techniques commonly employed in hallucination
mitigation strategies. Section 6 covers techniques for mitigating hallucinations after detec-
tion. Finally, Section 7 discusses the challenges faced by current mitigation methods and
provides suggestions for future research directions.

Figure 1. Causes of hallucinations and corresponding mitigation methods in retrieval-augmented
LLMs. Hallucinations in RAG models arise from two primary stages: retrieval failure and generation
deficiency. Retrieval failure includes four sub-problems: data sources, queries, retrievers, and
retrieval strategy problems. Generation deficiency encompasses five sub-problems: context noise,
context conflict, middle curse, alignment problems, and capability boundary. For each sub-problem,
corresponding solutions for mitigating hallucinations are provided.
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2. Concepts and Definitions
This section provides some important concepts and definitions related to retrieval-

augmented LLMs.

2.1. Retrieval-Augmented Generation

A typical retrieval-augmented generation (RAG) process is shown in Figure 2. The
user inputs a question about recent news, but due to the real-time nature of news, the
LLM’s internal parameters do not contain the necessary knowledge to answer the question.
External knowledge needs to be retrieved and integrated to fill this information gap. In the
retrieval phase, the input question is pre-processed and passed as a query to the retriever.
RAG uses external retrieval engines such as BM25, TF-IDF, or more complex neural retrieval
models to perform dense or sparse retrieval from web pages, pre-constructed document
corpora, knowledge bases, or databases to find relevant documents or paragraphs. Dense
retrieval involves encoding documents and queries using a pre-trained embedding model
to generate dense vector representations. The retriever typically returns the top-k most
relevant text segments based on the query-document relevance. In the generation phase,
the retrieved documents or paragraphs are combined with the user’s original question and
passed to the generation model to generate a response for the user.

Figure 2. The basic workflow of retrieval-augmented generation.

2.2. Hallucinations or Confabulation in Large Language Models

The concept of hallucination originated in psychology, referring to perceptual expe-
riences that occur without external stimuli or perceptions that deviate from reality [15].
In natural language processing, hallucinations typically refer to information generated by
LLMs that is inconsistent with facts or nonsensical. However, Smith et al. [16] contend
that the term hallucination inappropriately suggests that LLMs possess sensory perception,
thereby constituting an imprecise metaphor. They propose the concept of confabulation,
derived from psychiatry, as a more suitable alternative. Confabulation denotes the uncon-
scious fabrication of false memories by individuals with impaired memory or cognitive
deficits to fill gaps in their recollection [17]. Unlike perceptual experiences, confabulations



Mathematics 2025, 13, 856 5 of 33

represent erroneous reconstructions of information that are influenced by internal and
external knowledge and the environment. This aligns more closely with the behavior of
LLMs, which generate outputs that are erroneous yet plausible based on their training data
and context. Although the term confabulation has gained traction in public discourse on
artificial intelligence [18] and has garnered consensus among researchers, it has not yet
been widely adopted in the academic literature. Consequently, we continue to employ the
term hallucination to review and analyze the relevant methods.

Some researchers have categorized hallucinations based on different criteria. And we
list examples of different types of hallucinations in Table 1. Ji et al. [19] categorized halluci-
nations in NLP into intrinsic and extrinsic based on whether they can be verified against
the input source. Intrinsic hallucination occurs when the generated content contradicts the
input, while extrinsic hallucination refers to content that cannot be verified from the input
but may be correct in external knowledge. Huang et al. [13] refined this classification by
introducing factuality hallucination and faithfulness hallucination based on the consistency
with real-world knowledge and user-centered contexts. Factuality hallucination involves
inconsistencies with real-world facts, such as factual contradiction (responses contradicting
known facts) or factual fabrication (responses fabricated as facts). Faithfulness hallucination
refers to inconsistencies with user instructions, context, or internal consistency, includ-
ing instruction inconsistency (responses deviating from the original instructions), context
inconsistency (responses inconsistent with provided context), and logical inconsistency
(internal contradictions in responses). Rawte et al. [20] proposed several classification
methods, including hallucinations caused by correct or incorrect prompts, the severity of
hallucinations, and specific error types. They termed the responses that deviate from facts
when LLMs process factually correct prompts as the factual mirage and the seemingly
plausible but incorrect responses generated from factually incorrect prompts as the silver
lining. They further categorized hallucinations into six specific types: acronym ambiguity,
numeric nuisance, generated golem, virtual voice, geographic erratum, and time warp.

Table 1. Examples of different types of hallucinations.

Type Question Response Explanation

Intrinsic
Hallucination

Company A’s
financial report
shows a net cash
flow from operating
activities of
CNY 520 million.
Analyze A’s cash
flow situation.

The net cash flow
from investing
activities is
CNY 380 million.

The actual financial
report shows a figure
of CNY 520 million,
which contradicts
the facts.

Extrinsic
Hallucination

The improvement
in cash flow is
attributed to
the expansion in
the Southeast
Asian market.

The financial report
does not disclose
regional details, but
it may be consistent
with external knowledge.

Factuality
Hallucination

Please introduce
the history of
the Great Wall
of China.

The Great Wall
of China was
ordered to be
built by Emperor
Qin Shi Huang
after he unified
the six warring
states.

After Emperor Qin Shi
Huang unified the six
warring states, he
undertook large scale
repairs and expansions
of the Great Wall, but
this was not the time
when the Great Wall
was originally built.
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Table 1. Cont.

Type Question Response Explanation

Faithfulness
Hallucination

Translate: Who
was the director
of Avatar?

Avatar was directed
by James Cameron.

The LLM’s response is
inconsistent with the
instruction and failed
to translate the
sentence as required.

Factual
Mirage

Conan Doyle is
the author of
the Sherlock
Holmes series.
Please introduce
Conan Doyle.

Conan Doyle was
awarded the title
of “Royal Deective”
for his exceptional
reasoning skills.

Arthur Conan Doyle was
never awarded the title of
“Royal Detective”. When
LLM processes a factually
correct prompt, the
generated output may
deviate from the truth.

Silver
Lining

Why did Lin
Daiyu uproot the
weeping willow?

Lin Daiyu uprooted
the weeping willow
because she was
sorrowful over her
tragic fate, using
it as a way to express
her grief over the
impermanence
of life and the
unfairness of destiny.

Lin Daiyu did not
uproot the weeping
willow. The LLM
generated false
content when handling
prompts with
factual errors.

In retrieval-augmented LLMs, hallucination caused by the inherent knowledge boundary
of LLMs is mitigated by retrieving external information, but hallucinations may still occur [21].
When the retrieved information contains false, outdated content, or conflicts with the internal
parameters of the model, factuality hallucination may occur. When the query does not
accurately reflect the user’s intention, the retrieved content does not accurately reflect the
user’s query, which will cause faithfulness hallucination. When LLMs cannot make good use
of the context obtained from the query, both types of hallucinations may occur.

2.3. Common Prompt Techniques

Prompt engineering directs the model to generate higher-quality, more user-friendly
responses through the careful design and construction of input prompts. Compared to
other methods, such as model architecture modification or fine-tuning, prompt engineering
offers significant advantages in terms of simplicity, efficiency, generality, and interpretabil-
ity. It enables rapid adaptation to new tasks and efficient optimization by simply designing
appropriate input prompts without the need to modify the model structure or retrain the
model. Additionally, prompt techniques have minimal computational and data require-
ments, making them easy to implement and deploy. Prompt engineering also supports
timely adjustment and optimization, maintaining its universality across different models.
As a result, prompt engineering plays a crucial role in the study of hallucination mitigation
in retrieval-augmented LLMs. On the one hand, well-constructed prompts can guide the
model to generate outputs with higher semantic alignment to input queries by optimizing
the conditional probability distribution over token sequences, leading to more accurate and
consistent responses. On the other hand, prompt engineering can also automate the creation
of labeled datasets, saving time and cost, and evaluate the model’s performance, guiding
further tuning. The following section introduces common prompt techniques used in the
hallucination mitigation methods discussed later to help further understand the role of
prompt engineering in these tasks. Table 2 shows examples of different prompt techniques.
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• Clear and Precise Prompts

Constructing clear and specific prompts can effectively guide the model to generate
the desired output. LLMs, pre-trained on vast datasets containing extensive knowledge,
may struggle to interpret vague or broad prompts, often resulting in generalized responses.
In contrast, clear and precise prompts can reduce ambiguity and polysemy in language,
clearly point out the core content that users are concerned about, make it easier for the
model to identify and match patterns related to these keywords, and provide more accurate
and satisfactory responses.

• Role-Playing Prompts

Role-playing prompts [22] assign a specific role or identity to the LLMs, guiding them
to generate responses that align with a particular style or area of expertise. This approach
helps the model better emulate human conversational patterns, enhancing the accuracy
and relevance of its output. For instance, in customer service applications, the model can
assume the role of a customer service representative, thereby providing more professional
and user-friendly interactions.

• Few-Shot Prompts

Few-shot prompts [23] involve providing a small number of carefully designed ex-
amples within the prompt to help the model quickly grasp the task requirements and
the expected output format. This approach enhances the accuracy and consistency of
the model’s responses. The few-shot prompt is particularly beneficial in scenarios with
limited data, as it reduces the reliance on large-scale annotated datasets while significantly
improving the model’s performance across various tasks.

• Chain-of-Thought (CoT) Prompts

CoT prompts [24] simulate the step-by-step reasoning process of humans when solving
complex problems, guiding the model to generate intermediate reasoning steps and gradually
work through each step to reach the final answer. This approach significantly enhances the
model’s performance in multi-step reasoning tasks, such as solving mathematical problems,
common-sense reasoning, and symbolic reasoning. Zhang et al. [25] introduced Auto-CoT,
which automatically prompts LLMs to generate reasoning chains by incorporating the phrase
“Let’s think step by step” into the prompt. These chain-of-thought promptings force the
model to transform the implicit probability distribution calculation process into an explicit
logical chain of text output. When the model answers complex problems step by step, it faces
subtasks with lower entropy, making it easier to generate accurate responses and reducing the
risk of error accumulation. As a result, it can better answer complex questions.

• Program-of-Thought (PoT) Prompts

PoT prompts [26] direct the language models to express their reasoning process using a
programming language, delegating computational tasks to an external program interpreter
through a clear task description, sample code, and specific questions. PoT decomposes
complex reasoning processes into distinct coding steps, leveraging the iteration and loop
structures of programming languages to efficiently manage tasks requiring multiple iter-
ations. By utilizing a program interpreter for complex computations, PoT helps mitigate
errors in the language model’s calculations, thereby enhancing both the accuracy and
efficiency of the model in numerical reasoning tasks.

• Opinion-Based Prompts

The opinion-based prompts [27] reformulate the context into a narrator’s statement
and transform the question into an inquiry about the narrator’s opinion on that statement.
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This approach alters the nature of the question, compelling the model to focus more on the
specific statements in the context rather than its internally stored factual knowledge.

Table 2. Examples of different prompt techniques.

Type Example Prompt Explanation

Clear and Precise

I want to learn about healthy
diets, especially low-sugar,
high-fiber meal combinations
suitable for diabetic patients
to eat for breakfast.

The prompt “I want to learn
about healthy diets” is too
ambiguous, leading to generic
suggestions. A clear prompt
specifying the target audience,
time, and needs helps the
model provide more
tailored advice.

Role-Playing

You are a professional
customer service
representative, responsible
for providing customer
support for an
electronics company.

Assigning a role (such as
a customer service
representative) to the
LLM in the prompt
enables it to generate
role-specific responses.

Few-Shot

Question: Classify the
sentiment of the following
sentences into “positive”
or “negative”.
Examples:
“I absolutely love this phone!”
positive
“The product is terrible. I hate it.”
negative
Input: “The movie was amazing!”
Output:

By showing it how to
classify sentences as “positive”
or “negative”, the model
can then apply this pattern
to new inputs, like “The
movie was amazing!”

CoT

Question: If the train leaves at
2:30 p.m. and the journey takes
3 h and 45 min, what
time will it arrive?
Step-by-step reasoning:
1. Start time: 2:30 p.m.
2. Add 3 h to 2:30 p.m.
to get 5:35 p.m.
3. Add 5 min to 5:30 p.m.
to get 5:30 p.m.
Output:

Through step-by-step reas-
oning, the CoT prompt helps
the model perform addition
operations in chronological
order to arrive at the
correct arrival time.

Auto-CoT

What should be included when
writing a proposal for regional
environmental protection
measures? Let’s think step
by step.

Using the Auto-CoT prompt
with “Let’s think step by
step” gives model more
time to process and reason.

PoT

Question: What is the sum of
1 to 100?
# Python 3.8 code
total_sum = 0
for i in range(1, 101):

total_sum+=i
print(total_sum)

This PoT prompt uses a clear
task description and example
code to guide the model in
reasoning through code. The
program interpreter executes
the task and computes the
result efficiently.
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Table 2. Cont.

Type Example Prompt Explanation

Opinion-Based

Li Hua said: “The new president
of the United States is Donald
Trump”. According to Li
Hua’s opinion, who is the new
president of the United States?

Opinion-based prompt makes
the model focus on Li Hua’s
statement and reflect that
individual’s belief, not its
internal knowledge.

3. Hallucination Causes in Retrieval-Augmented Generation Process
LLMs often suffer from hallucinations when generating text, which affects the reliability

and accuracy of the model output. In order to mitigate hallucinations in LLMs and improve
the factuality of their output, the RAG framework was proposed [28–31]. RAG combines the
retrieval module and the generation module and uses the external knowledge base to provide
the model with richer and more accurate contextual information, thereby improving the
accuracy and credibility of the generated content. Although RAG has significant advantages
in mitigating hallucinations, it still has the possibility of introducing hallucinations at different
stages. Specifically, hallucinations in RAG models arise from two primary stages: retrieval
failure and generation deficiency. In the retrieval stage, the retrieval module may not be able
to provide accurate contextual information due to the unreliability of the data source, the
ambiguity of the user query, or the limitations of the retriever and retrieval strategy. In the
generation phase, the generation module may generate content inconsistent with the retrieved
information or input requirements due to context noise, context conflict, middle curse or
alignment problems, or inaccurate generation due to limited model capabilities. We will start
from these two stages to reveal the specific mechanism of hallucination in the process of
retrieval-enhanced generation and provide a theoretical basis for subsequent research.

3.1. Retrieval Failure

In the retrieval augmentation system, the retrieval process plays a core role and is
responsible for obtaining contextual information related to user queries from external
knowledge bases to enhance the generation ability of language models. However, the
retrieval process may cause hallucinations due to various reasons. This section will analyze
the causes of hallucinations from four perspectives: data source problems, query problems,
retriever problems, and retrieval strategy problems.

• Data Source Problem

Retrieval-augmented LLMs are prone to generate hallucinations due to three key data
source issues: low quality, obsolescence, and singleness of retrieval sources. Low-quality
data sources may rely on unverified and unreliable materials, such as inaccurate or biased
information, which can easily cause the model to generate unrealistic responses based on
wrong data. In particular, with the development of generative artificial intelligence, more
and more LLM-generated content is published on the Internet. Modern retrieval models
increasingly favor LLM-generated content over human-created sources. This preference
stems from two factors: (1) the high semantic similarity between generated contexts and
user queries and (2) the inherent incompleteness of retrieved contexts. The tendency of
LLMs to produce factual hallucinations will aggravate the reliability problem of retrieval
sources. In addition, various data poisoning attacks against knowledge bases will also
affect the correctness of data sources. Outdated data sources often contain data that have
not been updated on time, causing LLMs to make inferences based on outdated research or
data, thereby producing hallucinations that are inconsistent with current knowledge. The
singleness problem is that the model relies on only a limited or single type of data source,
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ignoring relevant information in other fields, which will lead to incomplete or wrong
inferences. In short, these problems affect the reliability and completeness of information,
prompting LLMs to generate inaccurate or unrealistic content.

• Query Problem

User queries play a fundamental role in RAG, which directly determines the direction
and accuracy of the information obtained by the retrieval system. However, ambiguous
queries and complex queries often cause RAG systems to generate hallucinations, affecting the
quality of generated content. Ambiguous queries refer to user queries that contain omissions,
coreferences, and ambiguities. Due to the lack of clarity or the existence of multiple possible
interpretations, such queries make it difficult for the retrieval system to accurately identify
the user’s true intentions, thereby increasing the difficulty of obtaining accurate and relevant
information. Table 3 lists several examples of ambiguous queries. Complex queries usually
require intensive reasoning capabilities or involve information retrieval from multiple aspects.
Such queries may exceed the capabilities of current retrieval methods based on keywords or
semantic matching, resulting in one-sided or wrong retrieval results. Complex queries require
advanced processing and decomposition capabilities to accurately retrieve and integrate
information from multiple sources to generate accurate responses. These two types of query
problems not only affect the quality of retrieval results but also reduce the credibility of the
responses generated by the model, ultimately affecting the user experience.

• Retriever Problem

The role of the retriever in RAG is crucial. It is responsible for finding information related
to user input from the knowledge base or document library to provide contextual support
for the subsequent generation process. However, the retriever may also become the source of
large model hallucination, mainly in terms of retrieval granularity and embedding.

Table 3. Examples of ambiguous queries that can cause hallucinations.

Type Example Dialog Explanation

Ambiguity

Query: Apple is very popular, why? The word “Apple”
in this query is
ambiguous, referring to
either the fruit or the
phone brand. The
system erroneously re-
trieved and explained
information about the
phone brand.

Retrieved Paragraph: Apple’s popularity is
driven by its innovative products, which
blend style with functionality. . .

Answer: Apple’s popularity can be attributed
to its innovative approach in combining
style and functionality. . . making it a preferred
choice for many consumers.

Omission

Query: Who is the 2024 Olympic
100 m champion?

The question omitted
a specific 100 m
race, so the system
only searched for the
men’s 100 m race
results and gave the
champion of the men’s
100 m race.

Retrieved Paragraph: USA sprinter
Noah Lyles won the men’s 100 m title at
the Paris 2024 Olympic Games by the
smallest of margins in a dramatic
photo finish.

Answer: The 2024 Olympic 100 m
champion is Noah Lyles from the United
States. He won the gold medal with a time
of 9.784 s, narrowly defeating
Jamaica’s Kishane Thompson by just
five-thousandths of a second.



Mathematics 2025, 13, 856 11 of 33

Table 3. Cont.

Type Example Dialog Explanation

Coreference

Query: Li Hua recommended a history
book to Xiaoming. He thought it was
very interesting and bought it. Who
bought a history book? The query gives two

people, but “He” does not
clearly indicate who they
are, which causes the
system to perform
inappropriate retrieval
and incorrect model
generation.

Retrieved Paragraph: Li Hua is a common
protagonist in English exam essays,
often set as a character who recommends
books or shares experiences with others.

Answer: Li Hua is the one who
recommended the book and found it
interesting; it is likely that Li Hua
is the one who bought the history book.

First, the retrieval granularity determines the size and detail level of the retrieved
information blocks. The retrieval structure matching different retrieval granularities will
also affect the effectiveness of the retriever. If the retrieval granularity is too large, the
retrieved information block may be too broad and contain a lot of irrelevant content,
which will increase the burden of the language model to process information and may
cause the generated answer to be inaccurate or even deviate from the core of the user’s
question. On the contrary, if the retrieval granularity is too small, although the information
block is more targeted, it may not provide enough contextual information, making it
difficult for the language model to integrate this fragmented knowledge, thus affecting the
coherence and completeness of the answer. Secondly, many RAG frameworks rely on flat
data representation, which cannot capture multi-hop relationship paths between encoded
entities and limits the system’s ability to capture complex relationships between entities.
For example, when a user asks “How does artificial intelligence technology change the
diagnosis and treatment methods in the medical industry?”, the RAG system may retrieve
separate documents on artificial intelligence, medical diagnosis, and treatment methods.
However, due to the reliance on flat data representation, these systems may not be able
to effectively integrate the complex relationships between these documents, resulting in
fragmented generated answers. Finally, the quality of the embedding model directly affects
the accuracy of retrieval. The embedding model converts text into a vector representation
for calculating similarity scores. If the embedding model is suboptimal, it may reduce the
matching degree between the retrieval results and the user query, which in turn affects
the output of the language model and leads to hallucinations. Therefore, optimizing the
retrieval granularity and embedding model of the retriever is crucial to improving the
overall performance of RAG and reducing the generation of hallucinations.

• Retrieval Strategy Problem

Retrieval strategies involve the necessity, frequency, and timing of retrieval. Regarding
the necessity of retrieval, not all queries require retrieval. When the internal knowledge of
the model is sufficient to answer the question, blind retrieval may lead to conflicts between
the retrieved information and the internal knowledge on the one hand and introduce
noise into the context on the other hand, both of which will lead to misleading responses.
Regarding the frequency and timing of retrieval, the earliest strategy of performing a
single retrieval on the original input [32,33] achieved good performance in handling single-
hop problems. However, a single retrieval often has difficulty handling complex queries,
especially those that require multi-step reasoning or involve multiple sub-questions. In
addition, a single retrieval requires extremely high precision and recall of the retrieval



Mathematics 2025, 13, 856 12 of 33

system. Otherwise, it is easy to affect the generation quality due to incomplete or inaccurate
information retrieved. To better cope with complex information retrieval, it is necessary
to propose a better strategy to overcome the defects of a single retrieval on the premise of
determining the necessity of retrieval.

3.2. Generation Deficiency

After the retrieval process, the generation phase, as the final output core of RAG,
is responsible for integrating the retrieved relevant information with the user input and
generating accurate and context-related answers through LLMs. However, the generation
process may lead to hallucinations due to various reasons. This section will specifically
analyze the causes of hallucinations in relation to five aspects: context noise, context conflict,
middle information utilization, alignment problems, and ability boundaries.

• Context Noise

Contextual noise is often caused by the failure of the retrieval process, which can result
in the retrieved context containing information that is irrelevant or redundant to the user’s
question, fragmented information that lacks coherence and completeness, and wrong or
outdated information. Cuconasu et al. [34] pointed out that a large number of interfering
documents retrieved by the retriever may contain semantic information related to the
query, but this information may not support the correct answer and may cause the LLM
to generate incorrect answers based on misleading information. At the same time, they
also found that adding irrelevant random documents to the context reduces the focus of
attention, avoids entropy collapse, and can significantly improve the performance of LLMs.
Zhao et al. [35] pointed out that since LLMs are trained on a large amount of historical text,
there is an inherent risk that outdated information matches the model’s internal knowledge
base. This matching may prompt LLMs to tend to and perpetuate outdated information.
In short, large language models are extremely sensitive to this noise information. After
the noise information is passed to the generative model, the answers generated by the
model may be logically incoherent or generate completely fictitious content, thus leading
to hallucinations.

• Context Conflict

Context conflict mainly refers to the conflict between knowledge in the context and
model internal parameter knowledge. RAG brings richer context to the model input, but it
may also bring information that conflicts with the model’s internal parameter knowledge.
Xu et al. [36] believe that the conflict between context and model parameter knowledge is
mainly caused by temporal misalignment and misinformation pollution. Temporal misalign-
ment means that the temporal information based on pre-training data may be outdated,
while the external contextual knowledge may contain the latest information. This temporal
difference will cause the model to fail to accurately reflect the current reality when dealing
with problems. Misinformation pollution refers to the possibility that the external context
contains erroneous or misleading information, which may be mistakenly adopted by LLMs,
resulting in the generation of wrong or hallucination content. Longpre et al. [37] replaced the
entity mentioned in the standard document with another entity to create a conflicting context,
revealing the model’s tendency to over-rely on parameter knowledge. Chen et al. [38] used
multiple paragraphs and found that when the model performed best, it mainly relied on
contextual knowledge. They believe that the entity replacement method reduces the semantic
coherence of the interfering paragraphs, and Longpre et al. [37]’s study is based on a single
paragraph, which leads to the model’s preference for parameter knowledge. Xie et al. [39]
found that as long as the external knowledge is coherent and convincing, LLMs tend to obey
external knowledge, even if this knowledge conflicts with internal parameter knowledge.
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Many recent studies have also emphasized that the model tends to be consistent with the
user’s views—that is, the model exhibits “sycophancy” [40–43].

• Middle Curse

Despite retrieving factually correct and query-relevant information, LLMs may still
exhibit degraded generation quality due to insufficient utilization of long contexts, es-
pecially the middle curse issue [44]. The self-attention mechanism in Transformer [45]
models exhibits attention decay and insufficient resolution in positional encoding when
processing long texts, compounded by limitations in memory and computational resources.
These factors collectively lead to a significant degradation in the model’s ability to capture
information from the middle portion of the input text. When critical information is located
in the middle of the context, LLMs often struggle to effectively localize and utilize such in-
formation, resulting in a notable decline in accuracy. This problem is particularly prominent
in Multi-doc QA tasks. Recent studies have further demonstrated that the middle curse
also exists in tasks such as abstraction [43], long-form QA [46], and paragraph ranking [47].

• Alignment Problem

The alignment problem is mainly reflected in two aspects: context-generation align-
ment and query-generation alignment in the retrieval-augmented large language model.
Context-generation alignment emphasizes the consistency and relevance of the generated
text with the input context in terms of content and logic. If the generative model fails to
effectively integrate the retrieved contextual information, or the context is too complex,
the generated text may deviate from the factual consistency of the input content, resulting
in faithfulness hallucination. Query-generation alignment requires that the generated
content maintains high semantic correspondence with the content and structural patterns
of the user’s query. In the RAG framework, there is a semantic, contextual, or structural
mismatch between the query and the retrieved knowledge base. For example, there may be
inconsistencies between the query raised by the user and the retrieved literature or data,
resulting in the generated answer not aligning with the user’s real needs. The root cause
of this alignment problem is usually the complexity of the query, the diversity of external
knowledge, and the limitations of the retrieval mechanism. If the retrieved knowledge
does not fully meet the intent of the query, the generated answer may have information
omissions or logical errors, thus causing hallucinations.

• Capability Boundary

The capability boundaries of LLMs are mainly reflected in the deficiencies in precise
calculation, data retrieval, and complex logic processing. These deficiencies are mainly
due to their design goals based on statistical learning and language patterns, rather than
being built for mathematical reasoning or symbolic operations. LLMs lack built-in mathe-
matical logic, and their training data mainly comes from unstructured natural language
texts. The model does not specifically learn mathematical rules, resulting in reliance on
language patterns rather than real mathematical operations when dealing with mathe-
matical problems. In addition, LLMs have limited digital representation capabilities, and
complex mathematical expressions will be split into multiple tokens, affecting the accuracy
of calculations. The presentation of mathematical problems is also relatively limited, lack-
ing strict mathematical formulas and reasoning, which makes the model lack a sufficient
data foundation for precise calculations. In addition, the reasoning process of LLMs is
based on language generation rather than logical reasoning, lacking an understanding of
logical rules and causal relationships and having difficulty handling complex multi-step
reasoning tasks. These capabilities make LLMs prone to hallucinations. Prompt methods
such as chain-of-thought encourage LLMs to decompose the problem, but when solving
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the problem, even if the problem is correctly decomposed, LLMs often make mistakes in
logic and arithmetic [48].

4. Solutions to Retrieval Failure
This section reviews several key solutions to the problem of retrieval failure. First,

the accuracy and credibility of information can be significantly enhanced by ensuring the
reliability of data sources. Second, effective query construction methods have been pro-
posed to deal with ambiguous and complex queries. Third, the effectiveness of the retriever
is enhanced from two aspects, retrieval granularity and the embedding method, which
improves its ability to handle complex queries. Finally, well-designed retrieval strategies
ensure the efficient execution of the retrieval process and the accuracy of the results. These
solutions target different subproblems of retrieval failure, aiming to comprehensively im-
prove the overall performance of the retrieval system and effectively reduce hallucinations
in retrieval-augmented LLMs.

4.1. Data Source Reliability

Structured data, such as knowledge graphs (KGs), are usually built from verified data
sources and are constantly updated. This verification process ensures their ability to deliver
accurate, reliable knowledge. The modular retrieval-augmented LLM KnowledGPT [49]
combines LLMs with knowledge bases (KBs). It generates Python 3.8 code through the pro-
gram of thoughts (PoT) [26] to perform knowledge base operations, retrieves information
from different knowledge bases, and enables multi-hop retrieval for complex questions.
Additionally, KnowledGPT [49] introduces a personalized knowledge base (PKB). This al-
lows users to store knowledge related to professional fields or personal interests according
to their needs. It also supports multiple knowledge representation forms, including entity
descriptions, relationship triples, and entity-aspect information, enabling a broader range
of knowledge storage.

The context generated by LLMs is aligned with the pre-training target and, therefore,
tends to contain more relevant information. GENREAD [50] replaces the retriever with
an LLM generator, which first prompts the LLM to generate context documents based on
a given question and then generates a final response based on the generated documents.
Cheng et al. [51] found that the output of LLMs has a memory that is more similar to the
data distribution during inference than the training data and thus proposed the selfmem
framework to improve the generation quality by using the output of the model. Slefmem
creates an unbounded memory pool by the retrieval-augmented generator and uses a
memory selector to select output as the memory for subsequent generation rounds; it then
iterates through the generation process to enhance the model generation performance.

In addition, filtering and evaluating the credibility of retrieval sources can also pre-
vent retrieval failures. Inspired by common practices in pre-training data processing [52],
Asai et al. [53] considered a quality filter to ensure the high quality of retrieval source data
storage. Xie et al. [39] found that relying solely on internal knowledge to evaluate the
credibility of information is unreliable. Pan et al. [54] proposed a credibility-aware (CAG)
framework to assign credibility levels to document-level and sentence-level retrieval infor-
mation based on the relevance, timeliness, and reliability of the source of the information.
CoT [24] was used on an existing QA dataset to prompt the large language model to gen-
erate explanations based on questions, retrieved documents with credibility annotations,
and golden answers. The LLM was fine-tuned through instructions to generate responses
based on credibility, which mitigated the impact of introducing defective information in
the retrieval process.
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4.2. User Query Construction
4.2.1. Ambiguous Queries

Query refinement can supplement and improve background information and solve
the problem of necessary background information that is short, ambiguous, and lack-
ing in search queries. Query refinement can be achieved through query expansion or
query rewriting.

Query expansion is used to achieve disambiguation and satisfy the user’s rich intents.
Wang et al. [55] proposed a query2doc query expansion method, which first generates
pseudo-related documents that help query disambiguation and guide the retriever through
a small number of samples to prompt LLMs, and then connects them with the original
query to form a new query. KnowledGPT [49] uses the functions of the knowledge base
to obtain candidate entities and related information and uses few-shot prompting to
prompt LLMs to align the entities mentioned in the text with the entities in the knowledge
base to achieve disambiguation, avoiding the introduction of irrelevant and erroneous
knowledge due to ambiguous retrieval. Jagerman et al. [56] generate new query terms
through LLMs and combine them with the original query terms repeated five times to
form a new expanded query. Studies have shown that applying CoT prompts [24] to this
query expansion effectively improves the search engine recall rate. Wang et al. [57] found
that ambiguous, multi-faceted queries, such as “What is jazz?”, often contain multiple sub-
intents, and users want to obtain comprehensive answers covering multiple aspects. Based
on this, Wang et al. [57] proposed the RichRAG framework, which explicitly models various
sub-aspects of the query and retrieves external knowledge to build a diverse document
candidate pool, thereby providing comprehensive long-form answers and satisfying the
user’s rich intent. Kim et al. [58] proposed the Tree of Clarification (ToC) framework to
construct more effective queries by identifying all clarification questions for fuzzy queries.
TOC recursively builds the clarification tree of AQ by leveraging external knowledge for
few-shot hints and pruning when necessary. TOC solves the challenge of clarification from
multiple dimensions through a recursive tree and satisfies the external knowledge required
to identify clarification questions and their answers through the retriever.

Query rewriting is used to align queries with retrieval requirements. Ma et al. [59]
proposed a re-writer trained by reinforcement learning. The re-writer uses the LLM
performance as a reward, learning to adapt the retrieval query to improve the reader on
downstream tasks. Mao et al. [60] used the feedback signal of a publicly available re-ranker
to train the rewriting model, eliminating the dependence on labeled data.

Decontextualization is used to effectively solve dialog dependency problems presented
by questions in conversational retrievals, such as omission, ambiguity, and coreference [61–63].
Choi et al. [64] first proposed the decontextualization task. This task aims to extract sentences
from their rich contexts and rewrite them into independent sentences that can be understood
without context while retaining their original meaning. Choi et al. [64] designed an annotation
pipeline to provide a high-quality annotated dataset and evaluation scripts and trained an auto-
matic decontextualization model. Yoon et al. [65] guided an advanced LLM to generate various
potential rewrites through multiple prompting methods, collected the retrieval feedback on
each rewrite, and constructed a large-scale dataset called RF_COLLECTION. The dataset
contains retriever feedback on more than 410,000 query rewrites from 12,000 conversations
optimized for retrieval. Then, Yoon et al. [65] optimized the rewriter based on this dataset to
generate retriever-preferred query rewrites, achieving the goal of contextualization.

4.2.2. Complex Queries

Query decomposition is a common approach when faced with complex queries in-
volving multiple aspects, as it breaks down complex queries into subqueries to retrieve
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information more accurately. Shao et al. [66] proposed a method named STROM, focusing
on applying LLMs to write long texts in an organized and well-founded manner. This
method decomposes topics into various perspectives by retrieving Wikipedia articles on
similar topics and gives LLMs specific perspectives, simulating multiple rounds of dialogue
between authors and experts to collect knowledge. Finally, a multi-level section head-
ing outline is generated by combining the internal knowledge of LLMs and the collected
information, and a long text is generated based on this.

Sub-task planning is often used to decompose and solve complex queries that require
intensive reasoning step by step. Through sub-task planning, complex and intricate queries
can be decomposed into manageable, sequential steps that can be addressed individually.
When combined, these steps provide context for the original problem and answer it in
full. To overcome the challenge of easy-to-hard generalization in the chain of thought,
Zhou et al. [67] propose a novel prompting strategy, least-to-most prompting. The founda-
tional premise of this approach is to systematically decompose a complex problem into a
series of easily solvable sub-problems and then solve these sub-problems sequentially in
order, with each sub-problem solved with the help of the answer of the previously solved
sub-problem. Khot et al. [68] also proposed decomposed prompting (DECOMP) based on
the idea of subproblem planning. Compared with least-to-most, DECOMP has the follow-
ing advantages: First, DECOMP has a modular structure, and each sub-task is processed by
a dedicated processor. The sub-task processor can be independently optimized, debugged,
and upgraded. If necessary, the sub-tasks that are more difficult for LLMs can be further
decomposed. The task can be recursively decomposed into the same task with smaller
inputs. The symbolic information retrieval module can be easily integrated within the
decomposition framework to improve the performance on long-text multi-hop question
answering and open-domain multi-hop question answering tasks. Second, DECOMP
can improve previous work by simply adding an error correction sub-task processor as a
post-processing step. Finally, the sub-task processor can be shared between different tasks
to improve the efficiency of task-solving.

Question tree structure enables complex reasoning in knowledge-intensive, multi-hop
question answering by decomposing complex questions into hierarchical nodes, facilitating
global reasoning, and avoiding negative retrieval through retrieving and aggregating an-
swers from different knowledge sources at each node. Cao et al. [69] proposed probabilistic
tree-of-thought reasoning (ProbTree). First, LLMs transform a complex question into a
query tree, where each non-root node represents a sub-question of its parent node, and leaf
nodes are atomic questions that cannot be further decomposed. Then, ProbTree performs
probabilistic reasoning on the tree, from leaf nodes to root nodes, and solves the problem
by post-order traversal while considering the confidence of question decomposition and
answer. For leaf nodes, ProbTree selects more confident answers from closed-book question
answering and open-book question answering, avoiding the problem of negative retrieval.
For non-leaf nodes, the tree hierarchy is used to obtain information from child nodes for
global reasoning, thereby recovering from local errors and alleviating the problem of error
propagation. Chu et al. [70] proposed a reasoning framework called beam aggregation
reasoning (BeamAggR). Compared with ProbTree, it first performs complementary multi-
source reasoning on leaf nodes and then performs fine-grained answer aggregation, which
can better perform knowledge collaboration. For non-leaf nodes, BeamAggR enumerates
the combination of sub-questions that the node depends on. Then, it selects the most
promising prediction through beam aggregation, optimizes the reasoning trajectory, and
reduces cascading errors.
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4.3. Retriever Validity
4.3.1. Search Granularity

Appropriate search granularity can better meet complex retrieval requirements.
Chunk-structured data sources face the problem of balancing the length of the context
and the completeness of the semantics. Gao et al. [71] proposed to narrow the semantic
gap between questions and answers by adding metadata attachments to the blocks. This
includes metadata filtering for retrieving the original document (e.g., page numbers, file
names, authors, categories, and timestamps) as well as artificially constructed metadata,
such as paragraph summaries and hypothetical questions.

Partitioning the complete database allows the retriever to focus more on key memories
and reduce retrieval noise. Wang et al. [72] proposed to divide the external database into
multiple partitions. Each partition serves as the basic unit for RAG execution, thereby
achieving fine-grained retrieval and focusing on key memories. Through the multi-agent
reinforcement learning framework, the two agents, Agent-S and Agent-R, are responsible
for selecting appropriate partitions and refining the retrieved memories, respectively. This
process further improves text generation performance.

Tree and graph structures are used to organize long document information. Their
hierarchical nature allows them to represent complex relationships. This improves infor-
mation retrieval efficiency and enhances the ability to process complex queries. It also
addresses the limitations of fixed-size chunking, which struggles to capture the structure
and dependencies of long documents.

In RAG systems, most existing methods only retrieve short, continuous text fragments
from the retrieval corpus, which limits the effective utilization of document-level contextual
information. This limitation is reflected in the model’s inability to capture long-range
dependencies and integrate cross-fragment semantics. Sarthi et al. [73] proposed recursive
abstractive processing for tree-organized retrieval (RAPTOR), which recursively embeds,
clusters, and summarizes text blocks to build a tree structure with different summary levels
from the bottom up. RAPTOR retrieves information from this tree during reasoning and
integrates information at different levels of abstraction in long documents.

Graph structure can represent complex dependencies between entities well [74]. It
helps organize information from multiple sources into coherent and contextual information,
significantly reducing the possibility of hallucinations. LightRAG [75] extracts entity nodes
and relationship edges from text through LLMs to construct text key–value pairs. After
deduplication, it obtains a knowledge graph and dynamically integrates new data through
incremental updates. It not only enhances the ability to handle complex queries but also
improves the efficiency of data updates and retrieval performance through optimized
key–value data structures. LightRAG [75] adopts a two-level retrieval paradigm, where
low-level retrieval focuses on retrieving specific entities and their detailed information,
while high-level retrieval focuses on aggregating multiple entities and relations to pro-
vide insights into broad topics. In the retrieval process, the graph structure and vector
representation are combined to extract local and global keywords in the query and match
relevant entities and relations by using the few-shot hint LLMs of role assignment, thus
achieving comprehensive and efficient retrieval. Experiments on four datasets from the
UltraDomain benchmark [76] show that this method outperforms block-based retrieval
methods [71,77,78] in handling large-scale token queries and complex queries. To cap-
ture the logical relationship between document content and structure, Knowledge Graph
Prompting (KGP) [79] implements indexing between multiple documents by constructing a
knowledge graph. It treats paragraphs (text content) and structures (e.g., pages and tables)
as nodes. The semantic, lexical, or structural relationships between paragraphs are repre-
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sented as edges. This approach effectively addresses knowledge retrieval across multiple
documents. It answers questions by extracting subgraphs to retrieve relevant information.

In addition, Chen et al. [80] introduced propositions as a new retrieval granularity to
strike a balance between reducing noise and providing complete content. A proposition
is defined as an atomic expression in text that encapsulates a distinct fact, presented in
concise and self-sufficient natural language.

4.3.2. Embedding

By fine-tuning the embedding model to adapt to the domain knowledge of different
downstream tasks. Retrieve and plug (REPLUG) [31] prepends the retrieved documents
to the input text, feeds it into the frozen black-box language model, and optimizes the
retrieval model by using the output of the black-box language model as a supervisory
signal. Muennighoff et al. [81] proposed a generative representational instruction tuning
(GRIT) method, which distinguishes between generation and embedding tasks through
instructions and trains large language models to handle both tasks simultaneously. GRIT re-
duces the number of forward passes during reasoning through caching operations, thereby
improving efficiency. Zhang et al. [82] enhance the inaccessible black-box embedding
model by introducing a trainable embedding model. Zhang et al. [82] concatenate the
output of the black-box embedding model and the trainable white-box model to form a new
embedding function. Different fine-tuning criteria are adopted based on the availability of
relevance labels between queries and candidate passages.

4.4. Retrieval Strategies

To prevent unnecessary retrieval from introducing knowledge that conflicts with the
internal parameters of the model, it is necessary to determine the necessity of retrieval.
Asai et al. [83] evaluate the necessity of retrieval by introducing special retrieve tags. The
model is trained to generate these tags by designing specific prompts and demonstrations.
Wang et al. [84] proposed a self-knowledge-guided retrieval enhancement (SKR) method.
It allows LLMs to refer to the problems they have encountered before and adaptively
call external resources when dealing with new problems. SKR collects self-knowledge of
training problems by comparing the performance with and without retrieval enhancement.
It then proposes strategies such as direct prompting, in-context learning, training a classifier,
and nearest neighbor search to detect the self-knowledge corresponding to a problem by
referring to the collected training problems. Jiang et al. [85] decide whether external
information needs to be retrieved based on the uncertainty in the generation process. If
there are low-confidence words, the model will use the sentence as a retrieval query to
retrieve relevant documents from the external knowledge base, and regenerate the sentence
based on the retrieved information.

Retrieval frequency refers to the frequency of searching the external knowledge base
during the generation process, which controls the degree of reliance on the search results
and is usually more worthy of consideration than the necessity of the search. There
are a variety of multiple search strategies, such as iterative retrieval [86,87], recursive
retrieval [88,89], conditional retrieval, adaptive retrieval [90,91], etc.

In iterative retrieval, information is retrieved in multiple steps. Each step builds on
the previous ones, making this approach suitable for tasks that require detailed exploration
and improvement. Trivedi et al. [86] proposed an iterative retrieval method called IRCoT,
in which retrieval and reasoning steps are performed alternately, allowing reasoning to
guide retrieval and using retrieval results to improve reasoning. Shao et al. [87] proposed
a method called ITER-RETGEN. This method also adopts an iterative strategy, using the
generated output of the model as the context of retrieval, to more accurately obtain relevant
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knowledge and improve subsequent generation results. The iterative retrieval method
solves the limitations of traditional single-shot retrieval methods in multi-step reasoning
tasks. Combining dynamic retrieval and reasoning significantly improves the accuracy of
retrieval and the performance of downstream question-answering tasks while reducing
factual errors in the reasoning chain generated by the model.

Recursive retrieval creates a tree or graph structure of retrieval, which contains
retrieval that can call itself and performs well in managing hierarchical information.
Chen et al. [89] proposed the MemWalker method, which constructs a tree structure by
splitting long text into small paragraphs and recursively generating summary nodes. After
receiving the query, the model starts navigating from the root node of the tree, checks
the summary content of the child nodes level by level, and decides which child node to
enter to continue searching for relevant information through reasoning. When the current
node information is insufficient to answer the question, it backtracks until it finds a node
containing enough information and generates an answer. The hierarchical summarization
and dynamic navigation of the tree structure break through the limitations of the context
window of the language model, significantly improve the efficiency and accuracy of long
text processing, enhance reasoning ability and interpretability, and support error recovery,
making it perform well in long text question-answering tasks. Kang et al. [88] proposed
the SURGE framework, which uses a recursive strategy in the knowledge graph to better
capture dependencies between entities in context by extracting subgraphs related to the
conversation context. The structured organization of the knowledge graph enables the
systematic integration of multi-level information, improving the accuracy and contextual
relevance of retrieved knowledge. This structured approach facilitates the generation of
more coherent and contextually consistent conversational outputs.

Conditional retrieval ensures strict adherence to predefined criteria and is suitable for
scenarios with clear rules and fixed requirements. Adaptive retrieval dynamically adjusts
retrieval behavior according to current task requirements, contextual information, or model
status, providing flexibility in dynamic environments. Jeong et al. [90] proposed Adaptive-
RAG, which aims to dynamically adjust the retrieval strategy according to the complexity
of the query. Adaptive-RAG uses a small LM as a classifier to predict the complexity label
of the query and selects the most suitable method from a simple no-retrieval strategy to
a complex multi-step retrieval strategy based on the prediction results. Islam et al. [91]
proposed a hybrid adaptive retrieval method that dynamically decides whether to retrieve
based on model confidence, balancing retrieval frequency and reasoning speed. Adaptive
retrieval optimizes reasoning efficiency by dynamically adjusting the retrieval frequency,
especially avoiding unnecessary retrieval overhead when processing simple queries and
fully using retrieval information when processing complex queries.

5. Solutions to Generation Deficiency
This section reviews relevant solutions to several key issues in generation deficiency.

First, we review improving the relevance of retrieved documents by reducing contextual
noise. Second, we investigate methods to balance knowledge conflicts, aiming to coordinate
the relationship between external knowledge and internal parameters of the model, to
ensure the consistency and factual accuracy of generated content. Third, for the problem
of middle curse, we outline ways to compress long texts and train models to extract
key information, making full use of context. Finally, this section investigates how to
ensure the alignment of generation with query and context, and how to break through the
limitations of model capabilities by integrating external resources. These solutions help to
comprehensively improve the performance of generation models and reduce deviations
and errors in the generation process.
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5.1. Reduce Context Noise

We begin with the strategy of reducing the impact of noise by re-ranking to retain
more relevant context. RichRAG [57] builds a diverse pool of document candidates based
on modeled latent sub-aspects to retrieve external knowledge, which often contains noise.
To reduce the noise of retrieved documents, RichRAG re-ranks candidate documents and
selects the top k documents as context. The multifaceted queries targeted by RichRAG
require rich context, and the users of the information retrieval (IR) model are LLMs, which
require the ranking of the ranker to be aligned with the preferences of the LLMs. Based on
this, the optimization of the ranker is divided into two stages. The first stage is supervised
fine-tuning (SFT), where a coverage utility function is used to create silver targets for
training, enhancing the ranker’s ability to cover query aspects. The second stage is rein-
forcement learning, which improves ranking quality and aligns it with LLM preferences
using the direct preference optimization algorithm (DPO) [92] and a unilateral signifi-
cance sampling strategy (US3) to build valuable training samples for stable optimization.
Vu et al. [93] proposed a few-shot prompt method, FreshPrompt, which generates a list
of evidence by extracting sources, dates, titles, highlighted words, etc., from the results
retrieved from the search engine and sorts them from old to new in time, encouraging the
model to focus on the latest evidence to reduce noise. Vu et al. [93] also proposed a new
dynamic question-answering benchmark, FreshQA, which includes 600 natural questions,
covering questions that require rapidly changing knowledge and require refutation of false
premises, to measure the performance of LLMs in dealing with questions that require the
latest world knowledge.

In addition, context compression is used to filter out irrelevant information. Jiang et al. [94]
presented LLMLingua, a coarse-to-fine prompt compression method. It involves a budget
controller to maintain semantic integrity under high compression ratios, a token-level
iterative compression algorithm to better model the interdependence between compressed
contents, and an instruction tuning-based method for distribution alignment between
language models. However, the tokenizer differences between the small model and the
large model may cause the prompt length to be underestimated. Li [95] proposed a method
called Selective Context. It leverages self-information to evaluate the informativeness of
vocabulary units (such as sentences, phrases, or tokens) in the context and selectively
retains the highly informative content. This approach provides a more compact and
efficient context representation without sacrificing the performance of the model on a
variety of tasks. Wang et al. [96] proposed to identify useful contexts based on lexical
and information-theoretic methods and train a context-filtering model that can filter the
retrieved contexts to compress the contexts. Xu et al. [97] presented two compressors—the
extractive compressor selects useful sentences from the retrieved documents, and the
abstractive compressor generates summaries by synthesizing information from multiple
documents. These compressors are trained to improve the performance of LLMs while
keeping the prompts concise. Liu et al. [98] proposed summary compression and semantic
compression. Summary compression achieves compression through summarization, while
semantic compression deletes tags that have little impact on semantics.

However, filtering irrelevant paragraphs and information may also cause some rele-
vant information to be discarded. A more effective solution is to train LLMs to ignore irrel-
evant context by adding irrelevant context to the training data. Chain-of-note (CoN) [99]
uses GPT-4 to collect data from the Natural Questions (NQ) corpus [100] and trains the
model in a standard supervised manner to generate continuous reading notes for each
retrieved document. This process helps evaluate their relevance to a given question and
identify the most critical and reliable information. If all documents are irrelevant, the model
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either relies on intrinsic knowledge to answer or answers “Unknown” when the answer
cannot be accurately determined.

5.2. Balance Knowledge Conflicts

Context conflict mainly refers to the conflict between the model’s internal parameters and
the retrieved external knowledge, namely, context–memory conflict [36]. When external knowl-
edge is relevant to the task and has high credibility, it should be aligned with the contextual
knowledge [27]. When external knowledge is insufficient or unclear, the model should be en-
couraged to be skeptical of the context and support parameter knowledge [101,102]. A broader
strategy is to treat context and knowledge separately, provide disentangled answers [103], or
use context and parameter knowledge to improve the factuality of the answer [104].

Specifically, Zhou et al. [27] reconstructed the question by asking the narrator’s point
of view through opinion-based prompts and used counterfactual demonstrations to show
examples of conflicts with memorized knowledge, jointly improving the model’s attention
to context. Pan et al. [101] built a misleading information dataset by prompting LLMs,
trained a misleading information detection model, and guided LLMs to be more cautious
by adding additional warnings or guidance in the prompts. Xu et al. [102] constructed
a “Fact to Misinform” (Farm) dataset containing a series of factual questions and their
corresponding misleading information, and based on this, tracked the changes in LLMs’
beliefs when facing misleading information through multiple rounds of dialogue, revealing
the vulnerability of LLMs when facing misleading information. Xu et al. [102] used system
prompts to remind LLMs to be vigilant about potential misinformation and list all the
supporting evidence before responding. Both of the above methods improve the ability to
adhere to factual and parameter information of the model when facing potential misinfor-
mation through vigilant prompts. Wang et al. [103] aims to consider LLM’s ability to detect
conflicts, locate conflicts, and generate different answers based on conflicting information.
Wang et al. [103] prompted LLMs to generate entity lists in different subject areas and
create conflicts through in-domain named entity substitution and in-domain entity shuf-
fling. The chain-of-thought prompts that generate knowledge decompose context, classify
conflicts sentence by sentence, and finally improve the ability to detect conflicts of LLMs.
By clearly distinguishing the two knowledge sources and repeating the questions, the
model’s ability to generate different answers based on the knowledge source is improved.
Zhang et al. [104] considered pairing the retrieved paragraphs with LLM-generated para-
graphs obtained via specially designed prompts to form compatible pairs to generate the
final answer. Zhang et al. [104] first evaluated whether the retrieved paragraphs contained
correct evidence and then evaluated whether LLM-generated paragraphs were consistent
with the retrieved paragraphs. By screening and matching factual and consistent paragraph
pairs, the negative impact of knowledge conflicts on the model is reduced.

5.3. Utilize Middle Information

To address the middle curse issue in LLMs, recent studies have focused on effectively
utilizing the middle information within long contexts. These approaches aim to enhance
the model’s ability to capture and leverage critical information located in the middle
portions of the input text, thereby improving overall generation quality. Wang et al. [105]
proposed a method called SoftPromptComp, which compresses long text into a concise but
semantically rich representation through natural language summarization technology and
then integrates it into the input of an LLM through soft prompts. This approach not only
reduces the computational overhead by decreasing the volume of text processed but also
enhances the model’s performance in processing and generating compressed text through
the dynamic adaptability of soft prompts. He et al. [44] proposed a method called Position-
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Agnostic Multi-step QA (PAM QA), which trains the model to accurately identify and
extract key information from long texts through position-independent multi-step reasoning.
Specifically, PAM QA reinforces the model’s attention to the question through question
repetition, assists in filtering relevant information via index prediction, and produces the
final output through answer summarization, thereby improving the model’s retrieval and
summarization performance on long texts. Ravaut et al. [106] analyzed the contextual
utilization of LLMs in long text summarization, revealed its bias in processing long inputs,
and explored three alternative reasoning methods: hierarchical summarization, incremental
summarization, and focus prompt. Hierarchical summarization aggregates information
through block summarization and secondary summarization, incremental summarization
updates the summary content block by block, and focus prompt guides LLMs to focus
on the middle part of the input through prompts. Ravaut et al. [106] also sampled from a
long-input summarization dataset to ensure that the key information is in the middle part
of the context window, constructing a new evaluation benchmark MiddleSum.

5.4. Alignment Resolution

The alignment problem here mainly focuses on the alignment between context and
generation, namely, context faithfulness, and the alignment between query and generation,
namely, query faithfulness.

5.4.1. Context Faithfulness

Contextual faithfulness refers to the consistency and relevance of the generated text
to the input context in terms of content and logic. Better contextual faithfulness is usually
achieved by attributing the generated response to the context. Gao et al. [107] proposed the
ALCE framework, which aims to enable LLMs to generate text with citations, thereby im-
proving the accuracy and verifiability of their output. The ALCE framework first retrieves
text fragments related to the question from the corpus and then guides LLMs to generate
answers and cite supporting fragments through different prompting strategies (such as
VANILLA, SUMM, SNIPPET, INLINESEARCH, etc.). Fierro et al. [108] proposed a plan-
based text generation method that aims to improve the credibility and attribution quality
of generated text by generating citations. The method decomposes the text generation task
into a series of questions, which serve as the blueprint for the generated content. The model
then generates a summary based on the blueprint and generates citations simultaneously
during the generation process to ensure that the generated content is supported by reliable
external evidence. These methods address the shortcomings of existing generative models
in attribution, such as credibility issues caused by inaccurate or lacking citations. However,
prompt-based methods can only provide sentence-level attribution and rely on the internal
knowledge of LLMs, which have high computational overhead. Incomplete compliance
with instructions by LLMs can also lead to problems such as incorrect citation format, citing
non-existent sources, or failing to accurately reflect contextual usage.

Given the inherent defects of prompt-based methods, Ye et al. [109] proposed the
AGREE method, which aims to improve the accuracy and credibility of answers by fine-
tuning LLMs to cite retrieved document fragments as support when generating answers
automatically. AGREE first uses unlabeled queries and natural language inference (NLI)
models to automatically generate training data with citations. Then, LLMs are fine-tuned
through supervised learning to enable them to generate accurate answers based on retrieved
fragments and clearly annotate the citation sources. Finally, in the test phase, AGREE
uses an iterative reasoning strategy in the retest phase to allow LLMs to actively retrieve
additional information based on self-evaluation results to further optimize the answer.
Qi et al. [110] proposed the MIRAGE method, which aims to enhance the credibility of
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answer attribution in RAG systems by leveraging model internals. MIRAGE first identifies
the words affected by the context in the generated sentences by comparing the changes
in the model’s predicted distribution with and without context. Then, it uses feature
attribution techniques such as gradients to attribute the generation of these sensitive words
to specific context words and converts the results into a standard reference format. MIRAGE
directly uses the calculation process inside the model to reflect the importance of the input
in the generation process, thereby avoiding the inaccuracy and computational overhead
that may be caused by external validators.

5.4.2. Query Faithfulness

Query faithfulness refers to how well the generated content aligns with the user’s
query and its semantic intent. Zhang et al. [111] proposed the MixAlign framework, which
aims to address the knowledge alignment problem that occurs when LLMs interact with
external knowledge bases—i.e., there is a semantic, contextual, structural, or logical mis-
match between the user’s question and the retrieved knowledge. MixAlign automatically
detects these mismatches through interaction with users and knowledge bases. It generates
clarifying questions to obtain further guidance from users, enhancing the model’s knowl-
edge utilization performance. Peng et al. [112] proposed a plug-and-play LLM-Augmenter
framework for revising prompts through feedback on the responses of LLMs. The frame-
work first integrates the retrieved external knowledge, constructs an evidence chain by
linking related entities and pruning irrelevant information, and generates a response based
on the evidence chain. It then evaluates the alignment between the response and specific
business requirements using rule-based or model-based utility functions, generates feed-
back information to revise the prompt, and queries the LLM again. This process repeats
until the generated response is verified.

5.5. Integrate External Resources

By combining the reasoning capabilities of LLMs with external tools, external re-
sources (computing power, data retrieval capabilities, complex logic processing, etc.) can
be effectively utilized to allow the model to adapt to new tasks with only a small number
of examples or feedback, and to solve various challenges in complex tasks. Yao et al. [113]
proposed ReAct, which aims to combine the reasoning and acting capabilities of LLMs to
solve complex language and decision-making tasks. ReAct enables the model to dynami-
cally adjust action plans during the reasoning process by alternately generating reasoning
traces and task-related actions and obtaining necessary information to support reasoning
through interaction with the external environment. Paranjape et al. [114] proposed the
ART method, which solves the reasoning limitations and insufficient tool use of LLMs in
dealing with complex tasks through automated multi-step reasoning and tool calls. ART
retrieves relevant task examples from the task library as prompts, uses LLMs to generate
programs containing intermediate reasoning steps and tool calls, pauses the generation to
call the tool and integrate the output, and finally, continues to generate the final answer.
In addition, ART also supports human feedback, and users can optimize performance by
editing programs or adding tools. To compensate for the deficiencies of LLMs in com-
putation and reasoning, Gao et al. [48] propose program-aided language models (PALs).
These employ LLMs to decompose natural language problems and generate programs as
intermediate reasoning steps through least-to-most prompting. PALs offload the solution
step to a runtime such as a Python interpreter, separating problem decomposition from
solution execution.



Mathematics 2025, 13, 856 24 of 33

6. Mitigation After Hallucination Detection
Although the components of RAG have been optimized based on the causes of hallu-

cination to mitigate its occurrence, hallucinations remain inevitable. However, their impact
can be reduced through detection and correction.

Active hallucination detection and mitigation techniques detect and correct hallu-
cinations in real-time during the generation process to prevent the accumulation and
propagation of hallucinations. Varshney et al. [115] proposed an active hallucination de-
tection and mitigation method. In the detection stage, it identifies the key concepts in
the generated sentences and creates verification questions for these concepts. It retrieves
relevant knowledge and answers verification questions through web searches and model
parameter queries to verify the response knowledge in the generated sentences to detect
hallucinations. In the mitigation stage, the retrieved knowledge is used as evidence to
repair sentences that may have hallucinations, and the corrected sentences are appended
to the generation context. The real-time verification and rectification (EVER) framework
proposed by Kang et al. [116] also realizes hallucination detection and mitigation through
three stages: generation, verification, and correction. In the verification stage, EVER divides
hallucinations into internal hallucinations and external hallucinations, corrects internal
hallucinations, and rewrites external hallucinations. The corrected sentences will be verified
again. If the external illusion still exists, the system will choose to mark the user to warn or
give up the answer according to the task requirements, thereby enhancing the credibility of
the output content. EVER also uses the data it generates to build preference data pairs, and
further improves the factuality of the model through preference adjustment.

Detecting and editing the output of LLMs is universal in hallucination detection
and mitigation for different tasks. Gao et al. [117] proposed the retrofit attribution using
the research and revision (RARR) method. RARR is divided into research and revision
stages. In the research stage, query generation and evidence retrieval are performed for
the responses of LLMs to achieve attribution. In the revision stage, the consistency model
detects disagreements, and the editing model corrects the text based on the disagreements
and retains the structural and stylistic properties of the original text. RARR also proposed a
new metric for the attribution editing task, emphasizing the balance between attribution and
preservation. Rawte et al. [20] considered replacing high-entropy words in the generation
to mitigate hallucinations. Due to the inaccessibility of many LLMs, Rawte et al. [20]
used open-source LLMs to identify high-entropy words and defined the hallucination
vulnerability index (HVI) of LLMs. High-entropy words were replaced with LLMs based
on lower HVI to mitigate hallucinations in generation. They also reported effective models
for detecting and replacing high-entropy words, respectively.

7. Conclusions
In this review, we conducted a comprehensive investigation into the hallucination

phenomenon caused by the RAG paradigm, including the causes of hallucinations in each
subtask at different stages of the RAG framework and the corresponding hallucination
mitigation methods. Additionally, we explored techniques for reducing hallucinations
through detection and subsequent mitigation. We also provided a summary of the metrics,
datasets, and challenges of representative hallucination mitigation methods in subtasks at
different stages in Table 4.

Among the methods we reviewed, even though prompt techniques are widely used,
they still have the following limitations that we should be concerned about: (1) Prompt
techniques have weak generalization ability, and multiple iterations are required to fine-
tune the prompts in practical applications, which may be very time-consuming. (2) Some
mitigation methods have restrictions on the length of the prompt [94]. (3) The good
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performance of prompt engineering also depends on the powerful capabilities of the
embedding model [82] and the generative model [99].

Despite extensive research and significant achievements in hallucination mitigation,
hallucinations in retrieval-augmented LLMs remain a highly concerning issue and continue
to face multifaceted challenges. For example, current multimodal retrieval-augmented
LLMs extend the knowledge sources beyond text to include data from multiple modal-
ities, such as images, audio, video, and code. This expansion enriches the context and
supplements textual information, enabling the model to generate more satisfactory re-
sponses [118,119]. However, the diversity of data sources also introduces additional factors
that can lead to hallucinations. Large language models may struggle to accurately inter-
pret the relationships between entities in images, which further leads to the generation
of hallucinations. Therefore, further research into hallucination mitigation strategies for
multimodal retrieval-augmented LLMs is necessary. Moreover, malicious external attacks,
such as carefully crafted jailbreaking prompts [120] and adversarial prompts [121], can
induce the model to generate specific hallucinations. Research into attack and defense
strategies for inducing hallucinations represents a promising direction for future work.
Finally, we hope that this review provides valuable research materials for the development
of more reliable and trustworthy LLMs.

Table 4. Summary of metrics, datasets, and challenges of representative hallucination mitigation
methods in different stages of subtasks.

Category Method Metric Dataset Challenges

Data
Source CAG [54]

EM;
Noise
Ratio;
Document
Credibility

HotpotQA [122];
2WikiMQA [123];
MuSiQue [124];
ASQA [125];
RGB [126];
EvolvTempQA [54];
NewsPolluQA [54]

Reliance on
additional
training data
and annotations;
limited scope
for external
resource
integration

RETPO [65]

MRR; NDCG;
Recall@k;
Clarity;
Conciseness;
Informativeness

QReCC [62];
TopiOCQA [63]

Limited testing
scope; limited
prompting
methods

Query

Beam
AggR [70] F1

Bamboogle [127];
MuSiQue [124];
HotpotQA [122];
2WikiMQA [123]

Multi-source
reasoning and
probabilistic
aggregation
raise
computational
costs; external
knowledge
is unstructured
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Table 4. Cont.

Category Method Metric Dataset Challenges

KGP [79]
Acc; EM; F1;
PDFTriage;
Struct-EM

MuSiQue [124];
HotpotQA [122];
2WikiMQA [123];
IIRC [128];
PDFTriage [129]

Details not
provided

Retriever

GRIT [81]

Acc; MAP; AP;
V-Measure;
nDCG;
SC; EM;
pass@1;
Win Ratio

E5 [130];Tülu2 [131];
MMLU [4];
TyDi QA [132]
GSM8K [133];
MTEB [134];
HumanEvalSyn [135];
AlpacaEval [136];

Lack of
autonomous
retrieval
capability;
insufficient
pre-training
data; lengthy
GRITLM format

Retrieval
Strategy

Adaptive
RAG [90] F1; EM; Acc

SQuAD [137];
NQ [100];
TabularQA [138];
MuSiQue [124];
HotpotQA [122];
2WikiMQA [123]

Lack of datasets
for training
query complexity
classifier; not
good performance
of classifier

Context
Noise CoN [99]

EM; F1;
Reject Ratio;
Acc

NQ [100];
TriviaQA [139];
WebQuestions [140];
RealTimeQA [141]

The sequential
generation of
reading notes
extends response
times

Knowledge
Conflicts

COMBO
[104] EM; F1

NQ [100];
TriviaQA [139];
HotpotQA [122];
WebQ [140]

Lack of
adaptability to
multi-hop
question
answering tasks

Utilize
Context SPC [105]

Processing
Time;
Acc; Cost;
Compression
Rate

CNN/Daily
Mail [142];
SST-2 [143];
AG News [144];
SQuAD v2.0 [137]

Need to balance
efficiency and
thoroughness to
avoid losing
important infor-
mation through
excessive
compression

Plan-based
Text
Generation
[108]

Correctness;
Attribution;
ROUGE-L;
Answer-
ability;
AutoAIS;
ANLI

AQuAMuSe [145];
NQ [100];

Explore
decoder-only
models, passage
indexing; use
questions as
additional
training signals
for retrievalAlignment

Mix-Align
[111]

Gold Answer
Coverage;
Accepted;
Hallucination

FuzzyQA [111]

Clarification
steps add
computational
load and time
cost; no causal
path links que-
stion, evidence,
and answer
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Table 4. Cont.

Category Method Metric Dataset Challenges

External
Resource PAL [48] Acc

GSM8K [133];
SVAMP [146];
ASDIV [147];
MAWPS [148];
BIG-BenchHard [149];

Details not
provided

Active
Detection
[115]

Precision;
Hallucination
Ratio; Recall;
Mitigation
Success Ratio

HotpotQA [122];
Manual

Details not
providedMitigation

after
Detection

Entropy
Word [20]

HVI;
Hallucination
Ratio;
Mitigation
Success Rate

HILT [20]; Details not
provided
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