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Abstract: This study aims to investigate various dynamical aspects of the dual-mode Gard-
ner equation derived from an ideal fluid model. By applying a specific wave transformation,
the model is reduced to a planar dynamical system, which corresponds to a conservative
Hamiltonian system with one degree of freedom. Using Hamiltonian concepts, phase
portraits are introduced and briefly discussed. Additionally, the conditions for the existence
of periodic, super-periodic, and solitary solutions are summarized in tabular form. These
solutions are explicitly constructed, with some graphically represented through their 2D
and 3D profiles. Furthermore, the influence of specific physical parameters on these solu-
tions is analyzed, highlighting their effects on amplitude and width. By introducing a more
general periodic external influence into the model, quasi-periodic and chaotic behavior are
explored. This is achieved through the presentation of 2D and 3D phase portraits, along
with time-series analyses. To further examine chaotic patterns, the Poincaré surface of
section and sensitivity analysis are employed. Numerical simulations reveal that variations
in frequency and amplitude significantly alter the dynamical characteristics of the system.

Keywords: dual-mode Gardner equation; phase portrait; wave solutions; quasi-periodic;
chaotic behavior

MSC: 35C07; 35C08; 37K40; 83C15

1. Introduction
In mechanical engineering, nonlinear partial differential equations (PDEs) are cru-

cial because they describe intricate processes, such as heat transfer, fluid flow, material
stress, and deformation. Nonlinear PDEs are generally more difficult to solve and, due
to their complexity, typically require numerical or approximate methods, in contrast to
linear PDEs, which often have analytical solutions [1,2]. Finding exact solutions to such
equations is important because it allows us to understand and explain many complex
phenomena modeled by these equations. As a result, researchers are motivated to explore
new methods or refine existing ones. Various powerful methods have been proposed
and successfully applied in several works, such as the inverse scattering transform [3],
Hirota’s bilinear operators [4,5], the Bäcklund–Darboux transform [6–8], the homotopy
perturbation method [9], projective Riccati equations [10], the sub-ODE method [11,12], Lie
symmetry [13–18], the auxiliary equation technique [19,20], the Kudryshov technique [21],
Painlevé analysis [22,23], and bifurcation analysis [24–29].

Surface waves in shallow water have been extensively studied due to their distinctive
characteristics. These waves are commonly described using mathematical models, with the
Korteweg–de Vries (KdV) equation being one of the fundamental formulations. The KdV
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equation is particularly notable for its well-defined solutions and plays a crucial role in ana-
lyzing the dynamics of shallow-water waves [30]. Its origin is linked to its development as
a nonlinear wave equation governing unidirectional wave propagation [30]. This equation
was derived through an asymptotic expansion of the fundamental wave motion within the
shallow-water Euler equations, closely related to the study of small-amplitude waves on a
free surface. It encompasses two significant parameters, α and β, which define the wave
size relative to the water depth and the square of the water depth relative to the wavelength,
respectively. Thus, the KdV equation incorporates two essential elements: linear dispersion,
which explains the spreading and transformation of waves, and nonlinear steepening,
where waves grow taller in shallow water [31]. This equation is crucial for understanding
the behavior of solitary waves in these contexts and for examining the characteristics of
periodic waves, which aids in our comprehension of the consistent patterns and oscillations
observed in various wave phenomena. Now, here is the key point: this equation behaves
differently when α and β have significantly different values. In other words, when the
wave size differs from the water depth, it significantly affects how these waves move
and behave. Equations that account for higher-order effects, such as higher-order KdV
equations, follow the same principle [31]. The derivation of this equation originates from
the (2 + 1)-dimensional Gardner equation [32], which illustrates the relationship between
the sizes of α and β: β = α2 and γ = α3, where γ is the transverse wavelength parameter.

It is important to highlight that in our research, we are focusing on a specific case with
a flat bottom, which requires setting the bottom variation parameter δ equal to zero. This
choice is particularly significant because it simplifies our calculations. Our study focuses
on the Gardner equation, which was originally derived in a previous work [33]:

Gt + Gx +
3
2

αGGx −
3
8

α2G2Gx +
β

6
(1 − 3τ)Gxxx = 0. (1)

Equation (1) is essential to the analysis and is employed to examine the behavior of a
specific non-dimensional parameter: the Bond number τ = T/ρgH2, β = H2/L2, and
α = a/H, where H, g, a, T, ρ, and L define the average upstream depth, gravity acceleration,
wave amplitude, surface tension coefficient, water density, and wave length, respectively.
These non-dimensional factors are crucial to our investigation because they enable us to
understand the behavior of the system under consideration. The Korsunsky approach [34]
is applied to transform Equation (1) into a novel dual-mode model, as presented in [35].
Thus, we obtain the following dual-mode model for the Gardner equation:

Gtt − s2Gxx +

(
∂

∂t
− sη

∂

∂x

)(
3
2

αGGx −
3
8

α2G2Gx

)
+

(
∂

∂t
− sµ

∂

∂x

)(
β(1 − 3τ)

6
Gxxx + Gx

)
= 0, (2)

where G(x, t) represents a field function defined over the domain (x, t) ∈ R2. Here, η and
µ denote the nonlinearity parameter and dispersion, respectively, and are restricted by
|η| ≤ 1 and |µ| ≤ 1, while s characterizes the phase velocity. The dual-mode Gardner
equation generalizes both the KdV equation and the modified KdV (mKdV) equation by
incorporating both quadratic and cubic nonlinear terms. It is widely used to model the
propagation of nonlinear waves in various physical systems, especially in fields such as fluid
dynamics and plasma physics [36,37]. It is worth mentioning that the Korsunsky approach
has been extended to the KdV equation by several scholars to investigate dual-mode
equations. For instance, the dual-mode modified KdV and higher order KdV equations
were studied in [38], the dual-mode Kuramoto–Sivashinsky equation was investigated
in [39,40], and the dual-mode Sharma–Tasso–Olver equation and the dual-mode fourth-
order Burgers equation were considered in [41]. Soliton solutions of Equation (2) were
constructed utilizing the tan/cot and tanh/coth methods in [35]. Lie symmetry analysis
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has been applied to Equation (2), and some solutions have been obtained using the power
series method [42].

The primary objectives of this work are to apply the qualitative theory of planar
systems to determine and systematically tabulate the existence conditions for certain
bounded solutions to Equation (2) and to explicitly construct some of these solutions.
Additionally, we analyze the influence of specific physical parameters on these solutions.
Furthermore, by incorporating external periodic effects into the model, we investigate the
emergence of quasi-periodic and chaotic behavior in wave phenomena.

This work is organized as follows. In Section 2, we apply a specific wave transforma-
tion to convert Equation (2) into a dynamical system that is equivalent to a Hamiltonian
system with one degree of freedom. Section 3 focuses on the bifurcation analysis of the
traveling wave system, including the tabulation of the existence conditions for periodic,
super-periodic, and solitary solutions, along with a brief description of the phase por-
trait. In Section 4, we construct specific solutions categorized as periodic, super-periodic,
and solitary. Section 5 presents graphical representations of some solutions in both 2D and
3D formats, as well as an analysis of the influence of certain physical parameters on these
solutions. In Section 6, we examine quasi-periodic and chaotic behavior by introducing an
external periodic perturbation term. A sensitivity analysis for different initial conditions
is conducted, and Poincaré section and bifurcation diagrams are used to identify chaotic
patterns in the model. Finally, Section 7 summarizes the key findings of this study.

2. Traveling Wave System
Let us assume that the solution to Equation (2) is expressed as follows:

G(x, t) = M(ξ), ξ = κ(x − σt), (3)

where ξ is the wave variable, κ represents the wave number, and σ denotes the wave speed.
The solution form (3) stands for the traveling wave solution to Equation (2). By substituting
Equation (3) into Equation (2), we obtain

(σ2 − s2)κ2M′′ − κ(α + sη)

(
3
2

ακMM′ − 3
8

α2κM2M′
)′

− κ(σ + sµ)

×
(

βκ3(1 − 3τ)

6
M′′′ + κM′

)′
= 0,

(4)

where ′ indicates the derivatives with respect to ξ. By integrating Equation (4) twice with
respect to ξ and setting the integration constants to zero, we derive

M′′ + γ1M+ γ2M2 + γ3M3 = 0, (5)

where γi, i = 1, 2, 3 are newly introduced constants for simplicity, replacing the original
ones, and are given by

γ1 =
6[σ − σ2 + sµ + s2]

κ2β(1 − 3τ)(σ + sµ)
, γ2 =

9α(σ + sη)

2κ2β(σ + sµ)(1 − 3τ)
, γ3 = − 3α2(σ + sη)

4βκ2(σ + sµ)(1 − 3τ)
. (6)

Let κ2β(1− 3τ)(σ + sµ) ̸= 0 and let M′ = N . Then, the second-order differential Equation
(5) is written as follows:

M′ = N , (7a)

N ′ = −M(γ1 + γ2M+ γ3M2). (7b)



Mathematics 2025, 13, 841 4 of 22

The system in Equation (7a,b) is referred to as the traveling wave system. It is conservative
because div(M′,N ′) = 0, and it is Hamiltonian because it can be derived from the
Hamiltonian function

H =
1
2
N 2 + U (M), (8)

using Hamilton’s canonical equations [43], where U (M) is the three-parameter potential
function given by

U (M) =
γ1

2
M2 +

γ2

3
M3 +

γ3

4
M4. (9)

The Hamiltonian function itself is a constant of motion for the system in Equation (7a,b),
as it does not explicitly depend on ξ [43]. Hence, we have

1
2
N 2 + U (M) = q, (10)

where q is a free parameter that will play a key role in the subsequent analysis, as we demon-
strate later. Substituting Equation (7a) into the conserved quantity (10) and separating the
variables, we obtain the following differential form:

dM√
Fq(M; q)

= ±
√

2dξ, (11)

where Fq(M; q) is a quartic polynomial taking the form

Fq(M; q) = q −U (M) = q − γ1

2
M2 − γ2

3
M3 − γ3

4
M4. (12)

Since one of the main objectives is to construct all possible solutions to Equation (2),
determining the range of the parameters γ1, γ2, γ3, and q is essential for integrating the
differential form (11). The qualitative theory for planar integrable systems is applied to
identify this range. Furthermore, this approach is significant because it does not only
provide the required parameter ranges but also determines the type of solutions before
solving them by linking them with phase trajectories. This enables us to isolate bounded
solutions, which are physically meaningful, and to construct only real (non-complex)
solutions by introducing the concept of intervals for real wave propagation.

3. Bifurcation and Phase Portrait
The dynamical behavior and qualitative analysis of Equation (2) are explored using

Hamiltonian concepts [43,44]. The significance of the bifurcation study is encapsulated in
the following lemma, which is crucial, as it illustrates the relationship between the phase
trajectories and the types of solutions.

Lemma 1 ([45,46]). Assume that M(ξ) is a solution to Equation (2) for all −∞ < ξ < ∞ with
limξ→∞ M(ξ) = ν1 and limξ→−∞ M(ξ) = ν2. Hence, Equation (2) possesses the following:

(a) A solitary solution corresponding to a homoclinic trajectory when ν1 = ν2.
(b) A kink (or anti-kink) solution corresponding to a heteroclinic trajectory when ν1 ̸= ν2.
(c) A periodic solution corresponding to the periodic phase trajectory.

On the other hand, unbounded phase trajectories are linked to unbounded solutions,
which are physically undesirable in real-world problems. Consequently, the bifurcation
study allows us to disregard such solutions associated with these trajectories. Hence,
the bifurcation analysis is necessary for determining the range of the parameters γ1, γ2, γ3,
and q in order to integrate both sides of the differential form in Equation (11). Additionally,
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it is essential to find the conditions on these parameters that lead to periodic, homoclinic,
heteroclinic, and unbounded trajectories.

The phase portrait of the system in Equation (7a,b) can vary depending on the number
of equilibrium points and the number of separatrix layers it covers [47]. To systematize
the distinct trajectories in the phase portrait, we denote the periodic trajectory, heteroclinic
trajectory, homoclinic trajectory, and super-nonlinear periodic trajectory as PTp,r, HETp,r,
HTp,r, and SNPTp,r, where p represents the number of stable equilibrium points covered by
the trajectory and r denotes the number of separatrix layers covered by the trajectory [48].

Let us first introduce the following theorem, which will be useful for the subse-
quent analysis.

Theorem 1 ((Lagrange Theorem) [44]). For a conservative system, if the potential energy has a
strict minimum at some positions, then these positions are stable equilibrium points.

Let us assume ∆ = γ2
2 − 4γ1γ3 and define Q(M0, 0) as the equilibrium point of

the system in Equation (7a,b), where M0 is a critical point of the potential function in
Equation (9), i.e., a solution to the equation

dU
dM|Q = M0(γ1 + γ2M0 + γ3M2

0) = 0. (13)

The number of equilibrium points depends on the value of ∆, which can be negative, zero,
or positive. We examine each case individually:

1. If ∆ < 0, which is equivalent to −2
√

γ1γ3 < γ2 < 2
√

γ1γ3, then Equation (13)
has a unique solution, M0 = 0. Consequently, the system in Equation (7a,b) has a
single equilibrium point, Q0 = (0, 0). To classify the nature of this point, we apply
Theorem 1. Direct calculations yield d2U

dM2 |Q0 = γ1. The point Q0 is classified as either
a center point if γ1 > 0 (γ3 > 0) or a saddle point if γ1 < 0 (γ3 < 0). The value of
the parameter q at the equilibrium point Q0 is calculated, resulting in q = q0 = 0.
Figure 1 illustrates the phase portrait of the system (7a,b) for ∆ < 0, representing the
scenario in which the system has a single equilibrium point. We conclude that when
(γ1, γ2, γ3) ∈ R+×]− 2

√
γ1γ3, 2

√
γ1γ3[×R+, all phase trajectories of the system are

bounded and periodic, and are classified as PT1,0 for all q ∈]0, ∞[, as depicted in
Figure 1a. Conversely, when (γ1, γ2, γ3) ∈ R−×]− 2

√
γ1γ3, 2

√
γ1γ3[×R−, all phase

trajectories of the system (7a,b) are unbounded for all possible values of q ∈ R.
2. When ∆ = 0, this condition corresponds to γ2 = ±2

√
γ1γ3, where γ1γ3 > 0. In this

case, Equation (13) yields two solutions: M0 = 0 and − γ2
2γ3

. As a result, the system
(7a,b) possesses two equilibrium points: Q0 = (0, 0) and Q1(− γ2

2γ3
, 0). Theorem 1 is

applied to classify these points. Direct calculations yield

d2U
dM2 |Q0 = γ1,

d2U
dM2 |Q1 = 0.

Hence, the equilibrium point Q1 is a cusp point, and Q0 is a center point if
γ1 > 0(γ3 > 0) or a saddle point if γ1 < 0(γ3 < 0). The phase portrait
for the system (7a,b) in this case is shown in Figure 2. We compute the value
of the parameter q at the following equilibrium points: q0 = H(0, 0) = 0 and

q1 = H(− γ2
2γ3

, 0) = γ2
1

12γ3
. We briefly describe the phase portrait in this case. When

(γ1, γ2, γ3) ∈ R+ × {±2
√

γ1γ3} ×R+, all phase trajectories are bounded and peri-
odic, varying according to the values of the parameter q, as shown in Figure 2a. There
are two families of periodic trajectories: one characterized by PT1,1 for q ∈]q1, ∞[ in
green, and the other by PT1,0 for q ∈]0, q1[ in red. Additionally, the blue trajectory
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passing through the cusp point Q1 typically exhibits periodic behavior, especially near
the equilibrium point. On the other hand, if (γ1, γ2, γ3) ∈ R− × {±2

√
γ1γ3} ×R−,

all phase trajectories of the system (7a,b) are unbounded, as shown in Figure 2b.
3. If ∆ > 0, which is equivalent to γ2

2 > 4γ1γ3, then Equation (13) has three real solutions,

M0 = 0, 1
2γ3

[
−γ2 ±

√
γ2

2 − 4γ1γ3

]
. Consequently, the system (7a,b) has three equilib-

rium points: Q0 = (0, 0) and Q2,3 =
(

1
2γ3

[
−γ2 ±

√
γ2

2 − 4γ1γ3

]
, 0
)

. The Lagrange
Theorem 1 is employed to classify the equilibrium points; hence, we have

d2U
dM2 |Q0 = γ1,

d2U
dM2 |Q2,3 =

√
γ2

2 − 4γ1γ3

2γ3

[√
γ2

2 − 4γ1γ3 ∓ γ2

]
.

Also, we compute the value of q at the following points:

q0 = H(Q0) = 0, q2,3 = H(Q2,3) = ±

(
γ2 ∓

√
γ2

2 − 4γ2γ3

)2

96γ3
3

[
γ2

√
γ2

2 − 4γ2γ3 − 6γ1γ3 − γ2
2

]
, (14)

which are sufficient to give a short description of the phase portrait. Let us now
consider the next two cases, in which γ1γ3 is either positive or negative:

Case A: If γ1γ3 > 0, the condition ∆ > 0 yields γ2 > 2
√

γ1γ3 or γ2 < −2
√

γ1γ3:

(a) If γ1 > 0, γ3 > 0, and γ2 > 2
√

γ1γ3, the equilibrium point Q0 is a center
point, while Q2 is a saddle point and Q3 is a center point. Figure 3a depicts
the phase portrait for the system (7a,b) in this case. It consists of several types
of bounded trajectories, depending on the values of the parameter q. There is
a family of super-periodic trajectories in green, characterized by SNPT2,1 for
q ∈]q2, ∞[, two brown families of periodic trajectories around the center point
Q0, characterized by PT1,0 for q ∈]0, q2[, a family of red periodic trajectories
around the center point Q3, characterized by PT1,0 for q ∈]q3, 0[, and a single
cyan periodic trajectory for q = q0. Additionally, there are two homoclinic
trajectories in blue for q = q2, which is characterized by HT1,0.

(b) On the other hand, if γ1 > 0, γ3 > 0, and γ2 < −2
√

γ1γ3, then Q0 is a center
point, Q2 is a center point, and Q3 is a saddle point. The phase portrait for this
case is shown in Figure 3b. All the trajectories are bounded and categorized
into different types based on the value of the parameter q. A similar phase
description can be provided as in (a).

(c) If γ1 < 0, γ3 < 0, and γ2 > 2
√

γ1γ3, the equilibrium point Q0 is a saddle
point, while Q2 is a center point and Q3 is a saddle point. The phase por-
trait for this case is illustrated in Figure 3c. All the phase trajectories are
unbounded, except for the family of periodic red trajectories for q ∈]q3, 0[,
which is characterized by PT1,0. This family is enclosed within a homoclinic
trajectory in blue for q = 0, which is characterized by HT1,0.

(d) If γ1 < 0, γ3 < 0, and γ2 < −2
√

γ1γ3, the equilibrium point Q0 is a saddle
point, while Q2 is a saddle point and Q3 is a center point. The phase portrait
for this case is shown in Figure 3d. A similar phase description can be
provided as in (c).

Case B: If γ1γ2 < 0, then the condition γ2
2 > 4γ1γ3 holds automatically. Thus, we

proceed to consider the following possible cases:

(a) If γ1 < 0, γ3 > 0, and γ2 is a nonzero real number, the equilibrium point Q0

is a saddle point while Q2 and Q3 are center points. The phase portrait for
the system (7a,b) corresponding to this case is illustrated in Figure 4a. All the
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phase trajectories are bounded, and their type depends on the value of the
parameter q. There is a family of periodic red trajectories around the center
point Q3 for q ∈]q3, q2[, and two periodic families of brown trajectories sur-
rounding the two center points Q2 and Q3 for q ∈]q2, 0[, situated within the
two homoclinic orbits (blue) at q = 0. Additionally, there is a single periodic
trajectory (cyan) for q = q2. All these periodic trajectories are characterized
by PT1,0. Furthermore, for q ∈]0, ∞[, there is a green family of super-periodic
trajectories characterized by SNPT2,1.

(b) If γ1 > 0, γ3 < 0, and γ2 is a nonzero real number, the equilibrium point Q0 is
a center point while both equilibrium points Q2,3 are saddle points. The phase
portrait for this case is depicted in Figure 4b. All the phase trajectories are
unbounded, except for a family of red periodic trajectories around the center
point Q0 when q ∈]0, q2[. This family lies within the homoclinic orbit (blue)
at q = q2.
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(a) (b)

Figure 1. The phase portrait of the system (7a,b) for γ2
2 < 4γ1γ3. The black point marks the

equilibrium point. (a) γ1 > 0, γ3 > 0, (b) γ1 < 0, γ3 < 0.
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Figure 2. The phase portrait of the system (7a,b) for γ2
2 = 4γ1γ3. The black point marks the

equilibrium point. (a) γ1 > 0, γ3 > 0, (b) γ1 < 0, γ3 < 0.
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Figure 3. The phase portrait of the system (7a,b) for γ2
2 > 4γ1γ3 with γ1γ3 > 0. The black point

marks the equilibrium point. (a) γ1 > 0, γ3 > 0, γ2 > 2
√

γ1γ3, (b) γ1 > 0, γ3 > 0, γ2 < −2
√

γ1γ3,
(c) γ1 < 0, γ3 < 0, γ2 > 2

√
γ1γ3, (d) γ1 < 0, γ3 < 0, γ2 < −2

√
γ1γ3.
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Figure 4. The phase portrait of the system (7a,b) for γ2
2 > 4γ1γ3 with γ1γ3 < 0. The black point

marks the equilibrium point. (a) γ1 < 0, γ3 > 0, γ2 > 0 (γ2 < 0), (b) γ1 > 0, γ3 < 0, γ2 > 0 (γ2 < 0).



Mathematics 2025, 13, 841 9 of 22

4. Solutions
According to Lemma 1, the nature of the solution depends on the characteristics of the

trajectories. Therefore, it is more appropriate to compile and tabulate the conditions that re-
sult in periodic, super-periodic, and solitary solutions. Unbounded solutions are excluded,
as they are physically unacceptable. Hereafter, we compute the solutions corresponding to
similar trajectories where the leading term of the polynomial (12) has the same sign.

4.1. Periodic Solutions

This subsection constructs periodic solutions to Equation (2), utilizing the parameter
restrictions summarized in Table 1. Thus, we have the following:

(a) The parameter conditions in Case 1 indicate that the polynomial (12) has two real
roots, denoted as p1, p2, where p1 < p2, and two complex conjugate roots, denoted
as p3, p∗3 , where ∗ denotes the complex conjugate. Thus, it can be expressed as
Fq = − γ3

4 (M− p1)(p2 −M)(M− p3)(M− p∗3). The interval for the real solution is
M ∈]p1, p2[. Assuming M(0) = p1, integrating both sides of Equation (11) yields a
new solution to Equation (2) of the form

G(x, t) = M(ξ) =
1

A1 − B1

[
A1 p1 − B1 p2 −

2A1B1(p1 − p2)

A1 + B1 + (A1 − B1)cn(
√

2γ3 A1B1
2 κ(x − σt), k1)

]
, (15)

where A2
1 = (p2 − Rep3)

2 + Imp3, B2
1 = (p1 − Rep3)

2 + Im2 p3, and k2
1 =

(p2−p1)
2−(A1−B1)

2

4A1B1
. The solution (15) is periodic, with a period given by 8√

2γ3 A1B1
K(k1),

where K(k1) denotes the complete elliptic integral of the first kind [49].
The solutions corresponding to Case 2, Case 3, Case 5, Case 7, and Case 12 in Table 1
are identical to the solution (15), differing only in their arguments. This difference
arises because the roots of the polynomial change with the parameter constraints,
while the sign of the leading order of the polynomial remains fixed.

(b) The parameter conditions in Case 4, Case 8, and Case 13 indicate that the polynomial
(12) has four real zeros, denoted as pi for i = 4, 5, 6, 7, satisfying p4 < p5 < p6 < p7.
Thus, it is written as Fq = − γ3

4 (M− p4)(p5 −M)(M− p6)(M− p7). The intervals
of the real solutions are M ∈]p4, p5[∪]p6, p7[. For M ∈]p4, p5[, we assume M(0) = p4

and integrate both sides of Equation (11). Consequently, we obtain a novel periodic
solution to Equation (2) of the form

G(x, t) = M(ξ) = p7 +
(p7 − p5)(p7 − p4)

p5 − p7 + sn2( 1
4

√
2γ3(p7 − p5)(p6 − p4)κ(x − σt), k2)

, (16)

where k2
2 = (p7−p6)(p5−p4)

(p7−p5)(p6−p4)
. The period of the solution (16) is 8K(k2)√

2γ3(p7−p5)(p6−p4)
, where

K(k2) is a complete elliptic integral of the first kind [49]. The solution (16) corresponds
to the left family of periodic trajectories, as illustrated in Figure 3a,b. On the other
hand, if M ∈]p6, p7[, we assume that M(0) = p7. Consequently, integrating both
sides of Equation (11) yields

G(x, t) = M(ξ) = p4 −
(p7 − p4)(p6 − p4)

p4 − p6 + (p6 − p7)sn2( 1
4

√
γ3(p7 − p5)(p6 − p4)κ(x − σt), k2)

, (17)

which is a new periodic solution to Equation (2) with period 8K(k2)√
γ3(p7−p5)(p6−p4)

. The so-

lution (17) corresponds to the right family of periodic trajectories, as shown in
Figure 3a,b.
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Note that for fixed values of the parameters γ1, γ2, γ3, and q, two distinct solutions
arise, depending on the differences in the intervals of real solutions. Hence, employing
such intervals is crucial.

(c) The parameter conditions in Case 6 and Case 9 indicate that the polynomial (12)
has one double root at the origin and two simple roots given by

p8,9 = 1
3γ3

[
−2γ2 ∓

√
4γ2

2 − 18γ1γ3

]
. In Case 6, these roots satisfy p7 < p8 <

0, while in Case 9, p9 > p8 > 0. The polynomial (12) can be expressed as
Fq = γ3

4 M2(M− p8)(p9 − M). The interval of real propagation is M ∈]p8, p9[

for Case 6 and M ∈]p9, p8[ for Case 9. Postulating M(0) = p8 in both cases and
integrating both sides of Equation (11), we obtain

G(x, t) = M(ξ) =
6γ1√

4γ2
2 − 18γ1γ3cos(2

√
γ1κ(x − σt))− 2γ2

. (18)

The solution (18) represents a novel solution to Equation (2).
(d) Cases 10, 11, and 15 justify the existence of four real zeros of the polynomial, namely

ri, i = 1, 2, 3, 4, with r1 < r2 < r3 < r4. It is worth mentioning that the values of these
roots vary from case to case due to their dependence on the polynomial coefficients.
The polynomial (12) is expressed as Fq = −γ3

4 (M− r1)(M− r2)(M− r3)(M− r4).
The intervals of the real solutions are given by M ∈] − ∞, r1[∪]r2, r3[∪]r4, ∞[. We
restrict ourselves to M ∈]r2, r3[, as this interval corresponds to periodic trajectories,
whereas the other intervals describe unbounded trajectories. Integrating both sides of
Equation (11) under the assumption (11) that M(0) = r2 yields

G(x, t) = M(ξ) = r2 +
(r3 − r2)(r4 − r2)

(r4 − r2) + (r3 − r4)sn2( 1
2

√
−2γ3(r4 − r2)(r3 − r1)κ(x − σt), k3)

, (19)

where k3 =
√

(r4−r3)(r2−r1)
(r4−r2)(r3−r1)

. The solution (19) characterizes a new solution to

Equation (2), with a period given by 4K(k3)√
−2γ3(r4−r2)(r3−r1)

.

Table 1. Conditions for the existence of periodic solutions to Equation (2).

Case γ1 γ3 γ2 q Figure/Trajectory Color

1.

+ +

]− 2
√

γ1γ3, 2
√

γ1γ3[ ]0, ∞[ Figure 1a/red

2. ±2
√

γ1γ3
]q1, ∞[ Figure 2a/green

3. ]0, q1[ Figure 2a/red

4.
]2
√

γ1γ3, ∞[
]0, q2[ Figure 3a/brown

5. ]q3, 0[ Figure 3a/red
6. 0 Figure 3a/cyan

7.
]− ∞,−2

√
γ1γ3[

]q2, 0[ Figure 3b/red
8. ]0, q3[ Figure 3b/brown
9. 0 Figure 3b/cyan

10. − − ]2
√

γ1γ3, ∞[ ]q3, 0[ Figure 3c/red
11. ]− ∞,−2

√
γ1γ3[ q3, 0[ Figure 3d/red

12.
− + +/−

]q3, q2[ Figure 4a/red
13. ]q2, q0[ Figure 4a/brown
14. q2 Figure 4a/cyan

15. + − +/− ]0, q2[ Figure 4b/red
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4.2. Super-Periodic Solutions

A super-periodic nonlinear wave, a novel type of nonlinear wave, is characterized
by the nontrivial topology of its phase portraits, which exhibit greater complexity than
simple periodic waves. These waves correspond to phase-plane orbits or trajectories that
involve at least two stable equilibrium points (centers) and a separatrix layer. Super-
periodic wave solutions arise in various physical phenomena, including fluid dynamics,
optics, and plasma physics, where they play a crucial role in describing and predicting the
evolution of wave patterns in complex systems. For further details on these solutions, see,
for example, [50,51].

The conditions for the existence of super-periodic solutions to Equation (2) are sum-
marized in Table 2. This section focuses on constructing these solutions.

Table 2. Conditions for the existence of super-periodic solutions to Equation (2).

Case γ1 γ3 γ2 q Figure/Trajectory Color

1.
+ +

]2
√

γ1γ3, ∞[ ]q2, ∞[ Figure 3a/green
2. ]− ∞,−2

√
γ1γ3[ ]q3, ∞[ Figure 3b/green

3. − + +/− ]0, ∞[ Figure 4a/green

All cases in Table 2 demonstrate that the polynomial (12) has two real roots, r5 and r6,
with r5 < r6, and two complex conjugate roots, r7 and r∗7 . Consequently, the polynomial
(12) can be expressed as Fq = γ3

4 (M− r5)(r6 −M)(M− r7)(M− r∗7). The interval of the
real solutions is M ∈]r5, r6[. Integrating both sides of Equation (11) under the assumption
that M(0) = r5 yields

G(x, t) = M(ξ) =
1

A2 − B2

[
A2r5 − B2r6 −

2A2B2(r5 − r6)

A2 + B2 + (A2 − B2)cn(
√

2γ3 A2B2
2 κ(x − σt), k4)

]
, (20)

where A2
2 = (r6 − Rer7)

2 + Im2r7, B2
2 = (r5 − Rer7)

2 + Im2r7, and k2
4 = (r6−r5)

2−(A2−B2)
2

4A2B2
.

Solution (20) characterizes a novel super-periodic solution to Equation (2).

4.3. Solitary Solutions

This subsection focuses on deriving the solitary wave solution to Equation (2), incor-
porating the parameter conditions specified in Table 3. For brevity, only selected cases are
considered, as the calculations for the remaining cases follow a similar approach.

Table 3. Conditions for the existence of solitary solutions to Equation (2).

Case γ1 γ3 γ2 q Figure/Trajectory Color

1.
+ +

]− ∞,−2
√

γ1γ3[ q3 Figure 3b/blue
2. ]2

√
γ1γ3, ∞[ q2 Figure 3a/blue

3. − − ]2
√

γ1γ3, ∞[ 0 Figure 3c/blue
4. ]− ∞,−2

√
γ1γ3[ 0 Figure 3d/blue

5. − + +/− 0 Figure 4a/blue

6. + − +/− q2 Figure 4a/blue

First, we examine Case 1 in Table 3. In this case, the polynomial (12) has one double
root, denoted by ω2, which corresponds to the M-coordinate of the saddle point Q3.
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The other roots, ω1, ω3, are simple. This implies that Fq can be expressed as Fq = γ3
4 (M−

ω2)
2(ω1 −M)(M− ω3), where ω1 < 0 < ω2 < ω3. The roots ω1 and ω2 are given by

ω1,3 =
1

3γ3

[
∓3

√
γ2

2 − 4γ1γ3 ∓ γ2 + 2

√
γ2

2 + 3γ2

√
γ2

2 − 4γ1γ3

]
.

The intervals for the real solutions are M ∈]ω2, ω3[∪]ω1, ω2[. The first interval, ]ω2, ω3[,
corresponds to the left homoclinic trajectory, while the second interval, ]ω1, ω2[, corre-
sponds to the right homoclinic trajectory, as illustrated by the blue curves in Figure 3b. Let
us construct the solution corresponding to each interval individually:

(a) Let M ∈]ω2, ω3[ and assume M(0) = ω3. Integrating both sides of Equation (11)
yields

G(x, t) = M(ξ) = ω2 −
2(ω2 − ω3)(ω1 − ω2)

ω1 − 2ω2 + ω3 + (ω1 − ω3)cosh( 1
2

√
2γ3(ω2 − ω1)(ω3 − ω2)κ(x − σt))

, (21)

which is a new solitary solution to Equation (2).
(b) Let M ∈]ω1, ω2[ and assume M(0) = ω1. Integrating both sides of Equation (11)

yields

G(x, t) = M(ξ) = ω2 +
2(ω2 − ω3)(ω1 − ω2)

−ω1 + 2ω2 − ω3 + (ω1 − ω3)cosh( 1
2

√
2γ3(ω2 − ω1)(ω3 − ω2)κ(x − σt))

, (22)

which is a new solitary solution to Equation (2).

Using similar calculations, we can construct the solution for Case 2 in Table 3.
Case 3 and Case 4 indicate that the polynomial (12) has a double root at the origin

and two distinct simple roots, ρ1, ρ2. For Case 3, these roots satisfy 0 < ρ1 < ρ2, whereas
for Case 4, they satisfy ρ2 < ρ1 < 0. Accordingly, the polynomial (12) can be expressed as
Fq = −γ3

4 M2(M− ρ1)(M− ρ2). The intervals of real wave propagation are M ∈]ρ2, 0[
for Case 3 and M ∈]0, ρ2[ for Case 4. By integrating both sides of Equation (11) under the
assumption that M(0) = ρ2, we obtain the solution

G(x, t) = M(ξ) =
2r1r2

r1 + r2 + (r2 − r1)cosh(
√

−2γ3ρ1ρ2
2 κ(x − σt))

, (23)

which characterizes a novel solitary solution to Equation (2).

5. Physical Interpretation
This section focuses on graphically presenting some of the obtained solutions using

3D and 2D representations, as well as exploring the effects of the wave velocity σ and wave
number κ on the periodic, super-periodic, and solitary solutions.

We allow the parameters to take the values µ = 0.8, η = 0.85, β = 2, τ = 0.4, α = 1,
s = −0.8, σ = 0.05, and κ = 1. Consequently, Equation (6) yields γ1 = 1.207627119,
γ2 = −12.01271186, and γ3 = 2.002118644. It is evident that γ1 > 0, γ3 > 0, and γ2 <

−2
√

γ1γ3 = −3.109863514. The phase portrait for the system (7a,b) is shown in Figure 3a.
The values of the parameter q at the equilibrium points Q0 = 0, Q2 = (0.1022723737, 0),
and Q3 = (5.897727624, 0) are q0 = 0, q2 = −194.8578173, and q3 = 0.002086970512,
respectively. As mentioned above, the type of solution depends on the values of q, which
also determine the nature of the trajectory.

If we select q = 0.001043485256 ∈]0, 0.002086970512[, then the system (7a,b) has
two families of periodic orbits, shown in brown. The corresponding solution can be
determined by calculating the roots pi, for i = 4, 5, 6, 7, of the polynomial (12). These roots
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are p4 = −0.03721316573, p5 = 0.05102437429, p6 = 0.1399328644, and p7 = 0.846255925.
Consequently, the solution (16) becomes

G(x, t) = 7.846255925 +
61.45346699

−7.795231551 − sn(0.04156857488t − 0.8313714975x, 0.7017300579)2 . (24)

Figure 5a and Figure 5b present the 3D and 2D representations of the solution (24), re-
spectively, illustrating its periodicity. Additionally, we examine the influence of the wave
velocity σ and wave number κ on the periodic solution (16) by fixing the values of all
parameters while allowing only σ or κ to vary. Figure 5c demonstrates the impact of σ on
the periodic solution (16), showing that as σ increases, the amplitude of the solution grows
while its width decreases. Similarly, Figure 5d illustrates the effect of the wave number κ

on the periodic solution (16). It is evident that as κ increases, the amplitude of the solution
remains unchanged, while its width expands.
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-0.04
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(c) (d)

Figure 5. Graphical representations of the periodic solution (16) and the influence of the wave velocity
σ and wave number κ. (a) 3D representation, (b) 2D representation, (c) impact of σ, (d) impact of κ.

If we select q = 3.002086971 ∈]0.002086970512, ∞[, the system (7a,b) exhibits
a family of super-periodic trajectories, shown in green in Figure 3b. Consequently,
Equation (2) admits a solution of the form (20). To derive this solution, we calculate
the roots of the polynomial (12), which are r5 = −0.8356228633, r6 = 7.858855170,
r7 = 0.4883838458 − 0.8214639844i, and r∗7 = 0.4883838458 + 0.8214639844i. Hence, the so-
lution (20) is expressed as
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G(x, t) = −3.148234177 +
34.30114829

8.974246415 + 5.857968607cn(3.401112529κ(−0.05t + x), 0.8930547131)
. (25)

Figure 6a,b present the 3D and 2D representations of the super-periodic solution (20),
respectively. Figure 6c demonstrates that the effect of the wave velocity σ on the solution
(20) is minimal for both amplitude and width. Figure 6d illustrates the influence of the
wave number κ on the solution (20), showing that as κ increases, the amplitude of the
solution remains nearly constant, while its width increases.
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Figure 6. Graphical representations of the super-periodic solution (20) and the influence of the
wave velocity σ and wave number κ. (a) 3D representation, (b) 2D representation, (c) impact of σ,
(d) impact of κ.

If we choose q = q3 = 0.1572351228, the system (7a,b) has two homoclinic trajec-
tories, as shown in Figure 3b. Hence, Equation (2) has a solitary solution of the form
(21) or (22), depending on the possible intervals of the real solutions. To find these solu-
tions, we first find the roots of the polynomial (12). These roots are ω1 = −0.2162195553,
ω2 = 0.4455920452, and ω3 = 7.325035462. Hence, the solution (21) takes the form

G(x, t) = 0.4455920452 − 9.105790916
−7.541255017 cosh(2.133751500κ(−0.05t + x)) + 6.217631816

. (26)

Figure 7 provides a graphical representation of the solution (21). Specifically, Figure 7a,b
show the 3D and 2D depictions of the solution, respectively. It is evident that this solution is
symmetric about the vertical line ξ = 0, as illustrated in Figure 7b. Figure 7c demonstrates
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that the variation in the wave velocity has a minimal effect on the amplitude and width
of the solution. Finally, Figure 7d highlights the influence of the wave number κ on the
solution (21). As the wave number κ increases, the amplitude of the solution remains
approximately constant, while its width expands.
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Figure 7. Graphical representations of the solitary solution (21) and the influence of the wave velocity
σ and wave number κ. (a) 3D representation, (b) 2D representation, (c) impact of σ, (d) impact of κ.

6. Quasi-Periodic Behavior
This section investigates the autoresonance behavior of a non-autonomous system in

which the oscillator self-regulates under the influence of a variable periodic force. The per-
turbed version of the traveling wave system corresponding to Equation (2) emerges as a
result of external effects. These effects are characterized by the inclusion of specific forces,
represented as 1

κ2 Qxx(κ(x − σt)). It has the form

Gtt − s2Gxx +

(
∂

∂t
− sη

∂

∂x

)(
3
2

αGGx −
3
8

α2G2Gx

)
+

(
∂

∂t
− sµ

∂

∂x

)(
β(1 − 3τ)

6
Gxxx + Gx

)
=

1
κ2 Qxx(κ(x − σt)).

(27)

By substituting (3) into Equation (27), we derive a perturbed system that corresponds to
the unperturbed system (7a,b) of the form
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M′ = N ,

N ′ = −M(γ1 + γ2M+ γ3M2) + ρcn(Ωξ, k),
(28)

where cn(u, k) is the Jacobi elliptic function [49]. The parameters γi are defined by (6),
and the external periodic force is chosen as Q = ρcn(Ωξ, k), where ρ represents the
strength of the external periodic force and Ω denotes its frequency. This choice is significant
because it can degenerate into trigonometric or hyperbolic functions as k approaches 0 or
1, respectively.

The unperturbed system (7a,b) is studied with the following parameter values: µ = 0.8,
η = 0.85, β = 2, τ = 0.4, σ = 0.05, s = −0.063, α = 1, and κ = 1. These parameters are
equivalent to γ1 = 40.0875, γ2 = −99.84375, and γ3 = 16.640625. We choose the initial
conditions M(0) = −0.1542242022 and M′(0) = 0.01, which results in q = −0.1542184004,
where q lies within the interval ]0, 0.002086970512[. This case corresponds to Case 8 in
Table 1. Hence, the unperturbed system (7a,b) exhibits periodic behavior, as demonstrated
in Figure 8a,b. Additionally, Figure 8c shows the plot of M(ξ) versus ξ, which further
confirms the system’s periodic behavior.
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Figure 8. The 2D, 3D, and time-series representations of the unperturbed system (7a,b) with the
initial conditions M(0) = −0.1542242022 and M′(0) = 0.01, where µ = 0.8, η = 0.85, β = 2, τ = 0.4,
σ = 0.05, s = −0.063, α = 1, and κ = 1. (a) 2D phase portrait, (b) 3D phase portrait.

The inclusion of the free parameters γ1, γ2, and γ3, in addition to the three parameters
ρ, Ω, and k associated with the perturbed term, adds complexity to understanding the
periodic and chaotic dynamical behavior of the dual-mode Gardner model. This problem is
addressed through the adoption of comprehensive and diverse strategies. This involves the
presentation of 2D and 3D phase portraits, time series, and an examination of the influence
of parameters through two distinct events. The investigation systematically varies the
frequency (or strength) of the external force while keeping the other parameters fixed.

First, we assume the following parameter values: µ = 0.8, η = 0.85, β = 31.940745,
τ = 0.4, σ = 0.05, s = −0.05885733, α = 18, κ = 1, k = 0.5, and, consequently, γ1 = −1.25,
γ2 = 1.25, and γ3 = −0.375. In this section, we fix the strength of the external periodic
effect at ρ = 4 and allow the frequency Ω to vary while keeping the initial condition
(M(0),M′(0)) = (0.1, 0) fixed. For Ω = 0.01, Figure 9a and Figure 9b, which depict
the 2D and 3D phase portraits of the perturbed system (28), show a quasi-periodic wave
phenomenon, as confirmed by Figure 9c, which illustrates the solution M as a function of
ξ. As the frequency increases to Ω = 0.1, the quasi-periodic behavior remains, as shown in
Figure 9d–f. Moreover, chaotic behavior is absent even for Ω = 3.1, as confirmed by the
2D and 3D phase portraits in Figure 9g,h and the time-series representation depicted in
Figure 9i. This is consistently observed due to the in commensurability of the frequency ratio.
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Figure 9. The 2D, 3D, and time-series representations of the unperturbed system (28) with the initial
condition (M(0),M′(0)) = (0.1, 0), where µ = 0.8, η = 0.85, β = 31.940745, τ = 0.4, σ = 0.05,
s = −0.05885733, α = 18, κ = 1, k = 0.5, ρ = 4, and for different values of Ω. (a) 2D phase portrait,
(b) 3D phase portrait, (c) M(ξ) as a function of ξ, (d) 2D phase portrait, (e) 3D phase portrait,
(f) M(ξ) as a function of ξ, (g) 2D phase portrait, (h) 3D phase portrait, (i) M(ξ) as a function of ξ.

Second, we select suitable values for the physical parameters, fixing one of the param-
eters γi (i = 1, 2, 3) while allowing all other parameters to vary. Specifically, we assume
µ = 0.8, η = 0.85, β = −3.77656, τ = 0.4, σ = 0.05, s = −0.05885788, α = 18, ρ = 9,
and κ = 1. As a result, we have γ1 = 10.5, γ2 = 1.25, and γ3 = −0.375. We present the 2D
and 3D phase portraits, along with the time-series representation, for different values of
the frequency Ω and a fixed initial condition (M(0),M′(0)) = (−0.02, 0). For Ω = 0.1,
the 2D and 3D phase portraits displayed in Figure 10a–c clearly show that the perturbed
system (28) still exhibits quasi-periodic behavior. As the frequency increases to Ω = 3.1,
the system dynamics shift to chaotic behavior, as shown in Figure 10d–f. Moreover, as the
frequency further increases to Ω = 9.1, even more pronounced chaotic behavior is observed,
as illustrated in Figure 10g–i.



Mathematics 2025, 13, 841 18 of 22

-4 -3 -2 -1 0 1 2 3 4

-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200

-4

-3

-2

-1

0

1

2

3

4

(a) (b) (c)

-4 -3 -2 -1 0 1 2 3 4

-15

-10

-5

0

5

10

15

0 50 100 150 200

-4

-3

-2

-1

0

1

2

3

4

(d) (e) (f)

-4 -3 -2 -1 0 1 2 3 4

-10

-5

0

5

10

0 50 100 150 200

-4

-3

-2

-1

0

1

2

3

4

(g) (h) (i)

Figure 10. The 2D, 3D, and time-series representations of the unperturbed system (28) with the initial
condition (M(0),M′(0)) = (−0.02, 0), where µ = 0.8, η = 0.85, β = −3.77656, τ = 0.4, σ = 0.05,
s = −0.05885788, α = 18, ρ = 9, and κ = 1. (a) 2D phase portrait, (b) 3D phase portrait, (c) M(ξ) as
a function of ξ, (d) 2D phase portrait, (e) 3D phase portrait, (f) M(ξ) as a function of ξ, (g) 2D phase
portrait, (h) 3D phase portrait, (i) M(ξ) as a function of ξ.

We introduce the Poincaré surface of section using the same parameter values as
those in Figure 10, which lead to chaotic dynamics. The Poincaré surface of section shown
in Figure 11 is irregular. In other words, it is dispersed and fails to form any recogniz-
able pattern. This behavior arises because the perturbed dynamical system (28) exhibits
chaotic dynamics.

One can investigate the sensitivity of quasi-periodic waves by slightly altering the
initial conditions. To explore this sensitivity, we consider two different initial conditions.
The first set includes (0.01, 0) in green with a plus sign marker and (0.02, 0) in blue with a
dot marker, as shown in Figure 12. The second set includes (0.01, 0) in green with a plus sign
marker and (0.5, 0) in blue with a dot marker, as shown in Figure 13. Both figures compare
the solutions of the system (28) for various initial conditions. The perturbed dynamical
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system (28) is sensitive to changes in the initial conditions due to its chaotic nature, which
depends on the parameter values. Based on the observations and comparisons in Figures 12
and 13, we conclude that the quasi-periodic chaotic behavior of the perturbed system is
evident in its sensitivity to the initial conditions when specific parameter values are tested.
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Figure 11. Poincaré surface of section for the perturbed system (28) with the initial condition
(M(0),M′(0)) = (−0.02, 0), where µ = 0.8, η = 0.85, β = −3.77656, τ = 0.4, σ = 0.05,
s = −0.05885788, α = 18, ρ = 9, κ = 1, and Ω = 9.1.
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Figure 12. Two-dimensional graph of sensitivity analysis of distinct initial conditions (0.01, 0) and
(0.02, 0) in the perturbed system (28), where µ = 0.8, η = 0.85, β = −3.77656, τ = 0.4, σ = 0.05,
s = −0.05885788, α = 18, ρ = 4, κ = 1, and Ω = 2.
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Figure 13. Two-dimensional graph of sensitivity analysis of distinct initial conditions (0.01, 0) and
(0.02, 0) in the perturbed system (28), where µ = 0.8, η = 0.85, β = −3.77656, τ = 0.4, σ = 0.05,
s = −0.05885788, α = 18, ρ = 4, κ = 1, and Ω = 2.

7. Conclusions
This study focuses on examining certain qualitative aspects of a dual-mode model

for the Gardner equation derived from an ideal fluid. A wave transformation is applied
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to Equation (2), converting it into a dynamical system that corresponds to a Hamiltonian
system with one degree of freedom. Consequently, finding a solution to Equation (2) is
equivalent to solving the one- dimensional motion of a particle under the influence of a
three-parameter potential function (9). This equivalence is significant as it allows for the
determination of the real wave propagation intervals, which correspond to the possible
real motions in Hamiltonian mechanics. Additionally, a bifurcation analysis is conducted
on the traveling wave systems, highlighting its significance for several reasons, which are
outlined below:

(a) This approach enables us to classify the solutions before explicitly determining them
by linking the solution types to the phase trajectories, as stated in Lemma 1. In other
words, it provides the existence conditions for periodic, super-periodic, and solitary
solutions, as shown in Table 1, Table 2, and Table 3, respectively.

(b) This approach allows us to construct real (non-complex) solutions by considering the
intervals of real wave propagation. Moreover, the significance of these intervals cannot
be overlooked, as different intervals of real wave propagation yield different solutions.
In other words, even under the same parameter conditions, distinct solutions arise
due to variations in the intervals of real wave propagation.

(c) This approach allows us to isolate unbounded solutions, which are less relevant in
real-world applications. However, it is worth mentioning that these solutions can be
computed using the same procedures as bounded solutions.

Although bifurcation analysis offers several advantages, as discussed earlier, it also
has certain limitations in its application. For its effective use, the reduced traveling wave
system must be conservative and Hamiltonian, with only one or two degrees of freedom.
While this approach is theoretically applicable to Hamiltonian systems with higher degrees
of freedom, practically implementing it in such cases remains highly challenging.

Taking into account the bifurcation conditions on the parameters, we construct new
solutions to Equation (2), classifying them into periodic, super-periodic, and solitary solu-
tions. These solutions are graphically illustrated through their 2D and 3D representations.
Additionally, we analyze the influence of the wave number and wave velocity on some
of these solutions, revealing their effects on amplitude and width variations. Finally, we
introduce a periodic perturbation term to Equation (2), leading to the perturbed dynam-
ical system (28). In the absence of this term, the unperturbed dynamical system (7a,b) is
integrable, and consequently, it exhibits regular behavior. However, the inclusion of the
perturbation alters the dynamical behavior, leading to quasi-periodic and chaotic dynamics.
To analyze these effects, we present 2D and 3D phase diagrams, along with time-series rep-
resentations. Furthermore, a sensitivity analysis is conducted for different initial conditions,
and Poincaré maps are used to identify chaotic patterns in the model.

Now, let us compare the findings of this paper with those from the relevant literature.
In [35], the authors utilized the tan/cot and tanh/coth methods to derive solutions, all of
which were expressed in terms of tan, cot, tanh, and coth functions. In contrast, our solu-
tions are constructed using Jacobi elliptic functions, rendering them entirely novel. Further-
more, in [42], the authors conducted a symmetry analysis and examined the conservation
laws of model (2), as well as investigated its dynamical behavior under a cosine-perturbed
term. Our work extends this perturbation to the Jacobi elliptic function cn(u, k), which
reduces to the cosine-perturbed term when k = 0.
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