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Abstract: This study explores smoothing techniques to refine financial risk tolerance (FRT)
data for the improved prediction of financial market indicators, including the Volatility
Index and S&P 500 ETF. Raw FRT data often contain noise and volatility, obscuring their
relationship with market dynamics. Seven smoothing methods were applied to derive
smoothed mean and standard deviation values, including exponential smoothing, ARIMA,
and Kalman filter. Machine learning models, including support vector machines and
neural networks, were used to assess predictive performance. The results demonstrate that
smoothed FRT data significantly enhance prediction accuracy, with the smoothed standard
deviation offering a more explicit representation of investor risk tolerance fluctuations.
These findings highlight the value of smoothing techniques in behavioral finance, providing
more reliable insights into market volatility and investor behavior. Smoothed FRT data
hold potential for portfolio optimization, risk assessment, and financial decision-making,
paving the way for more robust applications in financial modeling.
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1. Background

Financial risk tolerance (FRT) is a scale that represents investors’ willingness to take in-
vestment risks [1]. FRT is often understood as the inverse concept of risk aversion, although
it has been shown in previous research that it correlates strongly with risk aversion [2].
This underscores the importance of understanding FRT’s connection to market dynamics, a
key aspect of investment risk assessment [3,4].

One approach calculates risk aversion using probabilities, while the other uses a
psychometric method developed by Grable and Lytton [1] to measure investors’ subjective
willingness to invest. This psychometric method is comparatively and empirically valid [5].
Through the usefulness of the psychometric measurement of FRT, this study aims to
enhance the utility of FRT measured with the psychometric FRT measurement by Grable
and Lytton [1], which is a key methodology in this research.

Specifically, while much research considers the correlation between FRT score (i.e.,
average) and stock volatility [3,4,6,7], a limitation of previous research is that most studies
did not consider FRT’s volatility. The core concept of FRT is to measure the willingness of
investors to tolerate risky investments, but this willingness can fluctuate depending on
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market conditions or various external factors [8]. This implies that FRT’s volatility may re-
main due to market conditions and other environmental factors. When volatility is present,
there might be a clear distinction between refining the measured FRT signals to observe
patterns or to view FRT as it is. Based on this, FRT can be divided into Equations (1)-(3)

as follows:
FRT; = PRTsmooth,t + FRTabnormul,t + €, € ~ N(O/ 0'2) (1)
PRTsmooth,t = Ut + 0, v ~ N(OI Us2mooth) (2)
FRT apnormal,r = 2?:1 Sil(t=t;) (©)

where FRT; is the total financial risk tolerance observed at the time of t; FRT,p0s1,¢ iS
the financial risk tolerance that does not contain abnormal fluctuation; FRT yp0rmai ¢ is the
financial risk tolerance that contains abnormal fluctuation; ¢; is the white noise that follows
the normal distribution; y; is the average of financial risk tolerance by time; v; is random
fluctuation as an error to follow a normal distribution; J; is the size of abnormality in the
observed financial risk tolerance; i represents the sequential number of the days on which
FRT is observed, starting from 1; n is the number corresponding to the last day on which
FRT is observed; and I(t = t;) is the binary indicator to show whether the abnormality
happens or not.

This study aims to maximize the advantages of Equation (2) by evaluating how refined
the smoothed FRT signal is and whether it can become a valid indicator to show significant
relationships with market indicators. As mentioned earlier, most previous studies have
used FRT in its raw form. However, this study proposes to increase FRT’s utility by
smoothing it, rather than using it in its raw state. Smoothing is an appropriate method for
refining volatile time series data such as FRT, collected daily from hundreds of people, to
identify useful patterns [9-11].

However, various smoothing methods exist, each performing smoothly in different
ways depending on the nature of the data. For instance, time series-based methods like
autoregressive (AR) and autoregressive integrated moving average (ARIMA) smooth data
by connecting them seamlessly over time [12]. Exponential smoothing (ES), on the other
hand, applies higher weights to more recent records, reflecting the latest trends [13].

In contrast, moving average (MA) and discrete wavelet transform (DWT) utilize
diverse approaches tailored to specific data characteristics. MA calculates the average
of data over a specified period to remove sharp fluctuations or outliers and highlight
long-term patterns [14]. It is a simple yet widely effective smoothing technique. Discrete
wavelet transform (DWT) transforms data in the frequency domain to remove noise or
extract key patterns [15]. This method is particularly advantageous for handling nonlinear
or non-stationary characteristics in the data. The Kalman filter, meanwhile, is used to
estimate the state of dynamic systems in time series data. It is a robust tool capable of
predicting and updating estimates even in noisy data environments [16].

Those smoothing techniques make it especially suitable for real-time data processing
and forecasting. These smoothing methods are selected based on the characteristics of
the data and the analytical objectives, with each method applied to either emphasize or
mitigate the variability and patterns within the data. It can be particularly suitable for
applications to data like FRT, which measures the diverse psychological fluctuations of
many individuals, to extract an indicator representing the group.

1.1. Research Purpose

As explained, raw FRT data have a challenge with their sensitivity to noise. They often
include behavioral noise, random fluctuations, and outliers, making it difficult to identify



Mathematics 2025, 13, 680

30f33

genuine trends and patterns [17]. As a result, decision-making based on unprocessed data
can lead to misinterpretation and potentially flawed conclusions.

Smoothing techniques are necessary to address these issues individually or in com-
bination. Individual smoothing methods offer specific advantages. For example, Kalman
filters excel in tracking dynamic systems [18], and Savitzky-Golay filters effectively pre-
serve peaks in noisy datasets [19]. By reducing noise, these methods clarify data trends,
enabling better interpretation. However, individual smoothing techniques can introduce
bias. Each method carries inherent assumptions and biases that may overemphasize certain
features while suppressing others [20]. Additionally, method-specific patterns or artifacts
may be introduced, potentially distorting the results.

Given the limitations of individual methods, combining multiple smoothing tech-
niques and averaging their results were suggested in this study. The combination of
numerous smoothing techniques can secure robustness [21]. Combining smoothing out-
puts reduces the sensitivity to the limitations or biases of any single method. Averaging
mitigates over-reliance on individual techniques, minimizing anomalies introduced by
specific methods. This approach is also scientifically justified. First, it is expected to reduce
errors by lowering the variance in the smoothed results and providing more precise esti-
mates. Second, it prevents overfitting, while a single method might overfit specific noise
or patterns in the data. Lastly, combining methods inherently allows for cross-validation,
validating the consistency of the observed patterns.

Combining multiple smoothing techniques into an averaged approach strikes a balance
between preserving the integrity of raw data and eliminating noise or artifacts. This
methodology enhances interpretability, robustness, and reliability, making it the optimal
choice for deriving precise, actionable insights from FRT data. Therefore, this study will
apply an average smoothing approach to FRT data to evaluate their practical effectiveness
and real-world utility. By employing this method, this study seeks to ensure that FRT
becomes more realistic and practically valuable.

1.2. Smoothing Financial Risk Tolerance and Research Question

The daily FRT responses from hundreds of individuals can be divided into an average
and a standard deviation (SD), as shown in Equation (4). Given the characteristics of FRT,
the average changes in a small fraction, which suggests that it may have limited relevance
to market indicators. However, a lot of previous research utilized the average of FRT to
check how FRT is associated with the finance market [2—4,6,7]. On the other hand, the
SD is expected to fluctuate, as it reflects the variation in the responses from hundreds of
individuals daily. A wide SD range would indicate that investors” willingness to take risk
is highly uncertain, while a narrow SD range would indicate that investors” willingness
is relatively consistent. Therefore, smoothing the SD would yield better explanations of
the market. Reflecting these considerations, if the two components of FRT are expressed, it
would be as shown in Equation (4).

PRTsmooth,t = HWsmooth,t + Tsmooth,t * Zy (4)

where pig,001n,¢ i the smoothed mean FRT at time £; 00041, ¢ is @ smoothed standard devi-
ation of FRT at time f; and Z; is a standard normal random variable to capture deviation
from the mean. ig0011,,+ Tepresents the central tendency of FRT among respondents on day
t. Usmootn+ is expected to change slowly over time. In terms of 0,01, 4, it is a fluctuation in
respondents’ FRT. In Equation (4), the smoothed mean and smoothed standard deviation
are different. The smoothed mean describes the central tendency of FRT, while the standard
deviation describes the variability of FRT. These two components should not be added
directly but treated as independent factors.
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— Step A

The smoothed standard deviation captures risk fluctuation. The smoothed FRT SD may
capture the changing risk uncertainty in FRT responses, while the smoothed FRT average
tracks the static trend. Therefore, by multiplying the standard by a random variable (Z;),
the model (Equation (4)) accounts for daily deviations around the smoothed mean, scaled
by the smoothed standard deviation. Both the means of FRT and standard deviation are
to be smoothed. The following vector matrix (Equation (5)) will be utilized in all of the
following mathematical processes

FRTsmooth,t = [Vsmooth,t] (5)
Osmooth,t

As a result, the core research question of this study is whether FRT data, containing
inherent volatility, can be effectively smoothed. If so, how much better do smoothed data
perform compared to raw FRT data. Furthermore, if the smoothed FRT data provide a better
fit, this study aims to investigate whether they explain market dynamics more effectively
than the raw data. These questions arise from the need to refine volatile time series data
like FRT, which fluctuate daily due to external factors, and assess whether smoothing
methods enhance the interpretation of FRT regarding financial market indicators. This
study evaluates the validity of smoothed FRT to detect long-term patterns while minimizing
the effects of short-term volatility.

1.3. Research Structure

The research process follows a structured sequence comprising three main steps: Step
A, Step B, and Step C, as outlined in Figure 1.

Smoothing 4: Moving Average

- Step C
Smoothing 1: Exponential Smoothing
Smoothing 2: Autoregressive Model
Smoothing 3: Autoregressive Integrated Moving Average .
Smoothing Values: Predictor

* Smoothed FRT mean —
* Smoothed FRT standard deviation

Smoothing 5: Discrete Wavelet Transform

Smoothing 6: Savitzky-Golar Filter

Machine Learning

» Four SVMs

Smoothing 7: Kalman Filter

mimtmte [ it I w1 sttt I sty

+ Ten Neural Networks

— Step B

| Market Indicator 1: VIXCLS

N/

%
Outcome

I Log transformation VIXCLS |

Stationary Transformation

| Market Indicator: SPY

|
I
I -I Differencing SPY |

FRT: Financial Risk Tolerance

VIXCLS: Chicago Board Options Exchange Volatility Index
SPY: Standard & Poor’s Depository Receipts S&P 500 Exchange Traded Fund Trust

SVM: Support Vector Machine

Figure 1. Study structure.

In Step A, various smoothing techniques are applied to refine FRT data. These meth-
ods aim to remove noise and highlight meaningful patterns in the data. Seven distinct
smoothing techniques are used, each with unique strengths: ES emphasizes recent data to
capture the latest trends, while AR and ARIMA models focus on time series relationships.
MA smooths short-term fluctuations, and DWT isolates patterns in frequency domains. The
Savitzky-Golay filter preserves the shape of the data while reducing noise, and the Kalman
filter dynamically estimates states for noisy, real-time data. These methods produce two
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primary smoothed values: the mean and standard deviation of FRT, providing a robust
basis for further analysis.

Step B focuses on preparing market indicators for modeling. Two key indicators, VIX-
CLS (Chicago Board Options Exchange Volatility Index) and SPY (S&P 500 Exchange Traded
Fund Trust), undergo transformations to meet the statistical requirements. The VIXCLS is
log-transformed to stabilize variance, while SPY is differenced to achieve stationarity (see
the Section 3 below). These transformations ensure that the market indicators are suitable
for predictive modeling and align with the statistical assumptions of the subsequent steps.

In Step C, the smoothed FRT values from Step A and the transformed market indica-
tors from Step B serve as inputs for machine learning models. Specifically, four support
vector machine (SVM) models and ten neural networks (NNs) are employed to capture
complex relationships and enhance predictive performance. This predictive modeling step
integrates the processed data to generate accurate and reliable outcomes, demonstrating
the effectiveness of the prior smoothing and transformation processes.

This sequential approach, combining data refinement, transformation, and machine
learning, ensures robust and interpretable results, offering insights into the dynamics of
FRT and market indicators.

1.4. Market Indicators as Outcomes

As shown in Figure 1 with Step B, this study utilized the Volatility Index (VIXCLS)
released by the Chicago Board Options Exchange to reflect the financial market (CBOE).
CBOE measures the expected volatility of the S&P 500 index using SPX options [22]. It
incorporates both standard SPX options (i.e., expiring on the third Friday of each month)
and weekly SPX options (i.e., expiring on all other Fridays). Intraday VIXCLS Index values
are updated every 15 s during trading hours, reflecting real-time volatility expectations,
and are calculated between 3:15 a.m. ET and 4:15 p.m. ET during different trading sessions.
These VIXCLS data can be downloaded from CBOE’s official webpage.

The S&P 500, which forms the basis of SPY, has been used as a representative index
of the U.S. stock market since 1923 [23]. As it adopts a market capitalization-weighted
method, it effectively reflects the impact of major companies’ performance on the market.
SPY, an ETF based on this S&P 500 index, was created in 1993 and has since become one
of the most widely used benchmarks for analyzing the U.S. stock market [24]. Its high
liquidity and narrow bid—ask spread make it a quick and efficient proxy for the market.
Moreover, because the S&P 500 is not centered on a specific industry but considers a wide
range of sectors such as technology, finance, healthcare, energy, and consumer goods, SPY
also represents a broad cross-section of industries. Finally, SPY is used as a market indicator
instead of the S&P 500 index itself because the S&P 500 is not a tradable index but rather
a benchmark that reflects market performance. In contrast, SPY, as an ETF, is a tradable
product, allowing market reactions to be more directly and visibly reflected compared to
the S&P 500.

1.5. Checking the Usefulness of Smoothing by Machine Learning

As shown in Figure 1 with Step 3, this study utilizes machine learning (ML) methods
to analyze the relationship between smoothed FRT and two market indicators (VIXCLS
and SPY). This choice is justified by repeated processes, such as using time series charac-
teristics and nonlinear relationships while smoothing processes are made. Analyzing the
relationship between smoothed FRT and market indicators with simple time series models
would not only duplicate the smoothing process but also overlap with the procedures used
to ensure the stationarity of market indicators. This redundancy could lead to circular
errors, where the same techniques repeatedly measure the same outcomes. ML methods
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were applied to study the relationship between smoothed FRT and market indicators to
overcome this issue.

Additional reasons like those listed below result in making the choice to use ML
methods. First, while time series methods such as AR, ARIMA, Kalman filter, and DWT
are used to smooth FRT data, the inherent noise is removed, and long-term trends or key
patterns are reinforced. However, this smoothing process may weaken particular time
series characteristics, such as dependencies or periodicity, within the data. Consequently,
it becomes more suitable to employ ML-based models to learn complex relationships
between data points rather than relying solely on time series-based forecasting. Second,
traditional time series models typically assume linear relationships, which may not be
sufficient to capture the more complex, nonlinear relationships between FRT and market
indicators. In contrast, ML algorithms (such as SVM and NN) stand out in learning
nonlinear patterns and higher-order interactions within data. Given that the relationship
between FRT and market indicators can be nonlinear or multidimensional, ML models are
well suited for providing higher predictive accuracy in this context. Third, after applying
smoothing techniques, FRT data become relatively independent and stable, making it
easier for ML algorithms to learn the structural relationships between smoothed FRT and
market indicators. Even when time dependency is weakened due to the smoothing process,
ML models excel in understanding and predicting outcomes based on the “snapshot” of
the data. In addition, ML models improve prediction accuracy and provide additional
insights through feature importance analysis. This promotes our understanding of the role
of FRT in predicting market indicators. Beyond merely providing predictions, these models
contribute to explaining the relationship between FRT and market indicators meaningfully.

Furthermore, the ML approaches utilized in this study were more likely simple algo-
rithms, including four types of support vector machines (SVMs) and ten different neural
network (NN) settings. The decision to use simplified SVM and NN models rather than
more complex ML techniques was made to avoid issues such as overfitting. Many of the
latest, more sophisticated methods are designed to maximize predictive power. Maximized
predictiveness can lead to overfitting, especially with the simple data structure in this study.
Given that this research involves straightforward predictors and outcome variables, there
is a risk that overly complex methods might produce artificially inflated predictions that
do not reflect the true utility of the smoothed FRT.

By employing simpler SVM and NN models, this study aims to ensure a clear and ac-
curate assessment of the smoothed FRT’s predictive capability without being skewed by the
complexities of advanced algorithms. This approach aligns with this study’s goal of evalu-
ating the usefulness of smoothed FRT and provides a robust framework for interpreting its
relationship with market indicators in a controlled and unbiased manner.

1.6. Following Structure

This paper is structured as follows. Section 2 provides a mathematical understanding
of the computations. It explains how the computations shown in Figure 1—Steps A, B,
and C—are performed by incorporating FRT and market indicators, detailing the specific
calculations involved. Section 3 describes the materials used in this study, including
FRT, VIXCLS, and SPY data, and presents the results of the smoothing and stationary
transformations applied in Steps A and B of Figure 1. Section 4 focuses on the ML results
corresponding to Step C in Figure 1, which constitutes the main findings of this study.
If the smoothed FRT demonstrates the better predictive performance for the two market
indicators compared to the raw FRT, it can be considered evidence of the utility of smoothed
computation. Finally, the subsequent section discusses these results and their implications.
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2. Computation

In this study, two types of variables were processed computationally. First, FRT was
smoothed as a predictor variable. As mentioned earlier, this study aims to achieve a more
refined smoothing of FRT. Specifically, three types of time series and four types of additional
smoothing were employed. To this end, seven smoothing methods were applied to create
the final smoothed FRT.

Market indicators were utilized to assess the utility of this smoothed FRT. VIXCLS and
SPY were employed as market indicators. However, since unexpected market fluctuations
or systematic risks can influence these indicators, it is necessary to convert them into
stationary variables. To achieve this, the volatility of the market indicators was examined,
and computational methods were applied to remove volatility for indicators where it
was observed.

Time series methods such as AR and ARIMA were employed to smooth FRT. Addi-
tionally, time series techniques like differencing were used to assess market indicators’
volatility. Therefore, a different approach should be applied to objectively estimate the
predictive relationship between FRT and market indicators. Instead of relying on time
series forecasting or regression methods, machine learning (ML) techniques will be utilized
to evaluate how much more effective the smoothed FRT is compared to the original FRT in
predicting market indicators.

This chapter provides a mathematical explanation of the smoothing formation process,
the examination and removal of volatility, and the ML techniques.

2.1. Financial Risk Tolerance Smoothing

Combining multiple smoothing methods to create a robust method is an effective
strategy in time series analysis, especially when dealing with noisy behavioral data like
FRT [25]. Each smoothing method has strengths, so integrating them can lead to the better
detection of the FRT patterns. Two sets of smoothing techniques were employed in this
study. As the first set of smoothing techniques, time series-appropriate smoothing tech-
niques such as exponential smoothing (ES), autoregressive (AR) model, and autoregressive
integrated moving average (ARIMA) were applied. These methods are well-established
forecasting and smoothing approaches that outdo time series data analysis [26,27], and
they were used as the foundational smoothing techniques. As the second set of smoothing
techniques, moving average (MA), wavelet transform (DWT), Savitzky-Golay filter, and
Kalman filter were incorporated to complement these time series smoothing methods.

Specifically, MA is a simple approach that smooths by averaging recent data points.
It effectively captures short-term trends, but it can lag behind significant shifts [28,29].
Second, DWT captures both frequency and time domain information, making it well suited
for detecting patterns at different time scales [30]. It is more adaptive than a simple moving
average. Third, the Savitzky-Golay filter smooths data while preserving higher-order
features like peaks and valleys [31,32], making it ideal for a data-preserving shape. Fourth,
the Kalman filter is optimal for systems with time-varying parameters, offering real-time
updates and flexibility [33]. Combining these four smoothing techniques allows one to
leverage the strengths of each approach while minimizing their weaknesses. For instance,
the Kalman filter utilizes dynamics in real time. On the other hand, other methods, such as
the moving average, work well in reducing noise over static periods.

Combining time series smoothing methods (ES, AR, ARIMA) with additional tech-
niques (MA, DWT, Savitzky-Golay filter, Kalman filter) takes advantage of their comple-
mentary strengths. Time series methods are excellent for modeling trends and temporal
dependencies [34,35], while the additional techniques are effective at addressing noise,
localized patterns, and irregularities [36]. This integration enhances robustness, preserves
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key data characteristics, and mitigates the limitations of individual methods, resulting in
improved forecasting accuracy.

Moreover, combining these methods increases adaptability and noise reduction, as
each technique performs optimally under different conditions. For instance, the Savitzky-
Golay filter is better suited for high-volatility periods, while the moving average excels
during stable periods. This hybrid approach ensures that the final smoothed data are
less sensitive to specific conditions. Additionally, it strikes a balance between short-term
responsiveness (capturing quick changes) and long-term stability (identifying overall
trends), which is particularly valuable in financial contexts where trends and anomalies
often coexist.

Time series smoothing methods include ES, AR, and ARIMA. To begin with ES (expo-
nential smoothing), it is often used for forecasting time series data. Specifically, as shown
in Equation (6), ES applies decreasing weights to older data while assigning weights closer
to the mean for the most recent data. This approach makes it suitable for predicting the
near-term future of time series data [37].

FRT syp0tnt = ®FRT; + (1 — a) FRT;_4 (6)

where « is the smoothing factor (0 < & < 1), which determines the weight given to the most
recent FRT.

Another time series smoothing method used is AR. It predicts values by linearly
connecting past observations to the current value by creating a form of temporal depen-
dency [37]. This approach provides a smoothing effect by mitigating outliers. This can be
mathematically represented as shown in Equation (7).

FRTsmooth,t =c+ 471FRTt71 + 4’2FRTt—2 +--- 47pFRTt7p + € (7)

where c is a constant; ¢1, ¢, . .., ¢ are the coefficients of lagged FRT; p is the number of
lagged observations; and ¢; is the error term.

The final time series smoothing method employed is ARIMA, which builds upon
the AR model by incorporating two additional components: integration (to handle non-
stationarity) and moving average (MA). This results in a model where the AR equation is
extended with an MA component [38], as represented in Equation (8).

FRTsmoath,t =Cc+ P FRTy 1+ opp2+ -+ Ppht—p + €t + 01611+ 0260+ -+ qutfq 8)

where 01, 0, .. ., 0, are the coefficients of MA terms; q is the size of the MA window. MA
will be explained in the next section.

As previously mentioned, in addition to the three time series smoothing methods
presented in Section 2.1, four additional smoothing techniques will be incorporated: MA,
DWT, Savitzky-Golay filter, and Kalman filter. The features and equations of these methods
are outlined as follows.

First, MA eliminates short-term fluctuations when the period does not show the
abnormal fluctuation of FRT. For this to happen, the moving average rapidly changes [28,39].
MA for short-term smooth fluctuations is shown as the equation below (9):

1 w1
FRTguootht = MA, = —3 7 FRT;_; ©)
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where w is the window size, such as the number of previous periods considered; FRT;_; is
the financial risk tolerance score at the time of t — i. Considering that there are five working
days per week for the stock market, the 5-period window was set as Equation (10):

1
MA; = 5 (FRT; + FRT,_y + FRT, 5 + FRT; 3 + FRT; ) (10)

Application of the equation would smooth the data, and short-term outliers would be
removed. This is particularly important for identifying long-term trends in FRT changes
rather than focusing on short-term fluctuations.

Second, DWT captures the high frequencies as noise and keeps the low frequencies as
trends [30], as shown in the equation below (11):

FRT; = A]'.t +Dij; (11)

where A;; is the approximation coefficient for a low-frequency trend at the level of j; D; ; is
the detail coefficient for high-frequency noise at the level of j. After DWT, D; ; is considered
noise to be dismissed, resulting in focusing on A; ;. Therefore, Equation (8) changes to the
trend equation focusing on A;; as the equation below (12):

Ajp =Y FRT(1)¢;ns (12)

where Pintis the scaling function at the level of j with the number of observations #n. Then,
by considering the FRT vectors from Equation (5), Equation (12) can be further developed
to consider each component as Equations (13) and (14):

Ajp = e+ Y (FRT(1) — pit)j s (13)

it =01(), (

where the standard deviation (¢t) controls the volatility and ;1 is the basis function of

FRT(n) —
Ot

D )¥int) (14)

the wavelet to obtain the high-frequency component. Applying DWT separates short-term

volatility and long-term trends, allowing for the identification of more detailed fluctuations.

Third, in terms of the SG filter, after smoothing and eliminating the high frequencies,

the SG filter preserves the observed FRT’s dynamic characteristics by fitting a polynomial

to the data points with a moving window. The SG filter maintains the dynamics [31,40] as
Equation (15):

SGr=Y"  CFRT (15)

where C; denotes the coefficients of the polynomial; m is the half-window size from the full
size (2m + 1). If the degree of the polynomial of FRT is three, then the equation would be
represented as Equation (16):

FRT = co+c1(t+ k) +ca(t + k) +c3(t + k)° (16)

By doing this, the SG filter calculates the smoothed FRT estimate at a specific
time point.

Finally, for the additional smoothing process, the Kalman filter supports the correction
to predict the FRT [33] by using Equations (17)—(19). Equation (17) predicts the next FRT
trend; Equations (18) and (19) update the predicted state with the observed FRT; and
Equation (20) updates the error covariates:

Xpo1 = F-xpqp1+u 17)
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PO [ L (18)
Xpp = X1 + K (FRTt - th|t—1) 19)
Pt|t =(I- KtH)Pt\t—l (20)

where x;;_ is the predicted FRT trend; F is the state transition matrix; u is the control input,
which is usually zero; K; is the Kalman gain to be updated; P;;_; is the predicted error
covariance; H is the observation model; and R is the measurement noise covariance. The
two components of the vector mentioned in Equation (5), the mean and standard deviation,
are each smoothed using four different smoothing methods. As a result, the following
matrix structures (Equations (21)—(23)) are formed:

Exp
P

AR
Hi

ARIMA
Hi

FRT); = | uMA 21)

DWT
Hi

SG
Hi

FRT,; = | oMA (22)

E MA
fp™ pftR pRIMA 3 25y PWT 112G 1K)

FRT 00t + Matrix =
, E MA
flo] xp oAR O.tARIMA 7, UtDWT Utsc oK)

(23)

where yfw is the smoothed mean from ES; u{'R is the smoothed mean from AR; u/\RIMA
is the smoothed mean from ARIMA; uM4 is the smoothed mean from MA; uP"T is the
smoothed mean from DWT; ;7€ is the smoothed mean from the SG filter; X is the smoothed
mean from the Kalman filter; (ftE *? is the smoothed standard deviation from ES; (TtAR is
the smoothed standard deviation from AR; (TtARIMA is the smoothed standard deviation
from ARIMA; UtMA is the smoothed standard deviation from MA; UtD WT is the smoothed
standard deviation from DWT;, JtSG is the smoothed standard deviation from the SG filter;
and o is the smoothed standard deviation from the Kalman filter. Equation (23) combines
both the smoothed mean and smoothed standard deviation. Based on this, Equation (24)
shows the value matrix to be inserted into the empirical testing;:

T i = 55
Smoothing FRT; Matrix = [Pﬁt] Subject to ’ ! (24)
— _ 1v7 ()
0t = 7)1 04

Ot
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2.2. Making Market Indicators Stationary

To evaluate how well the smoothed FRT explains the market, this study examines the
selected market indicators, VIXCLS and SPY. Two market indicators must first undergo a
volatility check. For this, Augmented Dickey-Fuller (ADF) and Phillips-Perron tests are
conducted, and appropriate volatility adjustments are made based on the test results [41,42].
By processing the selected market indicators to achieve stationarity, the relationship be-
tween the smoothed FRT and the market indicators can be assessed more clearly, aligning
with the objective of this study. The ADF and Phillips-Perron tests used for the volatility
check are conducted based on the following formulas. First, ADF utilized the following
Equation (25):

Ayp=a+Bt+ayi 1+ ¢ibyi1+er (25)

where Ay; is the first difference in the series y; (VIXCLS and SPY) by using y; — y;_1; « is
the constant; B is the coefficient of time, which accounts for time-related patterns in the
data; v is the coefficient of lagged y;, which is the indicator of stationary; p is the number
of lags in the dataset; ¢; is the coefficients of past differences; and ¢; is the error term. By
using this equation, y can be smaller than zero or equal to zero. When v is revealed to
be lower than zero, the market indicator is stationary. If it is the same as zero, the market
indicator is non-stationary.
The Phillips-Perron test is a simplified version of ADF by using Equation (26):

Ay = o+ Bt +yyi—1 + € (26)

where the components are the same as the ADF equation, while the Phillips-Perron test
does not have the lagged difference term (Z‘f:l ¢iAy;_1). Instead, the Phillips-Perron test
utilizes the t-statistic from the simplified version equation as below (27):

t
Zy = —~ (27)

where the denominator is the square root of a correction term (S}); S, accounts for the
autocorrelation and heteroskedasticity in the residuals; and t., is the t-statistics for the
coefficient y. When Zr is larger than the critical value, the market indicator is stationary.
Otherwise, it is revealed as non-stationary.

Based on the results of the ADF and Phillips-Perron tests, appropriate measures will
be taken for the market indicators. These measures will result in the indicators being
transformed into either a natural logarithm form or a different form depending on the
outcomes. In this study, the transformations will be applied appropriately according to the
results presented in the Materials Section below.

2.3. Machine Learning Prediction

As mentioned in the Introduction, this study employs four types of SVMs and ten
configurations of NNs. Each SVM and NN is represented by the following. First, the SVM
can be explained [43,44] with these Equations (28) and (29) by considering the smoothed
FRT (see Equation (5)):

N
VIXCLS: = f(FRTsmooth,t) = Zi:l ‘XiVIXCLSiK(FRTsmooth,ir FRTsmooth,t) +b (28)

N
SPYf = f(FRTsmooth,t) = 21‘21 “iSPYiK(FRTsmooth,ir PRTsmooth,t) + b (29)

where VIXCLS; and SPY; are the predicted market indicators (VIXCLS and SPY) at the
time of t; VIXCLS; and SPY; are the observed values of market indicators for support
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2
ERT o [Vsmooth,t‘| - 2?1:1 wiFRTsmooth,i,t \/2?1—1 wi(FRTsmooth,i,t - FRTsmooth,t)
smooth,t — - ’

vectori=1,2, ..., N; Kis the kernel function, including linear, radial basis function (RBF),
polynomial, and sigmoid; «; denotes the support vector weights; and b is the bias term.
Four SVMs are made by each K by using Equations (30)-(33) (for Linear kernel, polynomial
kernel, RBF kernel, and sigmoid kernel, respectively):

K(u, v) =u'o (30)

K(u, v) = (u'v —|—c)d (31)
K(u, v) = exp(=7|[u—o|[*) (32)
K(u, v) = tanh(yuTv + c)d (33)

where u and v are the feature vectors representing the data points from the input (e.g.,
u = ith FRT 00 and v = jth FRTg001,); € is the bias term; d is the degree of nonlinear
interaction; -y is the control factor that decreases the distance; tanh is the hyperbolic tangent;
and T represent the mapping function in the kernel transformation.

NNs with ten settings (neurons = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) were
utilized [45] with the below Equations (34)—(36). Equation (34) indicates the input and
Equations (35) and (36) show the NNs with a rectified linear unit (ReLU):

Input Layer(X) = FRT gpootnt = Hsmooth,t (34)
Osmooth,t
2
VIXCLS; = ReLU(Wyixcis, 13_1—y FRTsmootn, + bvixcrs) (35)
2
SPY; = ReLU(Wspy, 121:1 FRT 5001 + bspy) (36)

where VIXCLS; and SPY; are the predicted market indicators (VIXCLS and SPY) at the
time of t; [ includes the mean and standard deviation as inputs; and byxcrs and bspy
are bias terms for each number of neurons. ReLU activation is widely utilized in neural
networks, which select the maximized input like in the below Equation (37):

f(x) = max(0, x) (37)
where x is input to the activation.

2.4. United Forms for Smoothing, Stationary Market, and Machine Learning

In Section 2.1, we demonstrated how FRT, as an input variable, is smoothed into
a single variable. Equation (5) serves as the raw input, while Equation (6) through (20)
outline the smoothing transformations. The integration of these transformations into
a single representation is described in Equations (21)—(24). When united into a single
equation, it can be represented as Equation (38) below.

(38)

m m
Osmooth,t i=1 Wi i=1 Wi

where FRT 501 is the smoothed FRT from method i (ES, AR, ARIMA, MA, DWT,
Savitzky-Golay filter, and Kalman filter); w; represents each method(i)’s parameters.

In Section 2.2, the usefulness of the smoothed FRT will be examined as an input
variable using market indicators (VIXCLS and SPY) as the outcome variable. However,
since market indicators can often be non-stationary due to various factors such as systematic
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risk, Equation (25) through (27) were used to transform them into stationary variables.
When consolidated into a single equation, Equation (39) below is represented.

In(Y:), if tranformation needed
Y = AY;, if dif ferencing needed (39)
Y;, otherwise

where Y; is the market indicators (VIXCLS and SPY).

Finally, Section 2.3 used ML techniques to examine how well the input variable predicts
the outcome variable. Four types of SVMs and ten different settings of NNs were employed.
When consolidated into a single equation, they are represented as Equation (40) below.

K(u,v), SVM with kernel function

40
ReLu(W-FRTgyootnt + b), Neural Network 49

Y = f(FRTsmooth,t) = {

This study employs four standard SVM kernels (linear, polynomial, radial basis func-
tion, and sigmoid) to capture a broad range of potential functional relationships between
the input data and market indicators. Although the linear and RBF kernels are frequently
favored for their balance of performance and interpretability, polynomial and sigmoid
kernels can reveal additional forms of nonlinearity. To further explore predictive perfor-
mance, this research also considers ten neural network configurations with hidden-layer
sizes ranging from 10 to 100 neurons. This systematic variation allows for an examination
of how increasing model complexity affects predictive accuracy, mitigating the risk of
underfitting when the model is too simple and overfitting when it becomes overly complex.
The analysis aims to identify the most robust modeling approach for linking smoothed
FRT data to market outcomes by comparing the results across multiple kernel types and
network sizes.

3. Materials and Smoothing Process Results

In this study, the data comprise three types: one type is FRT data, and the other two
types are market indicators, VIXCLS and SPY. VIXCLS is a market Volatility Index provided
by the Chicago Board Options Exchange (CBOE) [46], while SPY is an Exchange Traded
Fund (ETF) based on the S&P 500 provided by Standard & Poor’s. Among the ETFs, SPY,
the Standard & Poor’s Depositary Receipt (SPDR), is widely regarded as the ETF that best
represents the market [47].

First, the input variables (mean and standard deviation) for FRT were collected through
a publicly available survey hosted on a website by a university extension station in the
Midwest region [48]. This survey, approved by the IRB of the extension station, allows
individuals across the United States to participate in checking their FRT scores. The survey
itself is publicly accessible, allowing anyone to visit at any time to measure and check their
own FRT. The survey includes 13 items developed by Grable and Lytton [1]. This scale uses
the sum of the 13 items, with scores ranging from a minimum of 13 to a maximum of 47,
where higher scores indicate a higher risk tolerance. The details of the data are summarized
in Table 1.

As shown in Table 1, data were collected over 1394 working days from 8 January 2018
to 24 July 2023. The counted data only include working days to allow for a comparison with
the market indicators (VIXCLS and SPY), which will be discussed later. During this period,
the survey gathered responses from 463,337 individuals. These responses were restructured
into the daily data, averaging 271.81 participants per day (SD = 141.32). Given that the
number of daily respondents ranged from a minimum of 25 to a maximum of 771, and the
daily average exceeded 270 respondents—well above the threshold generally required for
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the law of large numbers to apply (n > 30)—the dataset satisfies the assumptions of the law
of large numbers, ensuring that the sample average closely approximates the population
mean. Moreover, given that the respondents participated from across the United States, this
dataset can be considered a robust reflection of the FRT of U.S. individual investors. When
examining the daily average of the respondents’ FRT scores, the mean of the averages was
27.46 (SD = 0.57), indicating relatively consistent daily averages. In contrast, the standard
deviation of the respondents on any given day had a mean of 4.94 (SD = 0.30), showing
more variation than the daily average.

Table 1. Descriptive information of dataset (total sample = 463,337 over 1,394 days).

Mean SD Min Max
FRT 26.65 6.60 13 47
Daily samples (count) 271.81 141.32 25 771
Daily FRT mean 27.46 0.57 25.79 29.62
Daily FRT SD 4.94 0.30 3.64 6.05
VIXCLS 21.03 8.13 9.52 82.69
In(VIXCLS) 2.99 0.33 2.25 4.42
SPY 351.44 66.70 222.95 477.71
SPY differencing 0.13 4.39 —29.47 21.21
1 month T-Bill 1.57 1.52 0 6.02

Note. FRT: financial risk tolerance; SD: standard deviation; VIXCLS: Volatility Index; SPY: SPDR ETF; T-Bill:
Treasury Bill as risk-free market inflation; a further explanation about In(VIXCLS) and SPY differencing will be
provided in Section 3.2.

As explained in the background, VIXCLS and SPY are used as the market indicators in
this study. As shown in Table 1, the daily average of FRT exhibits relatively low volatility.
The minimum average daily FRT is 25.79, and the maximum average daily FRT is 29.62
compared to the average daily FRT (27.46); therefore, the volatility is 13.95%. On the other
hand, the daily SD of FRT shows significant fluctuations, ranging from 3.64 to 6.05, with
a mean of 4.94. The volatility range is 48.79%. This substantial variability in individuals’
willingness to take investment risks aligns with the VIXCLS and SPY characteristics, which
measure market volatility and liquidity. Hence, VIXCLS and SPY were selected as suitable
market volatility indicators that reflect changes in investor risk tolerance. Descriptive
information about VIXCLS and SPY are shown in Table 1.

Additionally, while using VIXCLS as an input variable, it is necessary to consider the
inflation rate during the observed period from December 2017 to July 2023. Therefore, this
study includes inflation as a control variable in addition to market indicators when it is
VIXCLS modeling. Inflation rates can be derived from sources such as the Consumer Price
Index (CPI) or Treasury Bills (T-Bills). CPI, however, is measured monthly and categorized
by product groups [49], making it unsuitable for this study, which is conducted on a daily
basis. On the other hand, T-Bills serve as a risk-free interest rate in financial markets and are
commonly used as an inflation-reflecting indicator. Typically, either the 1-month T-Bill or
the 3-month T-Bill is used for this purpose. However, since a significant portion of the 2018
data for the 3-month T-Bill are missing, this study employs the 1-month T-Bill instead [50].
Descriptive information regarding this variable is presented in Table 1.

3.1. FRT Smoothing Process

Taking all seven smoothing techniques, Figure 2 shows the smoothed mean of FRT by
ES compared to the raw mean of FRT; Figure 3 shows the smoothed mean of FRT by AR
compared to the raw mean of FRT; Figure 4 shows the smoothed mean of FRT by ARIMA
compared to the raw mean of FRT; Figure 5 shows the smoothed mean of FRT by MA
compared to the raw mean of FRT; Figure 6 shows the smoothed mean of FRT by DWT
compared to the raw mean of FRT; Figure 7 shows the smoothed mean of FRT by the SG
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filter compared to the raw mean of FRT; and Figure 8 shows the smoothed mean of FRT by
the Kalman filter compared to the raw mean of FRT.

FRT with Exponential Smoothing
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Figure 2. The smoothed mean of FRT by ES.
FRT with Autoregressive Smoothing (AR)
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Figure 3. The smoothed mean of FRT by AR.

Figure 2 illustrates the FRT data over time, comparing the original raw data (black line)
with their exponentially smoothed version (blue line). The original data exhibit significant
short-term fluctuations and volatility. The exponentially smoothed data effectively reduce
the noise in the original data, highlighting the underlying trends more clearly. While the
smoothed line closely follows the overall trajectory of the original data, it filters out sharp
spikes and day-to-day volatility. This makes it particularly useful for identifying long-term
patterns and trends in the data. As a result, ES shows its utility in reducing noise and
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providing a clearer perspective on the data. This approach is valuable for analysts focusing

on broader patterns rather than short-term variability in FRT data.

FRT with Box-Jenkins (ARIMA) Smoothing
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Figure 4. The smoothed mean of FRT by ARIMA.

FRT with Moving Average
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Figure 5. The smoothed mean of FRT by MA.

1500 2000

Figure 3 shows the FRT data over time, comparing the original raw data (black

line) with using AR (orange line). The autoregressive smoothing effectively reduces the

noise in the data while retaining the underlying structure. The orange line captures

the general trend by leveraging past values to predict current ones, creating a smoother

data representation. It maintains a closer alignment with the original data compared to
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other smoothing techniques, such as exponential smoothing, which might average out
more variability. The figure demonstrates how the AR model filters out short-term noise
and emphasizes long-term trends in the FRT data. The smoothed line provides a more
interpretable view of the underlying behavior of FRT while preserving key fluctuations
that might carry meaningful information. This approach is advantageous when short-term
dependencies or patterns in the data are of interest.

FRT with DWT Smoothing
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Figure 6. The smoothed mean of FRT by DWT.
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Figure 7. The smoothed mean of FRT by SG filter.

Figure 4 illustrates the FRT data over time, comparing the original raw data (black line)
with the ARIMA model (cyan line). The ARIMA-smoothed data effectively reduce noise
and highlight the underlying trends while maintaining the data’s structure. Unlike simpler
smoothing techniques, the ARIMA model is well suited for capturing both short-term
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dependencies and long-term trends by modeling the temporal structure of the data. The
cyan line closely follows the overall trajectory of the original data but smooths out sharp,
irregular fluctuations, particularly after the initial spike. This visualization demonstrates the
ARIMA model’s ability to extract meaningful patterns from volatile data while preserving
critical characteristics. It is beneficial for analyzing time series data where both short-term
dynamics and long-term trends are interesting.

FRT with Kalman Smoothing
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Figure 8. The smoothed mean of FRT by Kalman filter.

Figure 5 shows FRT data over time, comparing the original raw data (black line) with
MA (blue line). The MA-smoothed data (blue line) reduce noise by averaging values over a
fixed window. This approach smooths the sharp fluctuations in the original data, revealing
the broader trend while eliminating much of the day-to-day variability. The MA closely
follows the general trajectory of the original data but removes irregular spikes, particularly
after the initial period. This visualization highlights the effectiveness of the MA technique
in smoothing volatile time series data.

Figure 6 presents FRT data over time, comparing the original raw data (black line)
with the DWT (purple line). The DWT-smoothed data (purple line) reduce noise by
decomposing the original data into wavelet components and filtering out high-frequency
variations while retaining the underlying trends. This method effectively captures the
data’s long-term patterns and key features while smoothing short-term fluctuations. DWT
smoothing maintains a closer alignment with the original data than other techniques,
preserving essential details while reducing random noise. This graph highlights the ability
of DWT smoothing to balance the trade-off between noise reduction and the retention of
meaningful features. It provides a clear view of the underlying trends in FRT while keeping
essential variations intact, making it useful for identifying patterns in time series data with
complex dynamics.

Figure 7 illustrates FRT data over time, comparing the original raw data (black line)
with the smoothed version obtained using Savitzky-Golay smoothing (red line). The
Savitzky-Golay smoothed data (red line) effectively reduce noise while preserving the
overall shape and finer details of the data. This smoothing method is particularly well
suited for data with a lot of local variability, as it applies polynomial fitting within a sliding
window to minimize distortion of the original signal. The smoothed line closely follows
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the general trajectory of the original data while filtering out random noise and maintaining
sharper transitions compared to other smoothing techniques. This graph demonstrates
how the Savitzky-Golay smoothing technique balances noise reduction and the retention of
essential features in the data.

Figure 8 presents the FRT data over time, comparing the original raw data (black line)
with the smoothed version using Kalman smoothing (green line). The Kalman smoothed
data (green line) effectively filter out noise while retaining the general structure and
trends of the original data. Kalman smoothing, a recursive algorithm, combines the
observed data with an underlying state-space model to estimate the actual state of the
system. This technique produces a smooth trajectory resembling the original data’s patterns
while significantly reducing random fluctuations. The Kalman smoothed line captures the
broader trends and periodic fluctuations in the data while minimizing noise and erratic
movements. Unlike simpler smoothing methods, Kalman smoothing adapts dynamically
to the data’s characteristics, making it well suited for time series with both rapid variations
and stable regions.

Similarly, taking all seven smoothing techniques, Figure 9 shows the smoothed stan-
dard deviation of FRT by ES compared to the raw standard deviation of FRT; Figure 10
shows the smoothed standard deviation of FRT by AR compared to the raw standard
deviation of FRT; Figure 11 shows the smoothed standard deviation of FRT by ARIMA
compared to the raw standard deviation of FRT; Figure 12 shows the smoothed standard
deviation of FRT by MA compared to the raw standard deviation of FRT; Figure 13 shows
the smoothed standard deviation of FRT by DWT compared to the raw standard deviation
of FRT; Figure 14 shows the smoothed standard deviation of FRT by the SG filter compared
to the raw standard deviation of FRT; and Figure 15 shows the smoothed standard deviation
of FRT by the Kalman filter compared to the raw standard deviation of FRT.

SD_FRT with Exponential Smoothing
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Figure 9. The smoothed standard deviation of FRT by ES.

Figure 9 displays the standard deviation of FRT over time, comparing the original data
(black line) with the exponentially smoothed version (blue line). The original data exhibit
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frequent fluctuations, indicating variability in daily FRT measurements. Midway through
the series, a noticeable spike occurs, suggesting a temporary increase in dispersion. The
ES effectively reduces short-term volatility, providing a clearer view of overall trends in
the variability of FRT. Unlike the original line, the smoothed version filters out noise while
retaining key shifts, making identifying long-term patterns in the data’s dispersion easier.
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Figure 10. The smoothed standard deviation of FRT by AR.
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Figure 11. The smoothed standard deviation of FRT by ARIMA.
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Figure 12. The smoothed standard deviation of FRT by MA.
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Figure 13. The smoothed standard deviation of FRT by DWT.

Figure 10 shows the standard deviation of FRT over time, comparing the original data
(black line) with the smoothed data using the AR model (orange line). The original data
exhibit high variability with frequent sharp spikes, indicating fluctuations in the dispersion
of FRT measurements. The AR-smoothed data significantly reduce noise and emphasize a
stable underlying pattern. Unlike the raw data, the smoothed line captures a consistent
trend in variability while filtering out extreme fluctuations.

Figure 11 depicts the standard deviation of FRT over time, comparing the original
data (black line) with the smoothed data using the Box-Jenkins ARIMA (cyan line). The
original data show frequent sharp fluctuations, reflecting high variability and noise in
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the dispersion of FRT. Spikes are particularly noticeable, making it challenging to discern
underlying trends. The ARIMA-smoothed data effectively reduce noise while capturing
the broader patterns in the variability. The smoothed line highlights a consistent trend
over time, filtering out extreme short-term fluctuations while preserving significant shifts
in dispersion.

FRT with Savitzky-Golay Smoothing
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Figure 14. The smoothed standard deviation of FRT by SG filter.
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Figure 15. The smoothed standard deviation of FRT by Kalman filter.

Figure 12 compares the standard deviation of FRT over time using the original data
(black line) and the MA-smoothed data (blue line). The original data show frequent
fluctuations and sharp spikes, indicating substantial short-term variability in the dispersion
of FRT. One substantial spike stands out, highlighting a potential anomaly or event-driven
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increase in variability. The MA-smoothed data (blue line) effectively reduce the short-term
noise, providing a clearer view of the overall trend in variability. The smoothing minimizes
sharp deviations while still capturing the general pattern in the data.

Figure 13 compares the standard deviation of FRT over time between the original data
(black line) and the smoothed data using DWT (purple line). The DWT-smoothed data
(purple line) effectively reduce noise from the original data while retaining the essential
characteristics of the original data. It smooths out the rapid fluctuations and highlights the
broader trends in the data. The smoothed line adapts well to the structure of the original
data while mitigating the influence of outliers, including the significant spike.

Figure 14 compares the standard deviation of FRT over time between the original
data (black line) and the smoothed data using Savitzky-Golay smoothing (red line). The
Savitzky-Golay smoothed data (red line) effectively reduce noise while preserving the
data’s overall structure and finer details. Unlike some other smoothing methods, Savitzky-
Golay applies polynomial fitting within a sliding window, which minimizes distortion
and retains local features. It smooths out the rapid, erratic movements in the original data
while still responding to meaningful shifts, including capturing the prominent spike with
reduced intensity.

Figure 15 compares the standard deviation of FRT over time between the original data
(black line) and the smoothed data using Kalman smoothing (green line). The Kalman
smoothed data (green line) effectively reduce the noise and clearly represent the underlying
trend. Kalman smoothing dynamically adjusts to the data’s structure, allowing it to filter
out random fluctuations while preserving significant patterns, including the spike in the
middle with reduced prominence.

As shown in Figures 2-8, the average FRT shows no visual difference in trends be-
tween the original average and the smoothed average, except for a reduction in the range.
However, in Figures 9-15, smoothing the SD of FRT clearly removes outliers, resulting in a
notable difference between the raw SD and the smoothed SD. These characteristics are well
illustrated in Table 2. The FRT average shows little difference when moving from the raw
value to the smooth value, with only a slight reduction in the range. On the other hand, the
FRT SD displays a notable effect when transitioning from raw to smooth. While the average
SD remains almost unchanged, the SD of the FRT is significantly reduced, indicating that
the smoothed SD has effectively removed much of the variability.

Table 2. Comparison between raw FRT and smoothed FRT (1 = 1394 days).

Raw FRT Smoothed FRT
Mean SD Mean SD
Daily average  27.46 0.57 27.56 0.41
Daily SD 4.95 0.30 493 0.10

3.2. Market Indicators” Stationary Process

Table 3 shows the results of the stationary test (ADF test and Phillips-Perron test). The
analysis identified that the time series data for SPY were non-stationary (p > 0.05). To solve
the original data’s non-stationary, log transformation was useful for stabilizing the variance
in some cases. However, it failed to ensure stationarity for this SPY dataset. To address this,
first-order differencing was applied, successfully achieving stationarity.
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Table 3. Stationary test results of market indicators.
11s Stationary Stationary Stationary
ADF Test Phillips-Perron Test Original Log Transformation Differencing
p-value Z-tau
SPY 0.3882 —0.9132 Non-stationary Non-stationary Stationary
VIXCLS 0.01 —4.7627 Stationary Stationary N/A

Value

(Original) Daily VIXCLS

On the other hand, the VIXCLS series was confirmed to be stationary through both the
ADF test and the Phillips—Perron test. Furthermore, even after applying log transformation,
the stationary properties of the VIXCLS series were preserved. The omission of differencing
was based on the results of a stationarity test. During the stationary testing process, the ADF
test is conducted as a priority. If the test determines that original format or log transforma-
tion is sufficient, the algorithm proceeds without performing additional differencing. The
ADF test confirmed that the log transformation was already stationary, making additional
differencing unnecessary. By achieving stationarity through log transformation alone, the
data were prepared for further analysis without introducing unnecessary transformations.

Opverall, differencing proved to be an effective method for achieving stationarity in the
SPY, while original and log transformation did not guarantee stationarity. In the case of
VIXCLS, the series is inherently stationary; however, log transformation was applied in
this study to enable a more robust analysis.

Figure 16 compares two visualizations of the VIXCLS time series: the original and
log-transformed series. The plot on the left shows the raw VIXCLS values over time. The
series exhibits significant fluctuations and extreme spikes, with notable peaks around
certain time periods, indicating periods of high market volatility. Despite the variability, the
original series is stationary, as its statistical properties, such as mean and variance, remain
stable over time.

Log Transformation of VIXCLS
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Figure 16. Augmented Dickey-Fuller test and Phillips-Perron test of VIXCLS. (Left) The original daily
VIXCLS time series, showing significant fluctuations with notable spikes. (Right) The log-transformed
VIXCLS series, illustrating how the log transformation compresses high values and stabilizes the
variance. Augmented Dickey-Fuller (ADF) and Phillips-Perron tests confirm that both the original
and log-transformed series exhibit stationarity, although the log transform aids interpretability by
reducing the impact of extreme peaks.

The plot on the right displays the log-transformed VIXCLS series. While the log trans-
formation is not required for stationarity, it is applied to stabilize the variance, compressing
large spikes and reducing the impact of extreme values. The transformation makes the
fluctuations more uniform and manageable for further statistical analysis. This log transfor-
mation enhances the interpretability of the VIXCLS data and improves compatibility with
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modeling methods that benefit from stabilized variance, even though the original series is
already stationary.

Figure 17 illustrates three visualizations related to the daily close price of SPY: the
original series (top left), the differenced series (top right), and the log-transformed series
(bottom left). First, the plots in the top left show SPY’s raw daily closing prices over time.
The data exhibit an upward trend with periods of noticeable fluctuations and volatility.
This indicates that the price series is non-stationary and has a clear trend component.

Differencing of SPY

Original Series: spy_close Differenced Series: spy_close
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Figure 17. Augmented Dickey-Fuller test and Phillips-Perron test of SPY. (Top left) The original
daily SPY closing prices, which show a clear upward trend and non-stationary behavior. (Top right)
The differenced SPY series, indicating that first differencing removes the trend and yields a mean
stationary process. (Bottom left) The log-transformed SPY series, which stabilizes variance but still
retains an underlying trend. The ADF and Phillips-Perron tests confirm that the differenced SPY
series meets stationarity assumptions, making it suitable for the predictive models described in
this study.

On the other hand, the differenced series at the top right is shown to remove the trend
and stabilize the mean of the original series. This process transforms the non-stationary
series into a stationary one, making it suitable for time series analysis methods that require
stationarity. The differenced data fluctuate around zero, indicating that the trend has been
effectively removed.

Finally, the log transformation of SPY at the bottom left displays the log-transformed
daily closing prices of SPY. Log transformation is applied to stabilize the variance and
reduce the impact of large price movements. The transformed data retain the overall trend
of the original series but compress large fluctuations, making the data more suitable for
further analysis.

The original series is non-stationary and exhibits both a trend and varying volatility.
The differencing process removes the trend, producing a stationary series, while the log
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transformation stabilizes variance. These transformations are essential steps in preparing
time series data for modeling and forecasting.

4. Empirical Testing

The smoothed FRT scores (mean and standard deviation) can be tested with ML
methods: four types of SVMs and ten settings with NNs. Following a general machine
learning process, the data were split into a 50:50 ratio, with one-half used for training to
develop the model and the other half used for testing to evaluate the predictive accuracy
of the trained model. To assess the model performance, the criteria used to compare each
model here are root mean squared error (RMSE) and mean absolute error (MAE). Both are
widely used metrics for evaluating machine learning algorithms [51].

For the smoothing techniques, the parameters (e.g., o in exponential smoothing, p/d/q
for ARIMA, wavelet levels for DWT, and polynomial degree/window size for the Savitzky-
Golay filter) were set based on a combination of established best practices and, where
relevant, a grid search over candidate values. The Kalman filter parameters (initial state,
process noise, and measurement noise covariances) were refined by iteratively minimizing
the mean squared error on a holdout portion of the FRT data. The SVMs’ kernel coefficients
and regularization terms were identified for the ML models through a stepwise grid search
employing cross-validation. Similarly, the neural networks” hyperparameters (e.g., number
of hidden neurons, learning rate, and number of epochs) were selected by monitoring
validation loss to avoid overfitting.

4.1. Prediction Comparison with Market Indicators by SVM

Table 4 compares SVM prediction performance with In(VIXCLS) using the original
FRT and smoothed FRT datasets. The results show that the RBF kernel consistently delivers
the best performance across all metrics compared to other kernels (linear, polynomial,
and sigmoid). For the original FRT dataset, the RBF kernel achieves the lowest RMSE
(0.315) and MAE (0.243) during the training phase and continues to perform best during
the testing phase, with an RMSE of 0.335 and MAE of 0.257. Although the Linear kernel
performs reasonably well, it is slightly outperformed by the RBF kernel. In contrast, the
polynomial and sigmoid kernels exhibit significantly higher error metrics, indicating poor
prediction accuracy.

Table 4. SVM prediction comparison with In(VIXCLS).

Original FRT Smoothed FRT
Training Testing Training Testing
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Linear 0473 0382 0472 0384 0399 0321 0404 0324
Polynomial 0645 0518 0675 0534 0483 038 0515 0407
RBF 0315 0243 0335 0257 0285 0.233 0299  0.245
Sigmoid 8910 7663 7863 7.863 6.962 5787  6.898 5785

Note. The model uses the 1-month T-Bill as a control variable for market inflation.

The smoothed FRT dataset further enhances the RBF kernel’s performance. During
the training phase, the RBF kernel achieves an RMSE of 0.285 and MAE of 0.233, showing
a marked improvement compared to the original FRT dataset. In the testing phase, the
RBF kernel maintains its superiority, with the lowest RMSE (0.299) and MAE (0.245).
The smoothed dataset demonstrates similar trends for other kernels, but the RBF kernel
consistently outperforms them.

Overall, the results indicate that the smoothed FRT dataset improves predictive ac-
curacy, particularly when paired with the RBF kernel. The testing RMSE and MAE for
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the RBF kernel decrease significantly when using the smoothed dataset, highlighting the
benefits of smoothing in enhancing the relationship between FRT and In(VIXCLS). These
findings confirm that the combination of the smoothed FRT dataset and the RBF kernel
provides the most robust and accurate predictions.

Table 5 compares the SVM prediction performance with the differencing of SPY
(D(SPY)) using both the original FRT and smoothed FRT datasets. For the original FRT
dataset, the Linear kernel consistently performs the best among all kernels. During the
training phase, it achieves an RMSE of 5.979 and an MAE of 4.972, while in the testing
phase, it maintains superior performance with an RMSE of 6.085 and an MAE of 5.096.
The RBF kernel follows in performance but is less accurate than the Linear kernel. The
polynomial and sigmoid kernels perform significantly worse, with much higher RMSE and
MAE values, indicating their unsuitability for predicting D(SPY) in this context.

Table 5. SVM prediction comparison with D(SPY).

Original FRT Smoothed FRT
Training Testing Training Testing
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Linear 5979 4972 6.085 5.096 5765 4.685 5941  4.837
Polynomial 17.245 16.180 17.168 16.119 15.731 14.565 15.355 14.080
RBF 6295 5305 6436 5441 6.207 5215 6284  5.283
Sigmoid 10.652 8912  10.569 8927 12593 10560 12.664 10.675

With the smoothed FRT dataset, the Linear kernel continues to deliver the best results,
further improving its accuracy. In the training phase, it achieves the lowest RMSE (5.765)
and MAE (4.685), and in the testing phase, it maintains its strong performance with an
RMSE of 5.941 and MAE of 4.837. Although the RBF kernel improves slightly with the
smoothed dataset, it still underperforms compared to the Linear kernel. Similarly to the
original dataset, the polynomial and sigmoid kernels exhibit poor predictive accuracy with
significantly higher error values.

The results indicate that the Linear kernel is the most effective for predicting D(SPY)
across both datasets, achieving the lowest RMSE and MAE values. Additionally, the
smoothed FRT dataset enhances the prediction accuracy of all kernels, particularly the
Linear kernel, demonstrating that smoothing improves the predictive relationship between
FRT and D(SPY). Overall, the combination of the smoothed FRT dataset and the Linear
kernel is the preferred approach for accurate predictions.

4.2. Prediction Comparison with Market Indicators by NN

Table 6 presents the performance of NN models with varying numbers of neurons
for predicting In(VIXCLS) using both the original FRT and smoothed FRT datasets. For
the original FRT dataset, the NN model with 90 neurons achieves the best results, with the
lowest RMSE (0.270) and MAE (0.211) during the training phase, and an RMSE of 0.302 and
MAE of 0.241 during the testing phase. Performance improves as the number of neurons
increases, particularly beyond 30 neurons, where the RMSE and MAE values significantly
decrease. Smaller models, such as those with 10 neurons, exhibit higher error metrics,
indicating lower predictive accuracy.

When using the smoothed FRT dataset, the NN model with 90 neurons also performs
the best. It achieves an RMSE of 0.261 and MAE of 0.207 during the training phase, showing
a slight improvement over the original FRT dataset. During the testing phase, the 90-neuron
model maintains its strong performance, with an RMSE of 0.286 and MAE of 0.225. Similarly
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to the original dataset, the performance improves as the number of neurons increases, while
smaller models show relatively higher error metrics.

Table 6. NN prediction comparison with In(VIXCLS).

Original FRT Smoothed FRT
Training Testing Training Testing

No. of RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Neurons

10 0782 0640 0845 0691 0754 0605 078  0.634
20 0381 0298 0414 0315 0387 0304 0404 0316
30 0.460 0358 0508 0393 0471 0371 0509 0.398
40 0329 0261 0367 0282 0318 0251 0339 0.266
50 0.307 0238 0338 0261 0317 0251 0332 0.263
60 0.307 0238 0340 0265 0301 0237 0315 0.249
70 0300 0235 0326 0255 0293 0234 0313 0248
80 0300 0235 0328 0255 0295 0237 0309 0248
90 0.270 0.211 0.302 0.241 0.261 0.207 0.286 0.225
100 0.287 0225 0321 0252 028 0225 0303 0.239

Note. The model uses the 1-month T-Bill as a control variable for market inflation.

Overall, the smoothed FRT dataset enhances the model’s performance, particularly
during training, as evidenced by slightly lower RMSE and MAE values. The improvements
during testing are less pronounced, with the smoothed dataset delivering comparable or
slightly better results. However, the smoothed FRT still showed better performance than
the original FRT. Across both datasets, the 90-neuron NN model consistently demonstrates
superior predictive performance, making it the most effective configuration for capturing
the relationship between FRT and In(VIXCLS). These findings highlight the importance of
both dataset preparation and model complexity in achieving optimal predictions.

Table 7 compares the performance of NN models with varying numbers of neurons
when predicting D(SPY) using both the original FRT and smoothed FRT datasets. For the
original FRT dataset, the NN model with 10 neurons performs the best during testing,
achieving the lowest RMSE (4.467) and MAE (3.026). The model maintains competitive
results during training as well, with an RMSE of 4.287 and MAE of 3.039. As the number of
neurons increases, the RMSE and MAE slightly increase during testing, suggesting that
smaller models are better suited for this dataset in predicting D(SPY).

Table 7. NN prediction comparison with D(SPY).

Original FRT Smoothed FRT
Training Testing Training Testing

No. of RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Neurons

10 4.287 3.039 4.467 3.026 4.302 3.048 4.457 3.016
20 4280 3.028 4473 3.028 4295 3.047 4463  3.026
30 4260 3.022 4484 3.042 4288 3.042 4467 3.031
40 4254 3019 4502 3.047 4275 3.032 4480 3.041
50 4256  3.022 4491 3.045 4276  3.033  4.481 3.039
60 4.253 3.016 4.498 3.052 4.272 3.025 4.482 3.039
70 4250 3.016 4496 3.052 4277 3.034 4478 3.036
80 4242 3009 4506 3.062 4271 3.033 4493 3.050
90 4243  3.001 4508 3.061 4269 3.028 4.484  3.045

100 4231 3.000 4517 3.074 4269 3.031 4488  3.047
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For the smoothed FRT dataset, the NN model with 10 neurons also performs the
best during testing, with an RMSE of 4.457 and MAE of 3.016. In the training phase, the
same model achieves an RMSE of 4.302 and MAE of 3.048, showing slightly higher error
values compared to the original dataset. Like the original FRT dataset, larger models (e.g.,
those with 60 neurons or more) exhibit slightly higher RMSE and MAE values, indicating
diminishing returns as model complexity increases.

Across both datasets of the original FRT and smoothed FRT, the NN model with
10 neurons consistently delivers the best predictive performance, achieving the lowest error
metrics in both the training and testing phases. The smoothed FRT dataset shows slightly
better performance during testing, as seen with the marginally lower RMSE and MAE
values compared to the original FRT dataset. This suggests that smoothing improves the
predictive relationship between FRT and D(SPY), particularly for simpler models.

As shown in the results, the NN model with 10 neurons is the most effective con-
figuration for predicting D(SPY) across both datasets, with the smoothed FRT dataset
offering an advantage in reducing testing errors. These results demonstrate that simpler
NN models paired with smoothed datasets can effectively balance prediction accuracy and
model efficiency.

One crucial concern raised by the reviewer is that smoothing the FRT data may in-
advertently eliminate high-frequency noise and critical signals related to genuine market
shifts. To assess this possibility, predictive performances were checked in each ML model.
The results compared the performance of our machine learning models—using standard
metrics such as RMSE and MAE—both before and after smoothing. It would have ex-
pected weaker predictive accuracy if smoothing had compromised crucial information.
However, the results indicated that smoothed data generally improved predictive power.
It demonstrates that smoothing primarily filters out random fluctuations while retaining
the key patterns underlying investor sentiment. At the same time, there is a legitimate risk
of excessive smoothing, where abrupt and meaningful changes could be lost. To mitigate
this, multiple smoothing techniques (e.g., exponential smoothing, Kalman filter, Savitzky-
Golay) aggregated the results to balance any method’s potential biases. This multi-pronged
approach allowed us to retain the most relevant FRT dynamics while minimizing noise,
ultimately enhancing, rather than undermining, the interpretive and predictive utility of
the FRT dataset.

5. Discussion, Implication, and Future Studies

This study demonstrates the ability to differentiate between normal and abnormal
patterns by smoothing data with a relatively narrow range of fluctuations, such as FRT.
Despite the limited daily fluctuations in FRT averages, the results show that smoothing the
data reveals important dynamics that are obscured in the raw data. By applying smooth-
ing techniques to the FRT mean and standard deviation, this study uncovers significant
relationships with market volatility, measured by VIXCLS and SPY.

The results indicate that the smoothed FRT mean and standard deviation predicted
VIXCLS and SPY better than raw FRT. This suggests that the smoothing process filters
out noise, enhancing the signal and making the data more suitable for explaining market
volatility. The key takeaway is that smoothing helps to emphasize the underlying relation-
ships between investor risk tolerance and market behavior, providing a clearer and more
accurate depiction of market trends. These findings are consistent with the concept of noise
reduction, as smoothing eliminates short-term volatility that may mask long-term patterns.

Although smoothing can reduce certain high-frequency or short-term fluctuations,
the resulting dataset still retains mid- and long-term patterns that may exhibit significant
nonlinearity. By applying support vector machines and neural networks to these smoothed
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data, this study leverages methods that are well suited to uncover these more complex
relationships. Rather than focusing on minute temporal dependencies, the ML approach
emphasizes broader structural patterns that persist even after noise reduction. In this
manner, smoothing and machine learning can function together: the smoothing process
clarifies salient signals, and the subsequent ML modeling uses those signals to capture
nuanced, nonlinear interactions that simple time series forecasting might overlook.

The implications of this research are twofold. First, from a methodological standpoint,
smoothing techniques such as those applied in this study can significantly improve the
explanatory power of FRT data in models related to financial markets. The improvement
in the prediction by smoothed FRT demonstrates that noise reduction allows for a more
meaningful understanding of FRT’s relationship with VIXCLS and SPY. This offers potential
for further research in financial risk tolerance and market dynamics, suggesting that
smoothed FRT data might be more effective than the raw FRT for predictive modeling
in finance.

Second, the findings contribute to a broader understanding of how behavioral finance
metrics such as FRT interact with market volatility and sensitivity. The significant relation-
ship between smoothed FRT (mean and standard deviation), VIXCLS, and SPY underscores
the potential for using FRT as a valuable indicator for market trends, provided that proper
smoothing techniques are applied. However, the concern of overfitting remains, and fur-
ther research is needed to ensure the application of these findings across different market
contexts. Future studies should explore the broader validity of smoothed FRT’s relationship
with other market indicators, such as the S&P 500 or investor behaviors, to evaluate whether
the improvement observed in this study would fit across various financial contexts.

Beyond theoretical contributions, this study’s findings have direct implications for
real-world financial applications. The smoothed FRT data could be instrumental in portfolio
optimization, offering insights into how risk tolerance aligns with market volatility and
enabling investors to allocate assets more effectively. Similarly, the integration of smoothed
FRT metrics into risk assessment tools could improve the accuracy and reliability of financial
institutions’ evaluations, particularly in stress-testing scenarios or risk mitigation strategies.

Furthermore, this study highlights the potential for leveraging smoothed FRT data
in investor profiling. By reducing noise, these metrics can help financial advisors and
institutions better understand their clients’ risk preferences and behavioral tendencies. This
could lead to the development of tailored investment products and strategies that align
individual risk tolerances while accounting for market dynamics.

Finally, emphasizing how noise reduction improves decision-making for both investors
and financial institutions enhances the practical relevance of the findings. By offering a
clearer picture of market trends and reducing the risk of misinterpretation due to noise,
smoothed FRT data can become a cornerstone for developing more robust and adaptive
financial tools. Future studies should delve deeper into these applications, exploring how
the integration of smoothed FRT data into real-world decision-making processes could
drive more informed and effective financial strategies.

Although the Kalman filter was initially employed for smoothing, the filter also
supports real-time state estimation. In a real-world setting, it can be updated iteratively as
new FRT observations are received, thereby adapting to rapidly changing market conditions.
Future analyses aim to implement this update mechanism to capture evolving investor
sentiment more dynamically.

While this study primarily employs smoothing techniques (e.g., exponential smooth-
ing, Kalman filtering) to reduce high-frequency noise, the authors acknowledge the recom-
mendation to incorporate time series decomposition, such as Seasonal-Trend Decompo-
sition using Loess (STL), for further isolating long-term trends and seasonal components.
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Implementing STL requires a consistent pattern of seasonality within the data, which may
not be as pronounced in daily FRT observations due to the nature of participant recruitment
and response timing. Additionally, preliminary tests did not reveal strong seasonal effects.
Nonetheless, future expansions of this research may revisit STL or alternative decomposi-
tion techniques if data collection protocols change to capture clearer cyclical patterns. By
then, decomposing the time series into seasonal and residual components could offer a
deeper understanding of investor behavior and risk tolerance dynamics.

This study evaluates predictive accuracy using conventional metrics (RMSE, MAE)
and does not incorporate advanced feature importance methods such as Shapley Additive
Explanations (SHAP). Although SHAP could illuminate how each smoothed FRT measure
contributes to market indicator predictions, implementing SHAP for multiple machine
learning models requires substantial computational resources and a refined methodological
design. Future expansions of this research may adopt SHAP or similar approaches to
deepen interpretability and offer clearer insights into how investor sentiment measures
interact with broader market dynamics.
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