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Abstract

This study presents a data-driven framework for optimizing parking space allocation
and pricing in large commercial complexes, addressing persistent spatial imbalances in
occupancy between high- and low-demand zones. A mixed Logit (ML) model with interac-
tion terms is estimated from stated preference survey data to capture heterogeneous user
preferences across trip purposes. A dual clustering algorithm is then applied to generate
spatially coherent pricing zones, integrating geometric, functional, and occupancy-based
attributes. Two differential pricing strategies are formulated: an administered model with
regulatory price bounds and a market-based model without such constraints. Both pricing
models are solved using an improved multi-objective Particle Swarm Optimization-Grey
Wolf Optimizer (PSO-GWO) algorithm that jointly optimizes spatial zoning and zone-time
pricing schedules. Using data from the Kingmo Complex in Nanjing, China, the results
show that both strategies significantly reduce spatio-temporal occupancy variance and
improve utilization balance. The administered strategy reduces variance by up to 67%
on weekdays, with only a 1% increase in revenue, making it suitable for contexts prior-
itizing regulatory compliance and price stability. In contrast, the market-based strategy
reduces variance by over 40% while generating substantially higher revenue, particularly
during periods of high and uneven demand. The proposed framework demonstrates
the potential of integrating behavioral modeling, spatial clustering, and multi-objective
optimization to improve parking efficiency. The findings provide practical guidance for
operators and policymakers seeking to implement adaptive pricing strategies in large-scale
parking facilities.

Keywords: parking pricing; spatial zoning; mixed logit model; administered differential
pricing; market-based differential pricing
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1. Introduction

The rapid expansion of urban commercial complexes has significantly intensified park-
ing demand in densely built city centers. These complexes typically integrate diverse land
uses, such as retail, office, dining, and leisure. They attract high volumes of vehicular traffic
and generate concentrated, time-sensitive parking needs. Field investigations indicate that,
despite the provision of high-capacity parking facilities, the internal utilization of spaces is
often spatially imbalanced. Spaces near primary entrances and anchor stores tend to remain
continuously occupied, whereas less accessible zones are persistently underutilized. This
spatial heterogeneity in occupancy directly affects parking efficiency and user experience,
highlighting the need for more refined allocation and pricing strategies.

Traditional pricing strategies in most facilities follow a uniform, one-size-fits-all ap-
proach, which fails to respond to the spatio-temporal variation in parking demand. This
has been empirically demonstrated in recent urban studies showing that differentiated
pricing can more effectively reduce congestion and rebalance parking occupancy compared
to uniform pricing [1]. This mismatch often causes congestion in high-demand zones and
idle capacity in low-demand areas, thereby reducing overall efficiency [2]. Therefore, a
systematic approach to spatial partitioning and differential pricing is essential for rebalanc-
ing demand and improving utilization. As shown in Figure 1a,b, empirical observations
in a large-scale complex reveal clear variation inside the facility: high-saturation areas
near core entrances remain congested throughout peak periods, whereas lower-saturation
areas exhibit prolonged underuse. These conditions are not effectively addressed through
the uniform pricing strategies currently employed in most facilities. Simulation-based
analyses have shown that incorporating spatial location differences into pricing design can
significantly improve both parking utilization and user satisfaction [3].

(a) high-saturation areas (b) lower-saturation areas

Figure 1. Current issues of allocated parking lots for large complexes.

Conventional approaches to resolving such issues have largely relied on supply-
side measures, such as expanding physical capacity or upgrading parking infrastructure.
These methods are increasingly constrained by space limitations and economic feasibility
and do not address the core mismatch between user preferences and spatial resource
distribution. As an alternative, demand-side pricing strategies—particularly differentiated
pricing—have gained recognition for their ability to influence user behavior and redistribute
parking demand.

Although differentiated pricing has received growing attention in both academic
research and urban parking practice, its implementations remain limited by several critical
challenges. First, most current strategies operate at a coarse spatial granularity, typically
applying different rates by urban subdistrict, which overlooks the finer variation in parking
space inside the facility value caused by differences in proximity, visibility, or accessibil-
ity [4]. Second, while user behavior has been extensively studied in terms of parking
lot selection, few models account for behavioral heterogeneity in parking space choice
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inside facilities, particularly with respect to spatial and pricing attributes [2,5-8]. Third,
spatial zoning methods used to support differentiated pricing are often guided by man-
agerial intuition, lacking algorithmic rigor and limiting transparency and scalability [9,10].
These limitations collectively underscore the need for a more structured, data-driven, and
behaviorally informed approach to pricing design in large-scale parking facilities.

To address these challenges, this study focuses on internal resource allocation and pric-
ing differentiation within a single large-scale complex. By emphasizing micro-level demand
imbalances, spatial variation in parking space attributes, and user behavioral heterogene-
ity, the research aims to formulate a pricing strategy that not only enhances utilization
efficiency within the facility but also better accommodates diverse user preferences.

This paper proposes an integrated framework for the design and optimization of
differentiated pricing strategies tailored to complex parking environments. The framework
is structured into three major stages. First, a mixed Logit model is constructed to capture
user choice behavior in response to parking space attributes. Second, we employ a dual
clustering algorithm rather than a conventional single clustering method. While single
clustering may generate fragmented or spatially discontinuous groups, the dual cluster-
ing framework jointly considers attribute homogeneity and spatial contiguity, producing
zones that are both interpretable and operable [11]. Building on this, the dual clustering
algorithm is applied to partition the facility into spatially homogeneous pricing zones,
using data on spatial layout, functional connectivity, and occupancy patterns. Third, a
bilevel optimization model is formulated to jointly consider societal objectives—such as
occupancy balancing—and operator goals like revenue maximization [12]. The upper-level
model proposes zone-level pricing guidance, while the lower-level model simulates user
responses and resulting space allocation [13].

The contributions of this study are both theoretical and practical, and can be summa-
rized as follows:

Behavioral modeling: A mixed Logit model with interaction terms is developed to
capture intra-facility heterogeneity in parking space choice. The specification reflects
variations in sensitivity to attributes such as price and search time, as well as the combined
effects of multiple attributes.

Spatial zoning: An improved dual clustering algorithm is introduced, which simulta-
neously ensures attribute homogeneity and spatial contiguity. This method produces zones
that are analytically robust and practically operable for differentiated pricing.

Pricing modeling: Two bilevel optimization models are formulated to design differen-
tiated pricing strategies for large-scale commercial complex parking facilities. The zonal
differentiated guidance pricing model minimizes the deviation from existing prices while
simultaneously improving spatio-temporal occupancy balance, ensuring compatibility with
current pricing practices. In contrast, the zonal differentiated autonomous pricing model
jointly optimizes spatio-temporal occupancy balance and revenue maximization, providing
a more flexible but operator-oriented strategy. Together, these models establish a rigorous
foundation for evaluating trade-offs between policy feasibility and operational efficiency.

Empirical validation: The proposed methodology is validated through a case study
based on real-world data from a large commercial complex parking facility. The results
demonstrate its feasibility and applicability.

The remainder of this paper is organized as follows. Section 2 reviews relevant
literature on parking behavior modeling, spatial partitioning, and differentiated pric-
ing. Section 3 presents the methodological framework, including user behavior mod-
eling, clustering algorithms, and the optimization structure. Section 4 reports the case
study and analyzes the outcomes. Section 5 concludes with key findings and future
research directions.
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2. Literature Review

This section reviews three research streams related to parking pricing strategies, user
choice behavior, and spatial zoning methods.

2.1. Pricing Strategies and Optimization Models

Parking pricing serves as a critical mechanism for regulating demand and improving
facility-level efficiency. Traditional flat-rate pricing fails to capture temporal and spatial
variations, often leading to overcrowding in popular zones and the underutilization of
peripheral parking spaces [14]. Recent studies advocate dynamic or differentiated pricing
strategies to address such issues more effectively [1].

Pricing strategies can be broadly classified into flat-rate and differential pricing ap-
proaches. Flat-rate strategies determine rates based on average occupancy levels or man-
agerial judgment, whereas differential strategies adjust prices in real time according to
current occupancy or demand intensity [2]. While dynamic pricing improves adaptability,
it also demands extensive sensing infrastructure and real-time control systems, which limit
implementation. Hybrid approaches offer a balanced solution by combining static pricing
with periodic updates [13].

Optimization modeling plays a central role in the design of pricing strategies. Linear
and mixed-integer programming have been widely used to maximize revenue, optimize
utilization, or balance fairness [15]. Among them, bilevel optimization has become a
popular framework, modeling operators’ pricing decisions at the upper level and user
responses at the lower level [16]. Notably, Yang et al. [11] integrated pricing design
with facility layout and user behavior modeling, demonstrating improved performance
compared with uniform pricing schemes.

However, several limitations persist. First, most pricing studies rely on zonal-level
strategies, lacking granularity at the individual parking space level. Second, while
user response is modeled, sensitivity to spatial attributes or behavioral variability is of-
ten simplified. Third, zoning for pricing is typically predefined rather than optimized,
hindering adaptability.

In summary, existing work does not fully integrate pricing decisions with user hetero-
geneity and spatial microstructure, limiting the efficacy of differentiated strategies.

2.2. Parking Space Choice Behavior Modeling

Understanding how users choose parking spaces is essential for demand-responsive
management. Logit-based discrete choice models dominate this field, including multino-
mial Logit (MNL), nested Logit (NL), mixed Logit (ML), and more recently, cross-nested
Logit (CNL) and hybrid choice models [17-20].

Hunt and Teply [17] applied a nested Logit model to explain commuter parking space
choices, showing how grouping similar parking alternatives can improve predictive validity
over standard MNL. Borgers and Timmermans [18] modeled parking behavior within a
facility using a two-level nested Logit model, in which travelers first select a parking area
and then choose a specific parking space within it. The study found that walking distance
to ticket machines and exits, as well as whether the space is a corner space, significantly
influences parking choices.

User heterogeneity is also a critical consideration in modeling. Middelkoop [19]
applied a suite of discrete choice models, including mixed-multinomial Logit and its
extensions to account for both observed and unobserved preference variation. Meng
et al. [21] specifically studied university parking behavior, showing that students and staff
respond differently to price and walking distance. Similarly, Khaliq and Janssens [22]



Mathematics 2025, 13, 3267

5 of 38

incorporated micro-scale attributes like perceived safety, congestion, and space dimensions
into their MNL model for agent-based simulations.

Recent efforts emphasize the need to go beyond observed heterogeneity. Li et al. [23]
integrated latent variables like risk perception into parking models via PCA-Mixed Logit,
while Li et al. [24] compared Logit, regret minimization, and prospect theory frameworks
to capture underlying cognitive diversity. Meanwhile, Le et al. [20] applied the cross-nested
Logit model to resolve overlap across spatial alternatives—highlighting its flexibility for
intra-facility modeling. Qin et al. [25] also studied parking at large airports using nested
Logit structures to capture joint location—-mode decisions, reaffirming the need to jointly
consider spatial and functional layout.

Despite growing efforts in discrete choice modeling, most studies still emphasize
parking facility selection rather than fine-grained parking space choice. Intra-facility
choice behaviors, which are shaped by subtle spatial cues and personal trade-offs, remain
underexplored. Furthermore, limited research integrates behavioral heterogeneity with
spatial pricing design, leaving a gap in linking user decision-making to real-time space
allocation and economic incentives. These issues call for integrative approaches that jointly
model user preferences and space-level management strategies.

2.3. Spatial Zoning Methods

Spatial zoning provides the structural foundation for differentiated pricing and de-
mand management. In practice, many parking facilities divide space heuristically by
floor, entrance, or aisle geometry. Such methods, though simple, lack empirical grounding
and often fail to reflect the actual spatial variation in value, walking distance, or user
demand [2].

To address this, recent studies have applied data-driven zoning techniques. Traditional
K-means and hierarchical clustering are widely used due to their simplicity [26], but their
ability to preserve spatial contiguity and behavioral relevance is limited. More advanced
approaches, such as dual clustering [27] and constrained clustering [28], account for spa-
tial adjacency, usage similarity, and logical constraints. These methods offer improved
interpretability and alignment with operational needs.

In the scenario of parking, Yang et al. [11] developed a bilevel optimization model
integrating clustering-based zoning with pricing design. Their results show that cou-
pling spatial zoning with user response models enhances both revenue and occupancy
balance. Moreover, Duong et al. [28] embedded logical constraints into spatial cluster-
ing, showing promise for structured environments such as parking facilities. Liu and
Chen [27] and Ke et al. [29] proposed dual clustering strategies that maintain both geomet-
ric and functional cohesion. These methods are better suited for high-dimensional spatial
behavior integration.

Despite methodological advancements, existing zoning strategies still face several
critical limitations. First, many zoning schemes are based on fixed geometric layouts
or management heuristics, which fail to reflect continuous spatial gradients in parking
space value or occupancy patterns. Second, most clustering models do not incorporate user
choice behavior, resulting in weak coupling between spatial partitioning and actual demand.
Third, the methodological systems remain fragmented—many approaches optimize spatial,
functional, or behavioral aspects separately, lacking an integrated framework. To bridge
these gaps, this study proposes a dual-clustering framework that jointly considers spatial
configuration, occupancy distribution, and user preference heterogeneity, providing a
structured foundation for refined zone-level pricing optimization.
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3. Mathematical Formulations and Methods

This study proposes a three-stage methodological framework to design differentiated
pricing strategies within large-scale parking facilities. First, a mixed Logit model is de-
veloped to capture user preferences and behavioral heterogeneity with respect to parking
space attributes. Second, a dual clustering algorithm is introduced to partition the facility
into spatially coherent pricing zones by integrating geometric, functional, and occupancy-
based factors. Third, a bilevel optimization model is formulated to determine optimal
zone-level prices, balancing operator objectives and user responses. These modules are
sequentially interconnected: user behavior modeling informs both clustering and pricing
design, while spatial zoning provides structural input for the pricing model.

3.1. Modeling Method for User Parking Selection Behavior

This study applies discrete choice modeling to quantify individual parking space
selection within large-scale facilities. The modeling process comprises three key compo-
nents: (1) specification of explanatory variables, (2) unlabeled experimental design, and
(3) mixed Logit estimation that incorporates random coefficients and interaction terms. The
overall objective is to capture individual-level preference heterogeneity while avoiding
label-related biases inherent in traditional stated preference (SP) experiments, thereby en-
hancing both the behavioral interpretability and the operational applicability of the model
for zoning and pricing strategies.

3.1.1. Specification of Explanatory Variables

The selection of explanatory variables was informed by an extensive literature review
and refined through a structured questionnaire design. While various spatial, economic,
and contextual factors can influence parking space choices (e.g., floor level or wall adja-
cency), it is neither practical nor necessary to include all possible variables. This study
focuses on five core explanatory variables that are both significant in influencing behavior
and practical to quantify in the experimental design:

Parking fee: the total expected charge for occupying the space, measured in RMB per
hour [11].

Type of parking space: whether the space is mechanical or standard, with mechanical
spaces requiring additional time.

Search time: the estimated time spent navigating within the facility to locate the space,
including delays caused by other vehicles or inter-floor transitions [30].

Walking time: the time needed to walk from the parked vehicle to the internal destina-
tion (e.g., elevator or escalator) [31].

Trip purpose: a categorical variable representing either leisure or commuting, to
capture variation in urgency and behavioral flexibility [32].

The attributes and their levels considered in this study are summarized in Table 1.

Table 1. Attribute variable level table.

Attribute Variables Attribute Level
Personal socioeconomic attributes Gender Male: 1; Female: 2
entry 2 Age 18-25: 1; 26-35: 2; 36-49: 3; 50 and over: 4

High school and below: 1; Associate degree: 2;
Undergraduate: 3; Graduate and above: 4
Less than 1 year: 1; 1-3 years: 2; 3-5 years: 3;
5-10 years: 4; More than 10 years: 5
Less than 3000 yuan: 1; 3000-5000 yuan: 2;
5000-10,000 yuan: 3; More than 10,000 yuan: 4

Education level
Driving experience

Monthly income
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Table 1. Cont.

Attribute Variables Attribute Level
. . . . Less than 15 min: 1; 15 minto 1 h: 2; 1-2 h: 3;
Parking-related attributes Parking duration 2-4 h: 4; More than 4 h: 5

Parking space-related attributes Search time 1 min; 8 min; 15 min

Walking time 1 min; 8 min; 15 min
Whether it .1s a mechanical Yes: 1; No: 0
parking space
Parking fee 5 yuan/h; 8 yuan/h; 11 yuan/h

3.1.2. Unlabeled Experiment Design

To elicit parking space choice behavior within a systematically designed choice sce-
nario, this study adopts an unlabeled stated preference (SP) experiment. Unlike labeled
designs that assign fixed identifiers to each alternative, the unlabeled format mitigates label-
induced biases by directing respondents” attention exclusively to attribute levels [33]. This
is particularly valuable in the scenario of large-scale parking facilities, such as commercial
complexes with more than 300 or even 500 spaces, where labeling individual alternatives
would dramatically increase the number of choice options. Such expansion not only im-
poses an excessive cognitive burden on respondents but also reduces attribute variation
across tasks, thereby weakening the model’s capacity to recover reliable preference struc-
tures. In contrast, the unlabeled format enables all alternatives to share a common utility
function, improving both model parsimony and estimation efficiency.

To ensure design quality, this study applies a D-efficient experimental design method
using an iterative Excel-based tool developed by Prof. John Rose [34]. The tool minimizes
the determinant of the asymptotic variance—covariance (AVC) matrix, thereby enhancing
the precision of parameter estimates for a fixed sample size [35]. The final design includes
six choice scenarios for each of the two trip purposes, with each scenario presenting three
unlabeled alternatives defined solely by their attribute levels (e.g., walking time, search
time, parking fee, and parking space type).

This structure reduces respondent fatigue and improves data reliability, while also
enabling the estimated utility parameters to generalize across different facility types and
spatial layouts without relying on scenario-specific labels or identifiers.

3.1.3. Mixed Logit Model Estimation

Parking space choices are influenced by multiple behavioral factors, including sensitiv-
ity to cost, walking time, and space type. These preferences often vary significantly across
individuals and trip purposes. Moreover, each respondent completes multiple-choice tasks,
resulting in repeated observations that violate the independence assumptions of traditional
Logit models. In particular, the multinomial Logit (MNL) model assumes the Independence
of Irrelevant Alternatives (IIA), implying that the relative odds of choosing between any
two alternatives are unaffected by the presence or attributes of other options. However,
in parking space scenarios, this assumption is often unrealistic, as alternatives are not
perceived as equally substitutable.

Parking space choices are influenced by a variety of behavioral factors, including
sensitivity to cost, walking distance, and space type. These preferences exhibit significant
heterogeneity across individuals and trip purposes. In addition, each respondent completes
multiple-choice tasks, resulting in repeated observations that violate the independence
assumptions of traditional Logit models.

To address these limitations, this study estimates a Mixed Logit model, which relaxes
the IIA assumption and allows for random taste heterogeneity by specifying certain co-
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efficients as random variables. Each coefficient is drawn from a statistical distribution,
typically normal, with the mean representing the average strength of user preference and
the standard deviation capturing the degree of heterogeneity across individuals. The choice
probability of an individual 7 selecting an alternative j is modeled as the weighted average
of Logit probabilities under varying coefficients:

P = / Li;(B;) f(Bj|6)dB;, 1)

where f( B; |6) is the probability density function of coefficients B, parameterized by distri-
butional parameters 6, and L;;(B;) is the standard Logit probability under the coefficient
vector B.
Ui (Bjxi)
Lij = W (2)

where x;; is the vector of observed attributes associated with alternative j for individual 7,
and x; is the vector of individual-specific characteristics.

The utility function U;; for each alternative includes observed variables and random
coefficients:

Ujj = B1 x Feej + B2 X Mecj + B3 x Cruising; + By X Walking; + ¢;;, 3)

where Fee; is the unit parking fee (RMB/h), Fee; = ) ; Price;; x Time;, Mec; is a dummy
variable for mechanical space, Cruising; is estimated search time, Walking; is walk-
ing time to destination By ~ N (E, Uﬁk), and k =1, 2, 3, 4 are normally distributed
random coefficients.

While the standard mixed Logit specification captures heterogeneity across basic
parking attributes, it assumes independence between explanatory variables. In reality,
sensitivities to price, search time, and walking distance often vary systematically across
demographic groups. For instance, price sensitivity may depend on income, and tolerance
for walking distance may differ by age or gender. To account for such interactions, the
specification is extended to incorporate interaction terms between user socio-demographics
and parking attributes. This allows the model to better capture preference heterogeneity
and improve prediction accuracy.

The extended utility functions are estimated separately for two trip purposes:

For commuting:

ui(jC) =) .Bl(<C)Xijk + ) 77(;)(Zimxijm) +€§;), (4)

kex, mel,

where x, = {Fee, Mec, SeaTime, WalkTime} denotes hourly parking fee (CNY /h), mechanical
space dummy, estimated search time (minutes), and walking time to the destination (minutes).
The interaction set is I. = { Age2 x SeaTime, Gender x Fee, Age2 x Fee, Gender x WalkTime}.
Zin, represents the socio-demographic characteristics of individual i, including age group,
gender, and income, which interact with parking attributes.

For leisure:

I I ! I
ui(j) =) ﬁ;(c )Xijk + ) 7 (ZimXijm) + 81(-]-) 5)
kexl mel;
where x; = {Fee, Mec, SeaTime, WalkTime}, defined as above. The interaction set is

I} = {Agel x Mec, Incomel x Fee, Age2 x Fee, Gender x WalkTime, Gender x Mec}. Ziy,
represents the socio-demographic characteristics of individual i, including age group,
gender, and income, which interact with parking attributes.
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All coefficients § and <y are treated as random parameters following normal distri-
butions; their means represent average marginal utilities, and their standard deviations
capture taste heterogeneity. The error terms ¢;; are assumed to be independently and
identically distributed, following the standard Logit specification.

This model reflects how socio-demographic factors modify sensitivities to parking
attributes, thereby enhancing behavioral realism in the parking space allocation model
used in subsequent optimization. This study adopts the maximum simulated likelihood
method (MSL), implemented via the Python 3.7 Biogeme v3.2 [36].

3.2. Spatial Zoning Algorithm

This study proposes an improved dual clustering algorithm to divide parking spaces
into pricing zones. The resulting zoning design supports the development of pricing
strategies while ensuring spatial continuity, attribute consistency, and balanced zone sizes.

3.2.1. Design Principles

The spatial zoning of parking facilities is guided by three core principles to ensure
practical feasibility and behavioral relevance in pricing strategy implementation:

Spatial contiguity: Parking spaces within the same zone must be spatially con-
nected without being divided by spaces from other zones. This ensures that each
pricing zone forms a cohesive spatial unit, thereby facilitating user recognition and
administrative management.

Attribute consistency: Within each zone, non-spatial attributes (e.g., space type, walk-
ing time) should remain as consistent as possible, while inter-zone differences should be
maximized. This promotes internally consistent pricing rules and avoids user confusion
caused by heterogeneous conditions within the same pricing zone.

Balanced zone size: Each pricing zone should include a moderate and manageable
number of parking spaces. Overly large or small zones may lead to difficulties in policy
implementation and reduce pricing effectiveness. The aim is to align zone sizes with facility
layout and operational constraints.

These principles provide the foundation for improving the dual clustering algo-
rithm, making it suitable for complex parking facilities such as those attached to large
commercial complexes.

3.2.2. Algorithmic Modifications

Although the original dual clustering algorithm effectively integrates optimization
and constraint domains [27], it has two main limitations when applied to parking space
zoning in large-scale facilities. First, the use of complete-linkage hierarchical clustering in
the optimization domain suffers from irreversible cluster formation and poor scalability.
Second, the algorithm lacks an effective mechanism to control zone sizes, which contradicts
the zoning principle of moderate and balanced region scales outlined.

To address these issues, two major modifications are introduced:

Replacing hierarchical clustering with K-medoids: The optimization domain now
applies the K-medoids algorithm instead of complete-linkage hierarchical clustering. K-
medoids reduces the impact of outliers and offers greater computational efficiency. More-
over, unlike hierarchical methods, it allows for more flexible and iterative updates, improv-
ing the quality and reversibility of the clustering results [37].

Adding a recursive size adjustment procedure: A post-processing step is appended to
the algorithm to adjust the number of spaces in each zone. Parking zones are first evaluated
based on their deviation from the target zone size (as defined by managerial preferences).
Zones exceeding or falling short of this threshold are identified as donors or recipients.
Then, spatially adjacent spaces are iteratively reallocated from oversized to undersized
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zones, subject to a distance threshold based on facility corridor widths. This ensures that
boundaries remain aligned with the physical layout while achieving size balance.

A detailed algorithmic workflow is illustrated in Figure 2 and summarized in the
following steps:

Input parking space data set ¢, whereo, 0, €0 —

Mark each zone with a zone judgment mark Ak

opt > Ceons 5 . [
i based on the size of parking spaces
Calculate the mixed distance dist,,,,(0,,0,) and Get input and output partition sets

use the K-Medoids algorithm to form the
clustering result of K clusters

l Calculate the Euclidean distance between each
Initialize the loop, set t=1 data point in the input partition and the center of
l the output pal“titiOﬂ dl‘gtm(of.mid:m ’Oj,orfu(lu.ﬂ)

Label each data point according to the clustering
results

l

Use SVM algorithm to train constraint domain
and data labels to obtain classifier C

l

Apply the trained classifier to the entire dataset
to form clustering results and label the data
points

Oi,z nAdjust ? 01, outd dust

Determine whether the distance
dist, (o ) <dist,

1.imAdist > O; outdchst in

geets the threshold dist,

Data points are divided from input partitions to
output partitions

When all cluster data points mee
the quantity requirement or further
ecursion is not possible

The segmentation distance dist;, (0,0,) of each
cluster is calculated, and the single-link
hierarchical clustering algorithm is used for
segmentation to divide the spatially unconnected
cluster data into two or more clusters.

Output clustering results

t=l1, reaches the maximum number o
iterations
End

Calculate the custom distance dist,,, (0,,0;) and
execute the K-Medoids clustering algorithm in
the optimization domain to form K clusters

l

— Update the number of iterations, t=t+1

Figure 2. Workflow of the improved dual clustering algorithm.

As shown in Figure 2, the improved dual clustering procedure follows an iterative
cycle alternating between the attribute domain and the spatial domain. In each iteration,
K-medoids is first employed to update robust cluster medoids in the attribute space,
thereby reducing sensitivity to outliers. A Support Vector Machine (SVM) classifier is then
used to refine the separating boundaries between high- and low-demand zones based
on occupancy and accessibility features, ensuring behavioral consistency. In the spatial
domain, a recursive size adjustment procedure is applied to balance zone sizes and enforce
contiguity. This cycle repeats until the zone configuration converges, yielding clusters that
are both homogeneous in attributes and coherent in space, thus enhancing robustness,
behavioral realism, and practical applicability in large-scale commercial parking facilities.
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3.2.3. Evaluation Indicators

Numerous clustering evaluation methods have been developed to assess clustering
performance for datasets of varying scales and structures. However, in the original dual
clustering method, only partial parameter settings were specified, such as assigning equal
weights of 0.5 to both the optimization and constraint domains to avoid bias. Given
that the dataset used in the study was structurally homogeneous and its application
scenario differed significantly from that of this study, such fixed settings may not be directly
applicable to large commercial complex parking facilities.

Therefore, this study adopts a grid search approach to systematically combine five
key parameters (dist;,, K, w, « and ratio). In line with the spatial zoning principles and
to address the operational characteristics of large-scale commercial parking facilities, two
indicators are developed: one measures spatial coherence and the other assesses zone size
balance. These indicators enable the identification of optimal parameter combinations for
different facility types, thereby narrowing the search space in practical deployments and
enhancing the operational applicability and scalability of the proposed method.

Ratio of External and Internal Distances (REID)

This indicator draws on the concept of the Dunn Validity Index (DVI), which evaluates
clustering validity by taking the ratio of the minimum inter-cluster distance to the maximum
intra-cluster distance. A higher DV indicates greater separation between clusters and
tighter cohesion within clusters. However, increasing the number of clusters can reduce
inter-cluster distances and increase intra-cluster distances, making DV unsuitable for
evaluating parameter combinations in this study.

To address this, the REID is proposed as an adaptation of the DV, calculated

as follows: external_dist
REID = —m, (6)
external_singledist = ZZ’:] \/(Mean(xi) — Mean(x;))? + (Mean(y;) — Mean(y;))?, (7)
external_dist = Ly extelzztﬁ_liingledist’ (8)
internal_singledist = Mean (\/(x,- —-%)2+4 (yi —9)? ), )
internal_dist = Mean (211(:1 internal_singledist), (10)

where external_dist is the average inter-cluster distance, calculated as the mean of all
external_singledist, internal_dist is the mean intra-cluster distance across all clusters,
internal_singledist is the average distance between each parking space within cluster i
and the centroid of that cluster, external_singledist is the Euclidean distance between the
centroids of clusters i and j.

A smaller REID value indicates larger inter-zone distances and smaller intra-zone
distances, reflecting better clustering quality; conversely, a larger REID suggests poorer
performance.

Parking Distribution Entropy (PDE)

Inspired by Shannon’s information entropy, which measures system uncertainty, this
indicator evaluates the balance of parking space quantities among clusters [38]. The entropy
is calculated as follows:

K
H = _Zizl pijlogzpl-j, (11)

where p;; is the probability that a data point in cluster i belongs to cluster j; K is the number
of clusters.
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In this study, the ratio of the number of parking spaces in each zone to the total
number of parking spaces is used as the probability in information entropy. Drawing on
the concept of “information entropy,” this study proposes the parking distribution entropy
(PDE) to assess the balance of parking spaces across zones. A higher entropy indicates
greater overall dislocation and a more balanced distribution of parking spaces across zones.
Because this variable is correlated with the number of zones, it is necessary to eliminate
the influence of the number of zones when using this metric to evaluate the balance of
clustering results for different parameter combinations.

When the number of data points within each cluster is equal, the entropy is minimized
(pij = %). The parking distribution entropy (PDE) can be calculated as follows:

K1

PDE = _Zi:1 K

logzl = logyK, (12)
K
When the number of data points in each cluster is different, the value of PDE will be
smaller than the derivation of (12), so PDE € [0,l0g,K]. In order to use PDE to compare
clustering results with different numbers of clusters, it is necessary to constrain the range
of PDE so that PDE'(x) € [0,1], then:

ppE = 2" (13)
=X
zlogzK K
PDE' = =—=1, 14
X X (14)

Under the assumptions, PDE = 1, meaning that a larger value indicates a more
balanced number of data points within each cluster after clustering. Therefore, this chapter
refines entropy to the parking distribution entropy (PDE) to measure the balance of the
number of parking spaces in each region after clustering. The practical significance of this
approach is that when the parking distribution entropy is close to 1, the distribution of
parking in each region is more balanced, leading to better clustering results.

3.2.4. Parameter Selection

To determine the optimal spatial zoning configuration, five key parameters are con-
sidered: the distance threshold from output spaces to input zones dist;,, the number of
clusters K, the initial weight of the optimization domain in the mixed distance calculation
w, the incremental optimization-domain weight «, and the allowable fluctuation ratio for
zone sizes ratio. Their candidate values are listed in Table 2.

Table 2. Parameter variable value range.

Parameter Symbol Candidate Values
Distance threshold from output spaces to dist;, (1,2, 3)
input zones
Number of clusters K {3,4,...,10}
Initial optimization-domain weight w {0.3,0.4, 0.5}
Incremental optimization-domain weight o {0.3,0.4, 0.5}
Zone size fluctuation ratio ratio {0.1, 0.2}

A grid search procedure is employed to exhaustively combine these parameters and
evaluate each configuration using the two performance indicators defined in Section 3.2.3:
the Parking Distribution Entropy (PDE) and the Ratio of External and Internal Distances
(REID). The dual-clustering algorithm is executed for each parameter combination, with a
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maximum recursion depth of 1000 and 2000 iterations. Combinations that fail to converge
are recorded and excluded from further analysis.

For each feasible parameter set, the spatial zoning result is generated, and its PDE
and REID values are computed. The grid search produces a large number of feasible
configurations, which are jointly evaluated using the concept of the Pareto frontier [39]. A
solution is considered Pareto-optimal if no other configuration can improve one indicator
without deteriorating the other. When two parameter sets produce identical REID and
PDE values, their spatial zoning outcomes are identical, and any duplicate solutions
are removed.

The resulting unique set of Pareto-optimal parameters constitutes the candidate set for
defining pricing units in the differentiated pricing strategy and serves as the spatial zoning
basis for the optimal strategy.

3.3. Model Development
3.3.1. Model Assumptions

To develop a differential pricing strategy that balances resource utilization and opera-
tional objectives, this study proposes a bi-level programming model, with the upper level
for price optimization and the lower level for berth allocation based on utility maximization.
The following assumptions are adopted in this study:

1.  The probability of parking space choice follows a Logit distribution;

2. Illegal parking during peak hours is excluded, assuming total vehicles do not exceed
the planned capacity;

Parking revenue is solely derived from parking fees;

Parking demand follows a Poisson distribution;

Changes in trip mode or destination due to price changes are not considered;
Information on prices, berth status, and spatial layout is fully transparent to users;

NSO

Users can estimate parking duration and cost, and select the shortest route when
driving/walking.

3.3.2. Symbol and Variables

The main symbols used in this study are summarized in Table 3:

Table 3. Symbol explanation.

Symbol Meaning
V4 Total number of zones
T T= ‘F’%i];dl Total number of time periods
z ze{l,2,...... ,Z}
t ted{l,2,...... ,T}
period Set of time period (hour)
1z Y2 1 n; = N, The total number of parking spaces in the zone z
ot The spatio-temporal occupancy of a zone z in a time period ¢
N Total number of parking spaces
C Total daily parking demand
Db The probability that parker i chooses a parking space j
b; Total fee per parking event for the parker i
Pt; Parking duration per parking event for the parker i
Tiimit Maximum chargeable duration for a single parking event
pL Parking fee in the zone z at the time ¢

A uplimit Upper bound of the unit parking fee in the zone z at the time ¢

pL Floorlimit Lower bound of the unit parking fee in the zone z at the time ¢
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Table 3. Cont.

Symbol Meaning
Ti?n e The time period experienced by a single parking event
R Set of spatial zoning results R = {r,72,...... JTlist
Sec; Size in the time period ¢
bp Current parking unit fee for parking lots
Plimit Maximum total price per parking event
p’f,v Duplimi tpllcfv}Suplimi . weekday and weekend price upper bounds for parking spaces k
SeaTimey, Search time for a parking space k
WalkTimey Walking time for the parking space k
Mecy Type of parking space k

3.3.3. Definition of Spatial-Temporal Occupancy Rate

To simultaneously measure the balanced utilization of parking resources in both
temporal and spatial dimensions, this study introduces the spatial-temporal occupancy
rate (STOR). Unlike conventional occupancy rates that focus on a single time period or
zone, the spatial-temporal occupancy rate captures the variation in utilization across zones
and time periods.

Assume that the total number of time periods for the differential pricing strategy is T,
and the total number of spatial zones is Z, as illustrated in Figure 3a.

(d) spatial-temporal
L occupancy rate
| | (a) division of zones and time periods )
e Sec,

A

(c) average parking duration
(b) occupancy matrix for each zone vector for each zone

Figure 3. Calculation ideas for spatial-temporal occupancy rate.

For each zone in each time period, its occupancy status can be represented by an
Occupancy Matrix, with rows corresponding to the number of berths in the zone and
columns corresponding to the total seconds in the time period, as shown in Figure 3b.

Based on this, the STOR calculation proceeds as follows:

1.  Construct parking spaces status matrix: For each time period, a status matrix of size
“number of parking spaces in the zone z X total seconds Sec; in the time period t” is
created, where gray cells indicate an occupied parking space at that second, and white
cells indicate a vacant parking space, as shown in Figure 3b.

2. Calculate average parking duration: For each zone, the actual parking durations of all
occupied parking spaces are averaged to obtain a mean parking time vector, as shown
in Figure 3c.
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3. Calculate zone-level spatial-temporal occupancy rate: Divide the average parking
duration by the number of parking spaces 1 in the zone to obtain the occupancy rate
for that zone in the given time period, as shown in Figure 3d.

4. Calculate the variance of occupancy rates: For each time period, compute the variance
of occupancy rates across all zones. A smaller variance indicates a more balanced
distribution of parking resources.

5. Calculate total spatial-temporal occupancy rate: Sum the variances across all time
periods to obtain the total STOR for the analysis period.

3.3.4. Administered a Differential Pricing Model

In practice, differential pricing for parking can be implemented under two distinct
regulatory scenarios:

Administered pricing strategy applies when the pricing authority sets or approves
parking rates primarily to guide user behavior, such as balancing demand across zones
and time periods, while keeping prices within regulated bounds and close to the current
standard. Revenue maximization is not the primary goal, and the operator’s flexibility
is limited.

Market-based pricing strategy applies when the operator has autonomy to adjust
prices in response to market conditions, aiming to improve both resource utilization
and revenue.

Based on the administered pricing strategy, the differential pricing model is developed
from the perspective of the government, which emphasizes the role of parking facilities
as part of urban transport infrastructure more than the operator does. The upper-level
objectives are to

(i) Minimize the variance of spatial-temporal occupancy rates across zones within the
parking facility;
(ii) Minimize the deviation of parking fees from the current charging standard.

The decision variables in the integrated bi-level optimization framework consist of
the spatial zoning configuration R and the unit parking price p!, for each zone z and time
period t. The variable R represents the spatial zoning of the parking facility and is selected
from the unique parameter solutions, which serve as the candidate set in the iterative
optimization process to determine the optimal configuration. The variable p, represents the
current parking unit fee for parking lots; when the continuous parking duration exceeds
the maximum chargeable time limit, the total fee is capped at the amount corresponding to
this limit. This requirement is enforced through the single-parking-event cost constraint
in Equation (20). The spatial-temporal occupancy rates o, are jointly determined by the
parking space choice model and the spatial zoning configuration: the parking space choice
model allocates demand to individual spaces, while the zoning configuration determines
the zone to which each berth belongs.

The optimization framework follows an iterative bi-level process, where the upper-
level model evaluates the objectives based on of computed by the lower-level model,
and updates p! and R until convergence. The process can be summarized by the
following pseudocode:

In this bi-level structure, the upper level determines the unit prices p!, for each zone
z and time period ¢ together with the spatial zoning configuration R. These decisions are
passed to the lower-level allocation model, which computes the mixed Logit choice proba-
bilities P;; and allocates parking demand to spaces. The resulting zone-time occupancies o}
are then aggregated and fed back to the upper level. Based on these occupancy outcomes,
the upper level evaluates its objectives—minimizing the spatio-temporal variance of occu-
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pancy and controlling the deviation of parking fees from the baseline—and updates p! and
R. This process is repeated until convergence, as summarized in Algorithm 1.

Algorithm 1. Decision Variable Calculation Method

Input: Spatial partitioning result R = {rq, 2, ..., 75 }; Total number of clusters in a set
of partitioning results Z; Probability P;; of a parker i selecting parking space j; Parking
demand C = {Cy,Cy,...,Cr}; Time period set T = {t;,t5,...,T}.

Process:
1: for r < each R do
2: ot =0;

3: fort < eachT do
4 for z + each Z do
5: for i + each Ct do
6 Choice; = argmax{P;}
7 Determine the zone z to which Choice; belongs;
8 end for
update of, Choice; = z
computer the average parking duration within zone z during period ¢
divide by the number of spaces 1, in zone z
yields of, for zone z and period ¢

9: end for
10: end for
11: end for

Output: o: The spatial-temporal occupancy of zone z in time period f.

This zoning-based administered differential pricing model is formulated as a bi-
level programming problem: the upper level minimizes total spatial-temporal occupancy
variance and price deviation from the baseline, while the lower level is a dynamic parking
space allocation model based on the utility maximization theory, with parameters estimated
from the mixed Logit model.

The upper-level bi-objective functions are as follows:

min STOR = Zthl var ({0, ...,0L}), (15)
. T z
mmZt:l Zz:l pL—bp, (16)
Subject to:
ol <1, (17)
t t t
pZuplimit 2 pz 2 pilaorlimit’ (18)
k
; B Max(pWDuplimit),weekday 19
pZuplimit - k 19)
Max(pWEuplimit>,weekend
T*> 12 tqT T*> < T .
ime X |pL,p,. ... .. 2], tme| < it
- N (20)
{tlr tz, ...... , Tlimit] X [p;l, p22, ...... , pzhm”}T, |t‘ > Tlimit

Equations (15) and (16) correspond to the two upper-level objectives described above,
while Equation (17) constrains the spatio-temporal occupancy rates of all zones in each
time period. Equations (18) and (19) specify the pricing bounds: (18) imposes upper and
lower limits on unit parking fees, and (19) provides distinct upper bounds for weekdays
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and weekends. Finally, Equation (20) limits the total charge for a single parking event,
ensuring that when the parking duration exceeds the maximum chargeable time, only the
fee for that limit is applied.

The lower-level problem is a dynamic parking space allocation model, in which
parking demand is assigned to individual parking spaces based on the utility maximization
principle. The lower-level model relies on the mixed Logit choice probabilities defined in
Section 3.2. For clarity, the relevant equations are restated here. The mixed Logit probability
that user i selects space j is:

Py = [ Li(B) £ (Bl0)dBy, 1)

Ui (Bjxi)
Lij = yC Ui (Bjxif) (22)

max Uj; = aFeej + pMec;j + dSeaTime; + yWalkTime; + ¢;; (23)

Here, Fee; represents the total parking cost incurred by user i for selecting space j. It is
calculated consistently with the total cost constraint defined in (20), i.e., as the unit price p’
determined by the upper level multiplied by the effective parking duration, capped by the
maximum chargeable time limit.

All coefficients in the lower-level model are derived from the estimation results of
the mixed Logit model. These probabilities P;; are aggregated across users to derive the
expected zone-time occupancy of, which feeds back into the upper-level objectives.

3.3.5. Market-Based Differential Pricing Model

The market-based differential pricing strategy applies when the parking operator
has the autonomy to adjust prices dynamically within an approved range, responding to
market conditions such as demand patterns and occupancy rates. Unlike the administered
pricing strategy, the operator’s objectives include not only improving the balance of resource
utilization but also maximizing economic returns. In this market-based model, no minimum
price floor is imposed, thereby allowing prices to be set as low as zero when necessary.
This flexibility aims to enhance occupancy balance by stimulating demand in underutilized
zones, even if it means temporarily offering free parking during certain periods.

In this scenario, the upper-level objectives are

(i) Minimize the variance of spatial-temporal occupancy rates across zones within the
parking facility.
(i) Maximize the total parking revenue.

This zoning-based market differential pricing model is also formulated as a bi-level
programming problem: the upper level simultaneously minimizes total spatial-temporal
occupancy variance and maximizes total revenue; the lower level is a dynamic parking
space allocation model based on the utility maximization theory, with parameters estimated
from a mixed Logit model including interaction terms.

. T
min)_,_ var({of,...,0t}), (24)
Z T
maxy ;1) ;0P (25)
Subject to:
p,tzuplimit > pé 20, (26)

Subject to: the same constraints as in the administered differential pricing model, i.e.,
Equations (17)—(20).
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The lower-level dynamic berth allocation model is identical to that described in
Section 3.3.4, with the allocation results determining the spatial-temporal occupancy rates
o for the upper-level objectives.

3.3.6. Solution Method

The bilevel differential pricing models formulated in this study are Non-deterministic
Polynomial-time hard (NP-hard) problems that cannot be efficiently solved by exact ap-
proaches such as vertex enumeration, KKT reformulations, penalty functions, or branch-
and-bound [40]. To address this challenge, an improved hybrid algorithm integrating
Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) is employed. This
hybrid PSO-GWO combines the strong global exploration ability of GWO with the effec-
tive local exploitation capability of PSO, thereby accelerating convergence and enhancing
solution stability compared with either algorithm alone [41,42].

Recent research has also demonstrated the continued advancement of PSO-GWO
and related hybrid swarm intelligence methods in solving complex multi-objective opti-
mization problems across transportation and infrastructure management. For example,
PSO-GWO hybrids have been employed in smart city emergency service systems to opti-
mize multi-objective vehicle routing under dynamic traffic conditions, showing superior
convergence and balance among objectives compared with single algorithms [43]. Similar
approaches have been adopted for multi-modal facility layout optimization and urban
logistics distribution networks considering congestion, time windows, and environmental
impacts, further confirming the robustness of swarm-based hybrid methods in large-scale
transportation scheduling [44,45]. In addition, PSO-GWO frameworks have been applied
to energy—transport integration problems such as smart grid reconfiguration with electric
vehicles and distributed generation planning, where they effectively balance system losses,
stability, and cost efficiency [46,47]. Together, these studies highlight the versatility and
effectiveness of PSO-GWO in addressing multi-objective challenges with structural and
operational constraints, supporting its application to the bilevel differential pricing models
in large-scale parking facilities considered in this study.

For multi-objective optimization, conflicts among objectives make it difficult to evalu-
ate the superiority of candidate solutions. To overcome this issue, the concept of Pareto
optimality is introduced [48]. Using non-dominated sorting, the population is divided
into multiple hierarchical fronts, where solutions within the same front are mutually non-
dominated. In addition, the crowding-distance measure is applied to preserve diversity
within the Pareto front and to ensure well-distributed solutions across the objective space.
Explorers are further introduced to expand the search space, avoiding premature conver-
gence and covering different regions of the objective space.

The overall procedure of the improved PSO-GWO algorithm is summarized in
Figure 4, which illustrates the initialization, leader updating, velocity—position updat-
ing, fitness evaluation, and termination stages.

After initialization, the top three leaders guide the global search following the GWO
mechanism, while PSO operators refine local search through velocity—position updates.
Fitness is evaluated based on the bilevel objectives, which integrate spatio-temporal occu-
pancy balance and revenue maximization. Non-dominated sorting and crowding-distance
mechanisms are then applied to maintain a well-distributed Pareto front. This iterative
process continues until the termination criterion is satisfied, defined either by the maximum
number of iterations or by the stabilization of the solution set.
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Set the number of algorithm iterations,
population size, number of explorers, etc. ‘
l t=1, reaches the maximum number o
iterations
Initialize the gray wolf population and
parameters
l Compare its fitness value with the first three
wolves. If it is better than the first three wolves,
Assign the initial gray wolf position and it will replace the wolf pack.
calculate its fitness value
l Update the fitness values and positions of the
Perform non-dominated and crowded first three wolves
calculations T
l Randomly generate a number of explorer
After the crowding degree is sorted, find the best individuals at positions other than the first three
three groups of individuals as the first three wolves and calculate their fitness values
wolves T
l Using particle swarm optimization to update the
Entering the feration loop e movement speed an(i}])(:i‘sfi;on of individual gray

I f

Figure 4. Flowchart of the PSO-GWO algorithm.

4. Results
4.1. Case Description and Data Preparation

To evaluate the performance of the proposed differential pricing models, a case study
was conducted using the parking facility of the Kingmo Complex, located in the Baijia
Lake commercial district of Nanjing, China. The facility serves as a representative example
of large-scale parking infrastructure in a mixed-use urban environment, accommodating
a combination of retail, dining, entertainment, and office functions that generate diverse
temporal parking demand patterns.

The Kingmo Complex comprises five floors of commercial space, including one under-
ground floor and four above-ground floors. Its parking facility is located on the second
to fourth basement levels (B2-B4). The dataset was provided with the consent of the
facility management authority, anonymized prior to analysis, with license plate numbers
anonymized and all personally identifiable information removed, and used solely for
academic research purposes. The B2 level contains 562 parking spaces, and the B3 level
contains 590 parking spaces. Both B2 and B3 are equipped with self-service payment ma-
chines featuring reverse cruising functions, allowing for occupancy monitoring that meets
the requirements of this study. In contrast, the B4 level is generally not open to short-term
parking and does not support occupancy monitoring. Consequently, B4-level spaces are
excluded from the analysis. For ease of reference in the subsequent zoning analysis and
illustrations, the B2 and B3 levels are labeled as B1 and B2, respectively. This notation does
not alter the actual physical floor designation but is used solely to simplify presentation
and mapping in the analytical process.

Parking data were collected from 00:00:00 on 16 November 2021 to 23:59:59 on
30 November 2021 through the facility’s monitoring system, supplemented by on-site
patrol surveys. Three types of data were obtained: (1) static facility data, including the lay-
out of internal facilities, entrances and exits, parking space arrangements, and internal road
network diagrams; (2) vehicle entry—exit records at the facility level, including license plate
numbers, entry and exit times, and entry and exit locations; and (3) space-level entry—exit
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records, including license plate numbers, space identifiers, and timestamps for entering
and leaving individual spaces. The internal structure of the parking facility is shown in
Figure 5.

I Parking space I Two-way lane

One-way lane (red line on the left
side of the direction of travel)

Vehicle flow in and out of parking
spaces

‘ Vehicle flow on the road network
‘ Road section connector

Parking lot entrance and exit

% Elevator lobby

Figure 5. Parking Lot Internal Structure.

Before applying the model, the raw datasets were processed to ensure consistency and
reliability. First, incomplete or erroneous records, such as missing license plates, undefined
space identifiers, or invalid timestamps, were removed. Second, abnormal timestamps,
such as negative or excessively long durations, were corrected or discarded based on logical
constraints. Third, license plate recognition errors were corrected by cross-referencing with
the on-site patrol survey records. Fourth, inconsistencies in space identifiers were resolved,
and duplicate records were eliminated. Finally, datasets (2) and (3) were matched to
reconstruct complete parking chains for each vehicle.

To establish the temporal segmentation used as an input to the differential pricing
models, vehicle inflow, vehicle outflow, and saturation were analyzed for both weekdays
and weekends, as shown in Figure 6. All three indicators exhibited distinct daily variation
with multiple peaks, but the timing and intensity of these peaks differed between weekdays
and weekends.

For vehicle inflow as Figure 6, weekday demand showed three peaks at approxi-
mately 09:00, 12:00, and 18:30, corresponding to commuting and meal periods. Weekend
peaks occurred later, at around 12:00, 17:00-18:00, and 19:00, reflecting leisure trips and
later opening hours of commercial facilities. The highest weekend inflow reached about
250 vehicles per 15 min, roughly twice the weekday peak.

For vehicle outflow as Figure 6, weekends displayed a two-peak pattern with the main
departure peak between 20:30 and 22:00, occurring later than the main inflow peak and
indicating prolonged parking durations. Weekday outflows followed a single pronounced
peak ending earlier in the evening, consistent with commuting patterns.

Saturation levels confirmed these differences in Figure 6. Weekend peaks exceeded a
saturation ratio of 1.1, indicating illegal parking and reduced internal circulation efficiency,
while weekday peaks remained around 0.6 and lasted for shorter periods.
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Figure 6. Statistics on vehicle parking.

Based on the processed dataset, three key indicators were analyzed to determine time
segmentation: vehicle inflow, vehicle outflow, and saturation. According these indicators, the
day was divided into eight time periods to capture distinct demand regimes: (1) 07:00-09:00,
morning commuting peak; (2) 09:00-11:00, post-commuting shoulder period; (3) 11:00-13:00,
midday peak; (4) 13:00-16:00, afternoon shoulder period; (5) 16:00-17:00, pre-evening peak;
(6) 17:00-19:00, evening dining peak; (7) 19:00-21:00, post-dining leisure peak; and
(8) 21:00-24:00, late-night off-peak. This segmentation ensures that subsequent optimiza-
tion reflects the temporal heterogeneity of parking demand.

For this case study, the following parameter and constraint settings apply uniformly
to all optimization models, as shown in Table 4:

Table 4. Parameter and Constraint Settings.

Variable Define Value Explain
T Total number of time periods T=38 see above
period Set of time period (hour) period = {0-9, 9-11, 11-13, 13-16, 16-20, 20-21, 21-22, 22-24}
N Total number of parking 1152 Total number of parking spaces in
spaces the Kingmo Complex
C Total daily parking demand 35,705 Survey demand for the day
Maximum chargeable In accordance with the parking
. : . fee regulations of Nanjing for
Tlimit duration for a single parking 6 . . .
public commercial parking
event s
facilities
based on Nanjing’s maximum
temporary on-street parking rate
Upper bound of the unit and consistent with parking fees
Péuplimit parking fee in the zone z at the 20 in several other major Chinese
time ¢ cities, such as Shanghai, Beijing,

where rates have reached or
exceeded this level
Lower bound of the unit
pL Floorlimit parking fee in the zone z at the 3
time t

corresponding to the current
parking unit fee for parking lots
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Table 4. Cont.

Variable Define Value Explain
b Current parking unit fee for 3 corresponding to the current
P parking lots parking unit fee for parking lots
Maximum total price per
Pimit orking event 6 % 20 = 120 Thinit * Phuptimit

4.2. Mixed Logit Model Estimation and Analysis
4.2.1. Data Collection and Sample Description

To estimate the mixed logit model for parking space choice, a stated preference (SP)
survey was conducted. The survey design and implementation followed established
practices in discrete choice modeling, ensuring that the collected data could capture user
preferences with respect to parking space attributes under different hypothetical scenarios.

The SP questionnaire consisted of three sections. The first section gathered respondents’
socio-demographic information, including gender, age, occupation, household income, and
driving experience. The second section presented a series of hypothetical choice scenarios
that were designed separately for two trip purposes, namely shopping and leisure, and
commuting, in order to capture differences in urgency and behavioral flexibility. In each
scenario, respondents were asked to choose between parking spaces with varying attributes,
including parking fee, type of parking space, search time, walking time, and the likely
parking duration expected by the user under the given trip purpose.

The survey covered both weekdays and weekends, ensuring that temporal variations
in parking demand were reflected in the dataset. A total of 410 questionnaires were
distributed, and 384 valid responses were retained after data cleaning, yielding a valid
response rate of 93.7%. Responses were deemed invalid if key information was missing,
if the choice tasks were left incomplete, or if inconsistent answers were provided across
scenarios. Among the valid responses, 53.1% were collected on weekdays and 46.9% on
weekends, providing a balanced representation of different temporal demand conditions.

In terms of respondent characteristics, 53.96% of participants were male and 46.04%
were female; the majority were aged between 25 and 49 years; and the predominant trip
purposes were shopping, dining, and leisure. Parking duration patterns differed markedly
between trip purposes. For shopping and leisure trips, 82.66% of respondents parked for
between 1 and 4 h, consistent with the typical time requirements of such activities. For
commuting trips, 72.81% of respondents parked for more than 4 h, reflecting the longer
durations associated with work-related stays. These descriptive statistics are summarized
in Table 5, which also presents the distribution of other socio-demographic variables and
parking behaviors.

Table 5. Summary of Questionnaire Results.

Survey Project Options Proportion
ender Male 53.96%
& Female 46.04%
18-25 years old 16.27%
Ace 25-35 years old 28.48%
8 36—49 years old 28.48%
50 years old and above 26.77%
Under 3000 yuan 17.34%
3000-5000 yuan 19.27%
Monthly Income 5000-10,000 yuan 31.69%

Over 10,000 yuan 31.39%
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Table 5. Cont.

Survey Project Options Proportion
Under 1 year 16.06%
1-3 years 11.35%
Driving Experience 3-5 years 11.13%
5-10 years 18.20%
Over 10 years 43.25%
15 min or less 5.35%
Parking duration when the 15mintolh 8.99%
purpose of the trip is 1-2h 42 .83%
leisure 2—4h 39.83%
Over4h 3.00%
15 min or less 5.14%
Parking duration when the 15mintolh 6.42%
purpose of the trip is 1-2h 9.21%
commuting 2-4h 6.42%
Over4h 72.81%

The final sample thus provided a robust and representative basis for the estimation of
the mixed logit model, enabling the analysis of how parking space attributes influence user
choice behavior under different pricing and facility configurations.

4.2.2. Model Estimation Results

The mixed logit model was estimated separately for the two trip purposes, leisure and
commuting, in order to capture heterogeneity in parking space choice behavior. Table 6
presents the estimation results, including the mean coefficient, standard deviation of the
random parameter distribution, and significance level for each explanatory variable. The
random parameters were assumed to follow a normal distribution, allowing for individual-
specific taste variations.

Table 6. Parking space selection utility estimation results of the cross-term ML model.

Commuting Leisure
Value Coefficient p-Value Coefficient p-Value

B_Fee —0.158 0 —0.348 0

B_Fee std.dev. 0.116 0 0.374 0

B_Mec —0.68 0 —0.858 0

B_ Mec std.dev. 1.41 0 1.42 0
B_SeaTime —0.104 0 —0.082 0.001
B_SeaTime std.dev. 0.125 0.002 0.141 0.004

B_WalkTime —0.181 0 —0.27 0
B_WalkTime std.dev. - - 0.266 0.018
B_Agel_Mec - - —0.591 0.002
B_Age2_Fee 0.031 0.008 0.085 0.018
B_Agel_Mec - - —0.591 0.002
B_Age2_Fee 0.031 0.008 0.085 0.018

B_Age2_SeaTime 0.036 0.01 - -
B_Incomel_Fee - - —-0.071 0.038

B_Gender_Fee 0.034 0.004 - -
B_Gender_Mec - - 0.479 0.021
B_Gender_WalkTime 0.048 0.043 0.116 0.004

Total observations 2802(467 x 6)

Parameters 11 13
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Table 6. Cont.

Commuting Leisure
Value Coefficient p-Value Coefficient p-Value
Null mod'el likelihood _3176.751 3078312
estimate
Model likelihood estimate —2573.509 —2576.351
Model fit 0.190 0.163

The mixed logit model with interaction terms was estimated separately for commuting
and leisure to capture preference heterogeneity across trip purposes. Respondents were
grouped by age into eighteen to thirty-five and above thirty-five, and by income into
below five thousand CNY per month and above five thousand CNY per month. Table 6
reports the estimated coefficients, standard errors, and significance levels for all main
effects and interaction terms. The results show that the two trip purposes yield different
sets of significant interactions, which indicates distinct preference structures. For attributes
that enter the utility with interactions, the effective coefficient follows the corresponding
calculation rule. For example, the coefficient on the parking fee differs by age group.
Drivers above thirty-five years old face a different fee coefficient from drivers aged eighteen
to thirty-five, as implied by the age-fee interaction.

For the commuting scenario, heterogeneity appears only along gender and age. Both
B_Age2_Fee and B_Age2_SeaTime are positive, which indicates that drivers above thirty-
five years old are more willing to accept higher parking fees and longer search time. This
aligns with the interpretation that older commuters usually have more structured time
management and greater wealth accumulation, and thus are less pressed to minimize
in-facility search. Gender also affects the sensitivity to the fee and walking time. Male
drivers accept higher fees and longer walking times compared with female drivers. In
contrast, in the shopping and leisure scenario, the fee parameter does not vary by gender,
which implies similar price sensitivity between male and female users in that scenario.

For the leisure scenario, the set of significant parameters is richer than in commuting,
which suggests stronger heterogeneity in preferences across user groups. The coefficient
B_Agel_Mec equals —0.591, which means that drivers under thirty-five are less willing to
choose mechanical parking spaces than older users, likely due to lower experience with
mechanical equipment and higher perceived inconvenience. The coefficient B_Age2_Fee
is positive, which indicates that drivers above thirty-five are more tolerant of higher fees
when parking for leisure activities. Income also matters in this scenario. The coefficient
B_Incomel_Fee equals —0.071, which shows that lower-income users are more price sensi-
tive and are less likely to choose higher fee spaces than higher-income users. The coefficient
B_Gender_Mec equals 0.479, which means that male drivers are more accepting of mechan-
ical spaces than female drivers. Male users also show greater tolerance for longer walking
times, and this pattern holds for both trip purposes.

In terms of model fit, the mixed logit with interaction terms achieves better goodness of
fit than the multinomial logit model and the standard mixed logit without interactions. The
interaction specification captures user heterogeneity more accurately, thereby supporting
more precise parking space allocation in the lower-level model. The estimated parameters
are applied in the lower-level parking space allocation, which in turn determines the spatio-
temporal occupancy rates used by the upper-level optimization in the administered and
market-based pricing models.
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4.3. Administered Differential Pricing Model Results

4.3.1. Unique Solution Set of Zoning Parameters

Based on the parking space attribute dataset of the Kingmo Complex parking facility,
the spatial clustering method developed in Section 3.2 was applied to generate a unique
solution set of key zoning parameters. Each solution in this set corresponds to a distinct
combination of zoning parameters that satisfies the clustering constraints and achieves
an optimal trade-off between two zoning performance indicators: the Ratio of External
and Internal Distances (REID) and the Parking Distribution Entropy (PDE). The complete

unique solution set is presented in Table 7.

Table 7. Unique solution set of key zoning parameters for the Kingmo Complex.

No. dist;, K w o ratio PDE-REID REID PDE
1 1 6 0.3 0.3 0.1 0.1442 0.7618 0.6176
2 1 6 0.4 0.4 0.1 0.0616 0.9440 0.8824
3 2 6 0.5 0.5 0.1 0.0015 0.9757 0.9742
4 2 9 0.5 0.4 0.1 0.0529 0.4932 0.4403
5 3 6 0.4 0.4 0.1 0.0512 0.9558 0.9046
6 3 6 0.4 0.6 0.1 0.0000 1.0000 1.0000
7 3 6 0.5 0.4 0.1 0.1460 0.8943 0.7482
8 3 6 0.5 0.5 0.1 0.0197 0.9956 0.9760
9 3 8 0.3 0.4 0.1 0.1224 0.2240 0.1016
10 3 8 0.5 0.3 0.1 0.1014 0.6319 0.5305
11 3 8 0.5 0.5 0.1 —0.0051 0.3939 0.3990
12 3 9 0.5 0.4 0.1 0.0549 0.5191 0.4642
13 3 9 0.5 0.4 0.2 0.0552 0.5138 0.4586
14 3 10 0.5 0.7 0.1 0.0000 0.0000 0.0000

By varying the relative weights assigned to REID and PDE in the optimization process,
a series of non-dominated solutions was obtained. These solutions form the Pareto front
shown in Figure 7, where different colored circles represent non-dominated solutions
obtained during optimization. The figure illustrates the inherent trade-off between the two

indicators: improving one generally leads to a deterioration in the other.
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Figure 7. Pareto Front for the Kingmo Complex Parking Lot.

This unique solution set will serve as one of the inputs to the differential pricing model
settings to determine the optimal spatial zoning configuration and the corresponding

time-dependent zone-level parking fees.
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4.3.2. Administered Differential Pricing Results

The administered differential pricing model described in Section 3.3.4 was solved by
treating both the zoning parameters and the parking fees as joint decision variables. The
model took as inputs the unique solution set of key zoning parameters from Section 4.3.1,
the dataset of the Kingmo Complex parking facility, the constraint and parameter settings
specified in Section 4.1, and the mixed logit estimation results from Section 4.2. The opti-
mization aimed to identify the combination of zoning configuration and time-dependent
pricing that achieves the best balance between the two upper-level objectives.

The optimization was performed for 500 iterations using the improved multi-objective
PSO-GWO algorithm. The convergence process for the administered differential pricing
model is shown in Figure 8, illustrating stable convergence under both weekdays and
weekend demand conditions.
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Figure 8. Convergence Process of Administered Differential Pricing Model.

All optimization results from the iterative process were aggregated to construct the
Pareto front with respect to the two objectives, total parking revenue and the sum of spatial—-
temporal occupancy variances. Both objectives were normalized to remove scale effects.
For the default equal-weight case, the optimal solution was selected by computing the
difference between the normalized revenue and the normalized variance sum. The solution
with the maximum difference was identified as the most balanced trade-off point on the
Pareto front.

For the equal-weight case, the optimal solution corresponds to the zoning parameter
combination dist;;, = 3, K= 6, w = 0.5, « = 0.4, ratio = 0.1. The resulting spatial zoning
configuration is illustrated in Figure 9. The optimized hourly parking fees for each zone
across the eight time periods are reported in Table 8.

Distinct spatial and temporal differences can be observed from the pricing results, as
shown in Table 8. Zone 5 shows the highest prices during peak hours, reflecting persistent
excess demand near the core entrances. In contrast, the prices in other zones remain
relatively stable, indicating that large-scale adjustments are not required. These findings
indicate that the optimization framework effectively achieves the upper-level objective
of balancing spatio-temporal occupancy primarily through targeted adjustments in high-
demand areas, while maintaining overall price stability across the facility.
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Figure 9. Optimal Spatial Zoning Configuration for the Kingmo Complex.
Table 8. Administered Differential Pricing Strategy for the Kingmo Complex (CNY /hour).
Weekdays
Time Period Time Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6
1 00:00-09:00 3.00 3.00 3.00 3.00 3.00 3.00
2 09:00-11:00 3.00 3.00 3.00 3.00 3.00 3.00
3 11:00-13:00 3.00 3.00 3.00 3.00 3.46 3.00
4 13:00-16:00 3.00 3.00 3.00 3.00 3.00 3.00
5 16:00-20:00 3.00 3.00 3.00 3.00 3.00 3.00
6 20:00-21:00 3.00 3.00 3.00 3.00 3.00 3.00
7 21:00-22:00 3.00 3.00 3.00 3.00 3.00 3.00
8 22:00-24:00 3.00 3.00 3.00 3.00 3.00 3.00
Weekend
Time Period Time Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6
1 00:00-09:00 3.00 3.00 3.00 3.00 3.00 3.00
2 09:00-11:00 3.00 3.00 3.00 3.00 3.00 3.00
3 11:00-13:00 3.00 3.00 3.00 3.00 3.00 3.00
4 13:00-16:00 3.00 3.00 3.00 3.00 3.00 3.00
5 16:00-20:00 3.00 3.00 3.00 3.00 3.00 3.00
6 20:00-21:00 3.00 3.00 3.00 3.00 3.43 3.00
7 21:00-22:00 3.00 3.00 3.00 3.00 3.00 3.00
8 22:00-24:00 3.00 3.00 3.00 3.00 3.00 3.00

The optimized fee schedule reflects the administered pricing principle: modest in-

creases in high-demand periods and more accessible zones, coupled with lower fees in

low-demand periods or peripheral zones to redistribute demand, while maintaining com-

pliance with regulatory price bounds and the maximum chargeable duration.

In addition to pricing results, the spatial characteristics of each zone in the optimal

configuration are summarized in Table 9.
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Table 9. Attributes of Parking Spaces in Each Zone.
Cluster Number Convenience Accessibility Floor Number of Mechanical Spaces
1 156 36.80 200.27 1.51 0
2 326 40.14 206.78 1.52 0
3 95 34.69 176.98 1.40 0
4 192 31.89 156.97 1.50 0
5 213 77.05 223.88 1.54 0
6 170 27.07 206.58 1.48 0

The clusters satisfy connectivity constraints and exhibit relatively balanced sizes.
Cluster 1 and Cluster 4 share the same elevator lobby and are located on the same side
of the entrances; however, Cluster 4 has the highest accessibility score due to its more
compact footprint. Cluster 2 is the largest and benefits from adjacency to both an elevator
and an entrance, although its average accessibility and convenience scores are moderate.
Cluster 3 contains the fewest parking spaces, evenly distributed across two levels around
the B1 and B2 corridors. Cluster 5 has the lowest accessibility and convenience scores,
being located in a relatively isolated section without direct elevator access. Cluster 6 ranks
highest in convenience, owing to its smaller size and proximity to multiple elevator lobbies.
Overall, the clustering results in Table 9 reflect meaningful spatial heterogeneity: zones
near entrances and elevator lobbies consistently show higher accessibility and convenience,
while peripheral areas exhibit lower scores. Such differentiation provides a rational basis
for implementing zonal pricing, as it directly links prices to observable spatial attributes.
This differentiated pricing supports a more balanced utilization of parking resources
across both space and time, consistent with the upper-level objectives of the administered
pricing model.

This differentiated pricing supports a more balanced utilization of parking resources
across both space and time, consistent with the upper-level objectives of the administered
pricing model.

4.3.3. Result Analysis

Figure 10 compares the pre- and post-optimization performance in terms of the sum
of spatial-temporal occupancy variances and total parking revenue.

On weekdays, the total spatial-temporal occupancy variance over the day decreases
by 67.17%, while the average hourly price increases by only 0.46 CNY. Daily revenue rises
from 36,142 CNY to 36,483 CNY, a gain of 0.94%. On weekends, the variance decreases by
69.21%, with an average hourly price increase of only 0.43 CNY, and daily revenue rises
from 42,999 CNY to 43,434 CNY, a gain of 1.01%. The weekend scenario achieves slightly
greater variance reduction with similar or smaller price adjustments, although a few time
periods exhibit marginally higher variance after optimization due to the model’s focus on
minimizing the total daily variance.

An analysis of the optimization results by time period, as informed by the spatial—-
temporal occupancy rates in Table 10, reveals that:

Time period 1 (00:00-09:00): Demand is low across all zones, and occupancy rates
are uniformly low. Any single vehicle’s choice can noticeably affect the variance, but the
model’s daily variance minimization goal means that in this period, variance is adjusted
primarily through the lower-level dynamic allocation model without changing prices.
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Figure 10. Comparison of Administered Differential Pricing Model of Kingmo Complex Parking Lot
before and After Optimization.

Time period 2 (09:00-11:00): Variance decreases sharply in both scenarios, by 40.06% on
weekdays and 74.12% on weekends. Price changes are minimal, with demand redistribution
achieved mainly by reallocating users from the most convenient and accessible zones (3, 4,
and 6) to zones 1, 2, and 5.

Time periods 3-5 (11:00-20:00): These intervals include the daily demand peaks. On
weekdays, variance reduction is substantial, but on weekends, the effect is smaller due
to uniformly high occupancy rates across all zones. In weekday period 3, zone 5’s high
demand leads to the highest observed price, with effects persisting into later periods. High
saturation limits the scope for further variance reduction.

Time periods 6-8 (20:00-24:00): Demand declines from the peak. On weekdays,
variance reduction is modest, whereas on weekends the effect is stronger due to the higher
volume of evening leisure trips. In the weekend scenario, both dynamic allocation and
small price changes help redistribute demand, improving occupancy balance.

Overall, the Kingmo Complex case demonstrates that a well-designed zoning configu-
ration, combined with small and strategically targeted price adjustments, can markedly
reduce spatial-temporal occupancy variance while keeping price increases minimal. The
weekend scenario shows greater relative improvement in variance reduction, partly due to
the more flexible trip purposes and later peaking demand patterns.
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Table 10. Spatial-Temporal Occupancy Rate Table of Each Time Period of Kingmo Complex Parking Lot.

Weekdays-Zone 1

Weekdays-Zone 2

Weekdays-Zone 3

Weekdays-Zone 4

Weekdays-Zone 5

Weekdays-Zone 6

Spatial-Temporal Occupancy
Rate Comparison

Time .
Period Time
Before After Before After Before After Before After Before After Before After Before After
Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization
1 00:00-09:00 0.0070 0.0168 0.0107 0.0182 0.0125 0.0000 0.0722 0.0179 0.0016 0.0558 0.0265 0.0089 0.0007 0.0004
2 09:00-11:00 0.3016 0.4025 0.3359 0.4920 0.5397 0.1258 0.6514 0.3933 0.1104 0.4019 0.4796 0.1581 0.0373 0.0224
3 11:00-13:00 0.8387 0.8239 0.7581 0.8112 0.9768 0.7633 0.9479 0.7108 0.1939 0.7023 0.8896 0.5647 0.0851 0.0090
4 13:00-16:00 0.9922 0.9358 0.9833 0.9152 0.9987 0.9667 0.9962 0.8649 0.6038 0.9976 0.9920 0.7538 0.0252 0.0076
5 16:00-20:00 0.9976 0.9766 0.9912 0.9716 0.9989 0.9801 0.9971 0.9549 0.8827 0.9992 0.9967 0.9179 0.0022 0.0008
6 20:00-21:00 0.9494 0.9643 0.9546 0.9519 0.9832 0.9372 0.9850 0.9275 0.9263 0.9920 0.9734 0.9155 0.0005 0.0008
7 21:00-22:00 0.8034 0.8543 0.8156 0.8247 0.8793 0.7821 0.9168 0.8339 0.7809 0.9480 0.8259 0.7908 0.0026 0.0036
8 22:00-24:00 0.5886 0.6154 0.5784 0.6034 0.5918 0.5144 0.7106 0.6012 0.5025 0.7664 0.6115 0.5499 0.0045 0.0075
Time T Patio-Temporal Occupancy Rate
Period ime Weekend-Zone 1 Weekend-Zone 2 Weekend-Zone 3 Weekend-Zone 4 Weekend-Zone 5 Weekend-Zone6 Comparison
1 00:00-09:00 0.0000 0.0164 0.0000 0.0178 0.0000 0.0000 0.0000 0.0176 0.0657 0.0460 0.0000 0.0088 0.0007 0.0002
2 09:00-11:00 0.1912 0.4186 0.2125 0.5048 0.0728 0.1351 0.1447 0.4026 0.8661 0.4461 0.0591 0.1682 0.0926 0.0240
3 11:00-13:00 0.9184 0.8341 0.9106 0.8261 0.8795 0.7903 0.8097 0.7400 0.9981 0.7588 0.7660 0.5859 0.0069 0.0083
4 13:00-16:00 0.9970 0.9397 0.9951 0.9449 0.9955 0.9672 0.9942 0.9287 0.9991 0.9979 0.9905 0.7970 0.0000 0.0048
5 16:00-20:00 0.9935 0.9850 0.9910 0.9823 0.9878 0.9927 0.9845 0.9821 0.9993 0.9992 0.9809 0.9463 0.0000 0.0003
6 20:00-21:00 0.8390 0.9457 0.8516 0.9701 0.7437 0.9263 0.7716 0.9424 0.9917 0.9979 0.7405 0.9378 0.0090 0.0007
7 21:00-22:00 0.6224 0.8083 0.6230 0.8891 0.4662 0.7680 0.5056 0.7992 0.9477 0.9722 0.5161 0.8029 0.0309 0.0058
8 22:00-24:00 0.3262 0.5562 0.3112 0.6356 0.2178 0.5565 0.2531 0.5441 0.7625 0.8106 0.2719 0.5234 0.0410 0.0117
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4.4. Market-Based Differential Pricing Model Results
4.4.1. Market-Based Differential Pricing Results

The market-based differential pricing model presented in Section 3.3.5 was applied
to the Kingmo Complex parking facility, with both the spatial zoning configuration and
the parking fees optimized simultaneously. The optimization utilized the unique zoning
parameter solutions from Section 4.3.1, combined with the facility’s attribute dataset, the
parameter and constraint settings outlined in Section 4.1, and the mixed logit estimates
from Section 4.2.

The problem was solved using the improved multi-objective PSO-GWO algorithm,
set to run for 500 iterations. The convergence curves for both weekdays and weekend
scenarios are shown in Figure 11, indicating stable performance of the algorithm under the
market-based objective structure.
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Figure 11. Convergence Process of Market-based Differential Pricing Model.

From the resulting solution set, the Pareto-optimal configurations were identified
with respect to total parking revenue and the sum of spatial-temporal occupancy vari-
ances. For the equal-weight case (0.5 for each objective), the selected optimal configuration
matched the spatial zoning obtained in Section 4.3.2 (Figure 9), ensuring consistency across
pricing strategies.

The optimized market-based fee schedules for weekdays and weekends are summa-
rized in Table 11. The weekday schedule features more frequent and larger price adjust-
ments than the weekend schedule, reflecting the predominance of commuting demand
during weekdays and its relatively low price elasticity. In contrast, weekend adjustments
are more limited in the early time period, consistent with leisure-oriented trip patterns.

As reported in Table 11, Zone 5 exhibits the highest prices across both weekdays and
weekends, reaching 20 CNY /h during peak periods, consistent with its persistent excess
demand near the core entrances. In contrast, Zone 2 shows relatively stable prices across
periods, reflecting its moderate accessibility and balanced occupancy levels. Temporal
variation is also evident: during weekday peaks (09:00-11:00 and 16:00-20:00), multiple
zones experience price increases, whereas weekend adjustments are concentrated in the
midday period.
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Table 11. Market-based Differential Pricing Strategy for the Kingmo Complex (CNY /h).

Weekdays
Time Period Time Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6
1 00:00-09:00 20.00 0.00 20.00 20.00 20.00 20.00
2 09:00-11:00 0.00 20.00 20.00 0.00 20.00 20.00
3 11:00-13:00 20.00 20.00 20.00 17.22 20.00 0.00
4 13:00-16:00 20.00 20.00 20.00 19.85 0.00 20.00
5 16:00-20:00 20.00 0.00 20.00 20.00 20.00 20.00
6 20:00-21:00 0.00 20.00 0.00 20.00 20.00 20.00
7 21:00-22:00 20.00 20.00 20.00 20.00 0.00 19.49
8 22:00-24:00 20.00 20.00 20.00 20.00 20.00 20.00
Weekend
Time Period Time Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6
1 00:00-09:00 0.00 0.00 20.00 19.85 20.00 20.00
2 09:00-11:00 20.00 0.00 0.00 0.00 20.00 20.00
3 11:00-13:00 20.00 20.00 20.00 0.00 0.00 0.00
4 13:00-16:00 20.00 20.00 19.93 0.00 0.00 20.00
5 16:00-20:00 0.00 0.00 20.00 20.00 20.00 0.00
6 20:00-21:00 0.00 20.00 20.00 20.00 0.00 20.00
7 21:00-22:00 20.00 20.00 20.00 0.00 0.00 0.00
8 22:00-24:00 20.00 20.00 20.00 20.00 0.00 20.00

Note: The current price for each zone and time period in the parking lot is 3 yuan/h.

Compared with the administered pricing strategy, the market-based strategy pro-
vides greater flexibility in price setting, resulting in more pronounced adjustments.
Figures 12 and 13 further illustrate these results by comparing the optimized prices with the
baseline uniform rate. The figures comparison highlights which zones and time periods de-
viate most strongly from the baseline, making the spatial and temporal differentiation more
evident. These deviations are consistent with underlying demand structures: weekday
peaks align with commuting flows characterized by lower price elasticity, while weekend
adjustments correspond to leisure and entertainment activities with more flexible timing.
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Figure 12. Changes in Weekday Market-based Differentiated Pricing Strategy.
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Figure 13. Changes in Weekend Market-based Differentiated Pricing Strategy.

Under weekday conditions, price increases are observed in a larger number of zones
and time periods, particularly during the morning and evening peaks, reflecting the higher
proportion of commuting demand. Under weekend conditions, fewer adjustments are
made, and these are concentrated in the midday and evening periods, consistent with
leisure and entertainment activity patterns. The contrast highlights how the market-
based strategy adapts pricing to distinct temporal demand structures while maintaining
spatial differentiation.

4.4.2. Result Analysis

The performance of the market-based differential pricing model under weekday and
weekend conditions is summarized in Figure 14. The results show that, compared with the
baseline uniform-rate policy, the optimized market-based strategy significantly improves
the spatial balance of occupancy while achieving substantial revenue growth.

For weekdays, the total spatial-temporal occupancy variance is reduced by 43.15%,
and the daily parking revenue increases from 36,273 CNY to 210,358 CNY, with 81.71%
attributable to the price increase effect. Under weekend conditions, the variance is reduced
by 70.23%, and revenue rises from 43,680 CNY to 189,087 CNY, with 76.90% of the increase
coming from higher prices. These results confirm the model’s capacity to meet both upper-
level objectives in the market-based scenario, although with a stronger revenue impact
than in the administered pricing strategy.

An analysis of the optimization results by time period, based on the spatial-temporal
occupancy rates in Table 12, reveals that the following;:

Time period 1 (00:00-09:00): Occupancy variance is reduced in both weekday and
weekend conditions. The greater pricing flexibility of the market-based model allows larger
fee changes than in the administered strategy, although the immediate impact within this
low-demand period remains limited. Most of the benefit comes from influencing user
choices in subsequent periods.
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Figure 14. Comparison of Market-based Differential Pricing Model of Kingmo Complex Parking Lot
before and After Optimization.

Time period 2 (09:00-11:00): Variance reduction is substantial, with weekend im-
provements exceeding weekday levels. Significant fee differences redirect demand from
high-accessibility zones to peripheral zones, leveraging the absence of constraints on
price changes.

Time periods 3-5 (11:00-20:00): These periods correspond to the main demand peaks.
In the weekday scenario, strong differentiation between zones delivers notable revenue
gains while still reducing variance. In the weekend scenario, high saturation limits further
variance improvement, but upper-bound pricing in popular zones sustains high revenue.

Time periods 67 (20:00-22:00): The weekend scenario achieves more pronounced
variance reduction because evening leisure demand remains strong, allowing redistribu-
tion between zones. In the weekday scenario, demand falls earlier, reducing the scope
for redistribution.

Time period 8 (22:00-24:00): Price adjustments are mainly observed in the weekend
scenario, targeting late-night demand to maximize revenue while maintaining occupancy
balance. On weekdays, demand during this period is too low to warrant significant changes.

Overall, the market-based differential pricing strategy demonstrates greater capacity
than the administered approach to adjust fees in response to demand variations, achieving
substantial revenue gains while improving or maintaining occupancy balance, particularly
during periods of high and uneven demand.
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Table 12. Spatial-Temporal Occupancy Rate Table of Each Time Period of Kingmo Complex Parking Lot.

Time

Weekdays-Zonel

Weekdays-Zone 2

Weekdays-Zone 3

Weekdays-Zone 4

Weekdays-Zone 5

Weekdays-Zone 6

Spatial-Temporal Occupancy
Rate Comparison

. Time

Period Before After Before After Before After Before After Before After Before After Before After

Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization Optimization

1 00:00-09:00 0.0056 0.0122 0.0027 0.0163 0.0000 0.0000 0.0042 0.0151 0.0984 0.0286 0.0010 0.0426 0.0015 0.0002
2 09:00-11:00 0.4066 0.4819 0.6535 0.5678 0.3070 0.1863 0.0958 0.4258 0.1816 0.1231 0.4505 0.2470 0.0400 0.0318
3 11:00-13:00 0.7954 0.8220 0.7959 0.7924 0.7133 0.7148 0.5944 0.6620 0.9966 0.8327 0.1520 0.4770 0.0828 0.0181
4 13:00-16:00 0.9620 0.9236 0.9403 0.8820 0.9699 0.9690 0.9041 0.8355 0.9993 0.9972 0.8541 0.7362 0.0027 0.0091
5 16:00-20:00 0.9824 0.9856 0.9740 0.9554 0.9839 0.9970 0.9468 0.9768 0.9989 0.9975 0.9296 0.8890 0.0007 0.0017
6 20:00-21:00 0.9590 0.9828 0.9693 0.9012 0.9531 0.9825 0.9553 0.9774 0.9970 0.9685 0.9429 0.8742 0.0004 0.0023
7 21:00-22:00 0.8120 0.9258 0.8207 0.7226 0.7449 0.8890 0.7607 0.9197 0.9764 0.8441 0.7844 0.6931 0.0070 0.0102
8 22:00-24:00 0.5777 0.6128 0.5802 0.4885 0.5366 0.5871 0.5006 0.6549 0.7868 0.7469 0.5214 0.4974 0.0109 0.0096

Time T Patio-Temporal Occupancy Rate

Period ime Weekend-Zone 1 Weekend-Zone 2 Weekend-Zone 3 Weekend-Zone 4 Weekend-Zone 5 Weekend-Zone6 Comparison
1 00:00-09:00 0.0050 0.0120 0.0025 0.0103 0.0000 0.0124 0.0037 0.0639 0.0975 0.0000 0.0008 0.0244 0.0015 0.0005
2 09:00-11:00 0.2854 0.4976 0.3722 0.2891 0.1083 0.4466 0.2258 0.6101 0.9886 0.3107 0.0942 04194 0.1103 0.0143
3 11:00-13:00 0.7777 0.8516 0.7782 0.5283 0.6833 0.8417 0.5680 0.8320 0.9961 0.9974 0.4673 0.7129 0.0342 0.0251
4 13:00-16:00 0.9393 0.9951 0.9141 0.8916 0.9648 0.9990 0.8116 0.9872 0.9971 0.8693 0.7464 0.9786 0.0093 0.0033
5 16:00-20:00 0.9859 0.9941 0.9798 0.9854 0.9920 0.9994 0.9591 0.9994 0.9991 0.9400 0.9390 0.9982 0.0005 0.0005
6 20:00-21:00 0.9479 0.8984 0.9595 0.9030 0.9383 0.9885 0.9364 0.9968 0.9966 0.9298 0.9589 0.9469 0.0005 0.0017
7 21:00-22:00 0.8184 0.8653 0.8596 0.8129 0.7222 0.8687 0.7932 0.8841 0.9845 0.7892 0.7719 0.7866 0.0082 0.0019
8 22:00-24:00 0.5814 0.6513 0.6207 0.6270 0.4897 0.5586 0.5563 0.5869 0.8334 0.5559 0.5186 0.4877 0.0152 0.0034
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5. Conclusions

This research proposes and validates an integrated framework for spatial zoning
and differential pricing in large commercial parking facilities. By combining mixed Logit
modeling of user choice behavior with dual clustering—based zoning and bilevel pricing
optimization, the approach effectively addresses spatial occupancy imbalances. Application
to the Kingmo Complex demonstrates three key findings:

(i) incorporating user heterogeneity improves the accuracy of demand redistribution in
both administered and market-based pricing scenarios;

(ii) the administered strategy achieves balanced utilization with minimal revenue fluctua-
tion, reducing spatio-temporal occupancy variance by about 67% on weekdays and
increasing revenue by only 1%, making it suitable where regulatory compliance and
price stability are priorities;

(iif) the market-based strategy offers greater flexibility in fee adjustment, reducing vari-
ance by over 40% and maintaining or improving occupancy balance, while enabling
significant revenue increases, especially during peak and uneven demand periods.

The framework’s adaptability allows its application to other large-scale parking facili-
ties with diverse demand patterns, including those with multiple floors and more complex
spatial structures. Future research could extend validation across multiple complexes in
different cities and policy contexts to further demonstrate generality, and refine behavioral
models to incorporate additional factors such as perceived safety, site familiarity, and search
frustration. In addition, the framework could be extended upstream by integrating demand
forecasting into the pricing model, thereby providing facility managers with end-to-end
decision support and enhancing its practical applicability.

From a practical perspective, implementation requires a sufficiently precise parking
management system capable of parking space-level data acquisition and monitoring. Once
zoning results are generated, facility managers should provide clear physical sighage or
guidance so that drivers can readily distinguish between pricing zones. The management
system must also support parking space-level pricing assignment and updates, and in-
tegrate with sensing and payment devices to ensure billing accuracy. Finally, local user
acceptance should be considered in policy design and evaluation.
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