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Abstract

Increasing the amount of data with complex dynamics requires the constant updating of
statistical distributions. This study aimed to introduce a new three-parameter distribution,
named the new exponentiated Weibull (NEW) distribution, by applying the logarithmic
transformation to the exponentiated Weibull distribution. The exponentiated Weibull
distribution is a powerful generalization of the Weibull distribution that includes several
classical distributions as special cases—Weibull, exponential, Rayleigh, and exponentiated
exponential—which make it capable of capturing diverse forms of hazard functions. By
combining the advantages of the logarithmic transformation and exponentiated Weibull,
the new distribution offers great flexibility in modeling different forms of hazard functions,
including increasing, J-shaped, reverse-J-shaped, and bathtub-shaped functions. Some
mathematical properties of the NEW distribution were studied. Moreover, four different
methods of estimation—the maximum likelihood (ML), least squares (LS), Cramer—Von
Mises (CVM), and percentile (PE) methods—were employed to estimate the distribution
parameters. To assess the performance of the estimates, three simulation studies were
conducted, showing the benefit of the ML method, followed by the PE method, in estimating
the model parameters. Additionally, five datasets were used to evaluate the effectiveness
of the new distribution in fitting real data. Compared with some Weibull-type extensions,
the results demonstrate the superiority of the new distribution in modeling various forms
of real data and provide evidence for the applicability of the new distribution.

Keywords: exponentiated Weibull; estimation methods; simulation; log transformation

MSC: 62E10; 62E15; 60E05

1. Introduction

In real phenomena, data may not always be well captured by classical distributions.
Thus, statistical distributions are continuously updated and improved in an attempt to
accommodate the growth and complexity of data and enhance their fit. Researchers have
considered proposing new methods to introduce new distributions with a good ability to
fit various types of data in different applications. Some methods have focused on adding a
new parameter to traditional distributions, such as the Marshall and Olkin [1], exponen-
tiated [2], and alpha-power [3] methods, while others use any statistical distribution as
a generator for new ones, such as the transformed-transformer (T-X) method [4]. These
approaches have been utilized widely to generate highly adaptable generalizations of
many well-known distributions. Examples include the exponentiated Chen distribution [5],
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the alpha-power Kumaraswamy distribution [6], the Marshall-Olkin odd Burr III expo-
nential distribution [7], the exponentiated Gompertz distribution [8], the Marshall-Olkin
Bilal distribution [9], the extended Weibull distribution [10], the exponentiated XLindley
distribution [11], the alpha-power modified Weibull geometric distribution [12], and the
alpha-power Erlang distribution [13], among others.

The Weibull distribution is the most commonly applied distribution in lifetime analy-
ses and reliability engineering. Although it has great flexibility in modeling the monotone
failure rates for many phenomena, it performs poorly when modeling non-monotonic haz-
ard rate functions, which are common in medical applications and reliability. This limitation
has motivated researchers to introduce different extensions of the Weibull distribution to
enhance its ability to capture non-monotone hazards. For example, Ref. [14] presents the
modified Weibull distribution, Ref. [15] proposes the Kumaraswamy Weibull distribution,
Ref. [16] provides the generalized inverse Weibull distribution, Ref. [17] introduces the
exponential Weibull distribution, Ref. [18] presents the odd Weibull Weibull distribution,
Ref. [19] formulated the odd generalized exponential Weibull distribution, and Ref. [20]
developed the gull alpha-power Weibull distribution.

One of the well-known distributions for generalizing the two-parameter Weibull
distribution is called the exponentiated Weibull distribution, which was introduced in
Ref. [21]. This generalization of the Weibull distribution includes the Weibull, exponential,
Rayleigh, and exponentiated exponential distributions as special cases and produces a
broad versatility in modeling lifetime data. This extension of the Weibull distribution
presents an additional shape parameter that assists in capturing a wider range of hazard
rate behaviors, including unimodal, bathtub, increasing, and decreasing shapes. These
characteristics have attracted authors’ attention toward introducing more extended forms
of this distribution; e.g., see [22-25]. The probability density function (pdf) and cumulative
distribution function (cdf) of the exponentiated Weibull distribution are given, respectively,
as follows:

£y) = apAPyp TP (1= W)y s g, 1)

F(y) = (1 - e‘W)ﬁ)“, 2)

where «, ,and A > 0.

In recent years, the parsimonious transformation technique has been considered as a power-
ful method for creating new flexible distributions that are able to model numerous types of data.
This method applies specific mathematical transformations, such as exponentiation, logarithmic,
power, or trigonometric functions, to an existing baseline distribution without incorporating
additional parameters. These transformations make the distributions more flexible in capturing
skewness, kurtosis, heavy tails, or non-monotonic hazard functions without increasing the model
complexity. A considerable number of studies have proposed novel transformation techniques.
For example, Ref. [26] proposes the sin function transformation, Ref. [27] presents the DUS trans-
formation, Ref. [28] introduces the log transformation, Ref. [29] provides the MG transformation,
Ref. [30] suggests the PCM transformation, Ref. [31] proposes the Kavya and Manoharan (KM)
transformation, and Ref. [32] presents the exponentiated transformation. These transformations
have been utilized in the literature to introduce new distributions, such as the logarithmically
transformed exponential distribution [28], the DUS transformation of the inverse Weibull distribu-
tion [33], the PCM exponential distribution [30], the KM exponentiated Weibull distribution [34],
the KM Kumaraswamy distribution [35], and the modified log-logistic distribution [36].

In this study, the exponentiated Weibull distribution was chosen as a baseline due to
its versatility and capability in capturing a wide range of hazard forms and tail behaviors.
Applying a logarithmic transformation, particularly log(1l + x), will enhance its ability
to model heavy-tailed data and enrich the variety of possible hazard rate forms with no
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added parameters. The term heavy-tailed here was adopted in a practical sense, denoting
the greater flexibility of the NEW distribution in fitting moderately heavy-tailed data.
Moreover, it is advantageous in applications when the data include zero or near-zero
values, which makes it suitable for modeling the time to failure and income [37]. Therefore,
this type of transformation is commonly used to represent different types of data and
address problems related to asymmetric distributions [38]. Thus, the main aim of this
study was to introduce a new distribution that enhances the flexibility of the exponentiated
Weibull distribution while maintaining the same number of parameters.

The remaining sections of this paper are organized as follows: Section 2 defines the
pdf and cdf of the NEW distribution along with its relation to some existing distributions.
Section 3 discusses the mathematical characteristics of the proposed distribution. Section 4
presents four methods of estimating the new model parameters. Section 5 presents a Monte
Carlo simulation used to evaluate the accuracy of the estimated parameters. Five real data
applications are presented in Section 6 to illustrate the adaptability of the NEW distribution.
Finally, Section 6 provides the concluding remarks.

2. The New Exponentiated Weibull Distribution

Let Y be a random variable from the exponentiated Weibull distribution defined
in Equations (1) and (2). Then, the NEW distribution can be introduced by taking the
transformation X = log(1 + Y). Thus, the random variable X is said to have a NEW
distribution with the following pdf and cdf, respectively:

x x a—1
F(x) = apAPer(er — 1)P~1e= (A -1)F (1 _ (A 4))&) , @)

F(x) = (1 e A0 @)
where «, 8, A > 0. Moreover, the hazard rate function takes the following form:

a—1

apAPe¥(e* — 1)~ Tem AT (1 - = (Ae-1)7)

) = 1— (1 - e—<A<eX—1))ﬁ>“

Figures 1 and 2 present the pdf and hazard function for the NEW distribution.
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Figure 1. Plots of the pdf for different parameter values.

Various shapes are shown in the pdf, including symmetric, left-skewed, right-skewed,
and reverse J-shaped forms, whereas the hazard function provides different forms, such as
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increasing, bathtub, J-shaped, and reverse J-shaped forms. This illustrates the flexibility of
the distribution in modeling different forms of data.

hix)
2
1

Figure 2. Plots of the HRF for different parameter values.

Special Cases of the NEW Distribution

It is noteworthy to mention that some well-known distributions are considered as
special cases of the proposed distribution, such as the following:

1.  The exponentiated Gompertz distribution proposed by Ref. [8], when a = 1.

2. The exponentiated Chen distribution introduced by Ref. [5], when § = 1.

3. The odd Weibull Weibull distribution presented by Ref. [18], when A = 7 = 1.

4. The odd generalized exponential Weibull distribution suggested by [19], when
p=0=1

3. Mathematical Properties
3.1. Quantile Function

The quantile function for the NEW distribution is easily obtained by inverting the cdf
in Equation (4), and is given by

1 1
xpzlog[1+/\(—1og(1_pi))ﬁ}0<p<1 (6)

3.2. Moments

The rth moment of a random variable X is a measure that gives information on a
distribution’s shape and provides details of its central tendency and variations. Let X be a
random variable with the pdf of the NEW distribution defined in Equation (3); then, the rth
moment about the origin of X is given as

b= E(X) = [ flx)ax

= D(,B/\ﬁ /00 x"e*(e* — 1),3_16—(/\(€X—]))l3 (1 _ e_(/\(ex_l)),g)afldx'
0
Using the binomial expansion

(1—2)! =

e

(?)(1)izi;|z| <1, @)

i=0
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we obtain

S ifa—1 o xx —1 (i e —1))B
VVIZ(1)< ; )wﬁ)\ﬁ/o xe¥ (e —1)P e (DA =1 gy

i=0

We apply the following substitution:

Letting u = (A(e* — 1)) = du = BAP(e* — 1)P~le¥dx, we obtain

Uy = i(—l)l(“ : 1>“/()oo llog(l/ﬁ +1> r

i=0

(iJrl)udu' (8)

For r in general, Equation (8) can be solved numerically by applying statistical software
for fixed values of the distribution’s parameters. When r = 1, the first moment about the

origin is
s M — 0 ul/B
=200 = Ear (o s (7 e
i=0 0
For |”1/\/ﬂ| < 1, using the expansion
S k12t
log(1+z) = 2(—1) ?; lz| <1, )
k=1
we obtain
00 i X — 1 oo o 1 u :B (l+1)u
p=EX) =1 (-1) o [T (1 e gy,
i=0 JO 13
= Y —1 i+kl< )D‘/OO k//3 (lJrl)ud
LLD oF P 0,
— 1+k 1 10
z;()kzzl( ( )k)l (i+1) 5+1 (10)

3.3. Moment-Generating Function

The moment-generating function (MGF) is a method that is used to derive moments
and understand the characteristics of a random variable for any distribution. The MGF is
defined as

Mx(t) = E(e!%) = /Ooo e f(x)dx; t € R (11)

By substituting Equation (3) into Equation (11) and applying the binomial expansion
in Equation (7), we have the following:

M) = 1) (7 )apaP [eerer - 1) e (U D g e

Letu = (A(e* —1))f = du = BAP(e* — 1)P~1e*dx. Then,

Mx(t) :0{2(1)1'(",1) /0 tlog(“ +1)€ (i 1)u gy,

© w1\ e ful/ b
:aZ(_l)l<0< i 1>/0 (ulAﬁJrl) o (i )ugy, (12)
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For | ”1/\/#3 | <1, by applying the following expansion in Equation (12)
(1+2) = k;) (li)zk, lz| <1, (13)
we have
> a—1\ [ & [\ ul/B _,
Mx(t) =a ) (1) . / ( )e_(”’l)”du.
=X () ()%

(=1 /°° K/ Bo—(i+Du gy,

)5
)

I

=
gk
[1e
N

=
- |

A
N——
N\
O+~

Il
=}
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i
o

(71)1' T(% +1)
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AY 1yt
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p=3
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gk
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p=3
~. ‘

L
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VRS
o+

I
=}
=~
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o

3.4. Rényi Entropy

The entropy of a random variable X captures how much its uncertainty can vary.
Let X be a random variable that follows the NEW distribution with the pdf defined in
Equation (3). Then, the Rényi entropy can be obtained as follows:

REx() = = tog [ sloyax)in > 00 £ 1 (14)

By applying Equation (3) in Equation (14), we have

RE(y) = : i Ulog<(“mﬁ)” /Ooo(ex —1)1(B-1 (1 — e—()»(ex—l))ﬁ)n(a—l)e—n(A(ex—l))‘*enxdx>

er—1

Since |e~ (M )P | < 1, we apply the binomial expansion in Equation (7):

(1— ¢ AE-Pyret)  y~(_1y0 (’7(“ - 1)>eqm<exn>ﬁ_
q=0 q

Therefore,

RE() = - tog((wpr?)7 (1)1 (1 7V [T (e 1y D1 gy
q=0

y1/B-1

ul/P

Letu = (A(e* —1 ﬁ.Then,x:lo M—b—l ,and de = —“———du
( ) g( +1) T

Hence,

-1
1 A ® ya-1y _ ul/B 7 _
RE(n) = g log (mw-lm fy e (”””)”(A“ ulPdu |, (15)

where A = (aBAP)T Yo (’7(“‘;1))(—1)% When |“l)\/ﬁ| < 1, applying the expansion in
Equation (13) to Equation (15) gives

_ 1 A © =1y (e S (11 (BN e
RE(W)—l_Ulog<ﬁM(ﬁ_l)+1/O ul B e lan) ) " — | F=1du |-

1 A (1-1)(1 mI(y— g0 —m—1)
11—y J BANB-1+1 =\ m A (q+q)q—%(q—m—1) ’
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3.5. Order Statistics

Let x1, x2, ..., x4 be an independent and identically distributed (iid) random sample
from the NEW distribution with the parameters «, 8, and A, which have the pdf and cdf
defined in Equations (3) and (4). Then, the pdf of the kth order statistic Xj., is

fien( i_l—n_k)< (" )l (16)

By substituting Equations (3) and (4) into Equation (16), we have

fk:n(x) _ AEX(ex . 1)[3—16—()\(ex—1))ﬁ(1 . e—()\(ex—l))ﬁ)tx(k-i-m)—l, (17)

where A =y '~ ﬁ( ™" F)apAP.

4. Methods of Estimation

As part of assessing the efficiency of the NEW distribution, its parameters were esti-
mated using different techniques, each with complementary advantages. These techniques
included the maximum likelihood (ML) method, the least squares (LS) method, the Cramer—
Von Mises (CVM) method, and the percentile (PE) method. These methods were chosen
because they provide a comprehensive comparison of both distance- and likelihood-based
estimation techniques.

4.1. Maximum Likelihood Method

The ML estimation is the most commonly utilized method of estimating the parameters
in the statistical literature. It focuses on maximizing the log-likelihood function to obtain an
estimate of the unknown parameters. Let x1, xp, ..., X, be a sample obtained from the NEW
distribution with parameters #, 8, and A; then, the log-likelihood function is given as

£ = nlog(a) + nlog() + nf log(A) + (B — 1 log (el ~1) ~ APY_ (e ~ 1)+ Y. x;
i=1 i=1

i=1
+(a—1) ) log(1—e A1),
i=1

(18)

Therefore, an estimate of the distribution parameters can be obtained by taking the
first derivative of Equation (18) with respect to each parameter as follows:

a n n -

o _n YR

FYR +z;10g<1 e ), (19)
05 = -+ 0Bl + L log(e" ~1) ~ (A(e" ~ 1) Y- llog() + log(e” ~ 1)

% p )

(-1 ’ 20)
ey (Me 1) llog(A) + log(e* ~ 1))
1

=

+-1),

o np n (% — 1)Be(A(ei-1))P

- B-1 1) F=1(a
o P Z )7+ BA ; 1 - (AEi—1)f (21)
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Equating Equations (19)—(21) to zero and solving them simultaneously produces the
estimates &, 8, and A. As an alternative, optimizing Equation (18) directly using any
optimization function in any statistical software produces the ML estimates.

4.2. Least Squares Method

The LS method is one of the oldest estimation techniques, introduced in Ref. [39]. It
estimates the parameters by minimizing the difference between the empirical and theo-
retical cdf. Let x(1), X(), ..., X(,;) be the order statistics of a random sample from the NEW
distribution; the least squares method aims to minimize the following objective function

n

X(i o / 2
LS—Z[<1—3—W€()—1))5) _ (nilﬂ . (22)

i=1

Then, taking the first derivative of the objective function with respect to each parameter
leads to the following:

aLS ! B\X (A 1)) (A O —1))B\* i
—(Ae D -1)) _ o~ (MeV-1)) _ o~ (AeW-1)) _
212( i ) log(l e ) (1 e ) — (23)
n X 1
aaL; = 20AP Y e (e D=1)F (%) — 1) log(A(e*) — 1)) (1 _ (MO —1)B\ T
= . (24)
M-t (]
[(1 ¢ ) (n +1 )}
JoLS n (i (i a—1
OLo -1 —(Ae D=1)P xiy _1\B(1 _ »—(Ae D—-1))~
o = 2epA ;e (e 1) (1 e ) o

[y ()]

Thus, by solving Equations (23)—(25) analytically or minimizing Equation (22) numeri-
cally, the LS estimates are obtained.

4.3. Cramer—Von Mises Method

The CVM approach was formulated in Ref. [40] to estimate parameters by comparing
the empirical and theoretical distribution functions in order to ensure an effective overall
fit to the cdf. If x(1),x(2), ..., X() is the order statistics of the random sample from the
NEW distribution, the CVM method obtains an estimate of the parameters «, 8, and A by
minimizing the following equation:

CV = 2[( G ))ﬁ)"‘ _ (2"2;1)}2_ (26)

Minimizing Equation (26) using a numerical optimization method or, alternatively, by

solving the resulting equations gives the CVM estimates.

a;:TV , i (1 - eﬁ(/\(ex@'),l))ﬁ)ﬂé log(l - ei(A(GX(i)il))ﬂ) {(1 B e*(/\(e’((”*l))’j)"‘ - <2i271 1)] @7
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n X/ X(s a—1
agﬁv Y Ze*(A(e (')*1))/5(33((1) —1)Plog(A(e*® — 1)) (1 — e (AL (1)’1))/5)
i=1
, (28)
eyt (21
[(1 ¢ ) < 2n
LBCAV 2apAP1 Y O () _qyp (16 4))&)0‘*
i=1 (29)

[(1 _ efmm,l))ﬁ)“ B (21'271 1)}

4.4. Percentile Method

The PE method was proposed in Ref. [41] as a simple estimation method. The PE
approach compares the percentile points of the sample with their corresponding percentiles
in the population by minimizing the Euclidean distance between them. In many scenarios,
the PE estimators can be derived in a closed form, which makes it an attractive estimation
method. For the order statistics x(q), x(2), ..., X(;;) obtained from a random sample from the
NEW distribution, the PE approach aims to minimize the equation given below.

1\ 72
PE = Z[x(i) log<1+}\(log(1u}))ﬁ>] p (30)
i=1

where u; = ﬁ is an estimate of F(x(;)). Similarly, percentile estimates are derived by
minimizing Equation (30) or solving the following derivatives:

11

1 B

1 —log(1—up) 1

oPE; 1 & uflog(u;) < i ) 1 1\ B

atxl:2a2‘BAZ g; " x(j) — log 1+A<—10g(1—u-“)) (31)
T (- tog-uh) 1

1
B
1 —log(1—u/")
0~ 23 g tog o)) )
=1 1+% <* log(lful.' )) (32)

[x(i) —log <1 + /1\(— log(1 — u%)) é)}

/|\
—
o
aQ
—
—_—
|
=
2=
S~—
~_
=
=l

-

To obtain the estimates of the NEW distribution, the aforementioned methods were

1 1
1 é] [x(i) —log (1 + 0 (— log(1 —u} ))

1+}\<—log(1 —u;"))

executed using the statistical software R (version 4.3.2). In particular, the optimization
function optim with the Nelder-Mead algorithm was utilized to derive the estimates of
the parameters.



Mathematics 2025, 13, 3262

10 of 20

5. Simulation

In an attempt to investigate the capability of the estimation methods in estimating the
distribution parameters Q = (&, , ), simulation-based studies were conducted. By using
the number of simulations m = 10,000 and sample sizes of 30, 100,200,300, and 500,
the following three cases of the true value of the parameters were utilized:

Casel: 0« =17,=29,A =23
Case2: 0 =17,=11,A=03

Case3: 0« =15,3=28A =56

As measures of accuracy, the bias and mean square error (MSE) were calculated for
each estimate as follows:

m
Bias(Q)) = L Y (0 —0)
m v=0
A 13 . 2
MSE(Q)) = p” Z (Qy — Q)
v=0

The results are listed in Tables 1-3 and Figures 3-5.

Table 1. Estimates, bias, and MSE of the parameters «, §, and A for case 1.

ML LS CVM PE
n Parameter Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE
w 21.6842 19.9842 24,196.8073 11.2838 9.5838 776.9405 12.2995 10.5995 940.8378 10.2026 8.5026 1641.7255
n =230 B 4.5681 1.6681 32.5739 4.6948 1.7948 35.5991 4.9269 2.0269 42.1780 3.7051 0.8051 11.3993
A 3.9237 1.6237 90.2580 4.0191 1.7191 24.3403 3.9661 1.6661 20.7270 3.5755 1.2755 23.4206
« 2.1361 0.4361 4.6354 3.3866 1.6866 51.4324 3.4553 1.7553 53.4732 2.1784 0.4784 8.1855
n =100 B 3.1230 0.2230 1.0794 3.2423 0.3423 2.8096 3.2686 0.3686 2.9283 3.0362 0.1362 0.9626
A 2.4057 0.1057 0.3051 2.6682 0.3682 1.9271 2.6746 0.3746 1.8977 2.4223 0.1223 0.3914
o 1.8736 0.1736 0.7476 2.3286 0.6286 7.6210 2.3475 0.6475 7.5905 1.8789 0.1789 0.7918
n =200 B 2.9856 0.0856 0.3668 3.0229 0.1229 0.9380 3.0338 0.1338 0.9493 2.9367 0.0367 0.3651
A 2.3470 0.0470 0.0910 2.4631 0.1631 0.4845 2.4669 0.1669 0.4788 2.3524 0.0524 0.1005
« 1.7965 0.0965 0.3625 2.0297 0.3297 2.1313 2.0413 0.3413 2.1608 1.8003 0.1003 0.3853
n =300 B 2.9617 0.0617 0.2350 2.9835 0.0835 0.5860 2.9904 0.0904 0.5903 2.9262 0.0262 0.2365
A 2.3270 0.0270 0.0508 2.3932 0.0932 0.1935 2.3961 0.0961 0.1937 2.3305 0.0305 0.0550
o 1.7553 0.0553 0.1898 1.8548 0.1548 0.5989 1.8611 0.1611 0.6069 1.7587 0.0587 0.1990
n=>500 B 2.9368 0.0368 0.1328 2.9539 0.0539 0.3211 2.9579 0.0579 0.3225 2.9125 0.0125 0.1356
A 2.3161 0.0161 0.0284 2.3462 0.0462 0.0768 2.3480 0.0480 0.0770 2.3186 0.0186 0.0302
Table 2. Estimates, bias, and MSE of the parameters «, , and A for case 2.
ML LS CVM PE
n Parameter  Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE
o 9.4673 7.7673 32729569  5.8017 4.1017 128.0415 6.4569 4.7569 177.5209 5.4268 3.7268 153.6565
n=230 B 1.7316 0.6316 4.6288 1.7922 0.6922 5.0605 1.87900 0.7790 5.9945 1.3984 0.2984 1.6614
A 2.9256 2.6256 278.7868 1.3481 1.0481 8.3484 1.3494 1.0494 8.4257 1.4719 1.1719 19.2303
o« 2.1354 0.4354 4.5938 2.8531 1.1531 13.7024 2.9255 1.2255 15.1697 2.2514 0.5514 4.9204
n =100 B 1.1846 0.0846 0.1551 1.2323 0.1323 0.4025 1.2417 0.1417 0.4137 1.1369 0.0369 0.1374
A 0.3804 0.0804 0.2278 0.5381 0.2381 0.6314 0.5452 0.2452 0.6818 0.4079 0.1079 0.2178
o 1.8735 0.1735 0.7475 2.2564 0.5564 4.3515 2.2737 0.5737 4.3355 1.9418 0.2418 0.92912
n =200 B 1.1325 0.0325 0.0528 1.1471 0.0471 0.1344 1.1512 0.0512 0.1359 1.1026 0.0026 0.0531
A 0.3279 0.0279 0.0173 0.4039 0.1039 0.1661 0.4044 0.1044 0.1556 0.3400 0.0400 0.0235
w 1.7963 0.0964 0.3624 2.0204 0.3204 1.7382 2.0331 0.3331 1.8022 1.8475 0.1475 0.4452
n =300 B 1.1234 0.0234 0.0338 1.1318 0.0318 0.0842 1.1343 0.0343 0.0849 1.1007 0.0007 0.0348
A 0.3156 0.0156 0.0076 0.3558 0.0558 0.0497 0.3571 0.0571 0.05167 0.3239 0.0239 0.0099
% 1.7553 0.0553 0.1898 1.8548 0.1548 0.5988 1.8609 0.1609 0.6047 1.7915 0.0915 0.2261
n =500 B 1.1139 0.0139 0.0191 1.1204 0.0204 0.0462 1.1219 0.0219 0.0464 1.0978 —0.0022 0.0201
A 0.3091 0.0091 0.0039 0.3257 0.0257 0.0135 0.3263 0.0263 0.0134 0.3146 0.0146 0.0047
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Table 3. Estimates, bias, and MSE of the parameters «, B, and A for case 3.
ML LS CVM PE
n Parameter Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE
o 16.0887 14.5887 12,013.8878  9.8742 8.3742 642.3965 10.7201 9.2201 778.0744 8.7871 7.2871 1289.0428
n=230 B 4.4568 1.6568 29.2649 4.5318 1.7318 32.1369 4.7609 1.9609 38.2404 3.5382 0.7382 10.3504
A 9.8292 4.2292 687.7262 10.4537 4.8537 222.1804 10.3303 4.7303 196.5355 9.3227 3.7227 258.3909
o 1.8323 0.3323 2.6321 2.8135 1.3135 35.1296 2.8535 1.3535 31.0659 1.9478 0.4478 6.3721
n =100 B 3.0277 0.2277 1.0791 3.1404 0.3404 2.6873 3.1649 0.3649 2.8055 2.8926 0.0926 0.8644
A 5.8509 0.2509 1.7772 6.5093 0.9093 13.3048 6.5221 0.9221 11.9380 5.9611 0.3611 2.7939
w 1.6363 0.1363 0.5082 1.9857 0.4857 4.7559 2.006 0.5056 4.8449 1.6799 0.1799 0.5961
n =200 B 2.8870 0.0870 0.3450 2.9224 0.1224 0.8761 2.9323 0.1323 0.8869 2.8079 0.0079 0.3302
A 5.7118 0.1118 0.5469 5.9888 0.3888 2.8507 6.0024 0.4024 2.8755 5.7635 0.1635 0.6512
o 1.5758 0.0758 0.2546 1.7579 0.2579 1.3150 1.7682 0.2682 1.3339 1.6088 0.1088 0.2939
n =300 B 2.8622 0.0622 0.2202 2.8829 0.0829 0.5450 2.8891 0.0891 0.5490 2.8023 0.0023 0.2156
A 5.6643 0.0643 0.3071 5.8224 0.2224 1.1262 5.8309 0.2309 1.1292 5.7032 0.1032 0.3537
o 1.5436 0.0436 0.1349 1.6228 0.1228 0.4085 1.6284 0.1284 0.4135 1.5682 0.0682 0.1506
n =500 B 2.8368 0.0368 0.1236 2.8531 0.0531 0.2975 2.8568 0.0568 0.2988 2.7939 —0.0061 0.1238
A 5.6385 0.0385 0.1718 5.7107 0.1107 0.4537 5.7158 0.1158 0.4554 5.6674 0.0674 0.1914
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Figure 3. Plot of the MSE for each parameter for all methods of estimation—case 1.
a B A
v e g e © : 0
o
o | -
w El — ML w © — ML w3 — ML
Ls ~ Ls i Ls
= . — cwm = <7, . — cwM = o1 — cwm
I~ ° PE oSN T PE s ™~ . PE
e T T \ T T T T T T T c T T T T
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Sample Size Sample Size Sample Size
Figure 4. Plot of the MSE for each parameter for all methods of estimation—case 2.
[of B A
- []
84" S S
o : — ML ] - M © o —
g ] s |8 W i
o — Cw =4 o S\E/M < — CvM
=7 PE
° T T T T T T T T T © T — B E—
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Sample Size Sample Size Sample Size

Figure 5. Plot of the MSE for each parameter for all methods of estimation—case 3.

The above tables and figures show that, for small samples, the bias and MSE were high

for all approaches, particularly for the parameter a. For § and A, however, all methods per-
formed better, with a slightly higher MSE for the ML method. As the sample size increased,
there was a dramatic improvement in all the estimation methods, with a considerable

reduction in both the bias and MSE for all parameters. By n = 500, the consistency property

was achieved across all the estimation techniques, with a noticeable decrease in the MSE
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for all parameters. The ML method became much more stable, followed by the PE method.
The LS and CVM methods were further enhanced with a high bias and MSE compared
with ML and PE in most scenarios. Thus, they can be considered acceptable alternatives to
the ML and PE approaches, despite being less efficient.

6. Application

For the purpose of assessing the distribution adequacy in fitting real data, seven
statistical distributions were used. The considered distributions were the Weibull distri-
bution along with six of its extensions that were built using different techniques. These
Weibull-type extensions are widely employed in the literature due to their flexibility and
applicability in modeling various forms of data. The aim was to investigate the flexibility of
the NEW distribution compared with the Weibull distribution and its different extensions.
The considered distributions were as follows:

¢ The Weibull (W) distribution:

B

Fix)=1—e ™ x>0, ,A>0

*  The exponentiated Weibull (EW) distribution [21]:
F(x) = (1 - e—(m“)“; x>0, a,BA>0
¢ The modified Weibull (MW) distribution [14]:

F(x)=1 _e(=AAP EM); x>0, apBA>0

e The gull alpha-power Weibull (GAPW) distribution [20]:

uc(l —e_)‘xﬁ>
F(x) = W; x>0,aBA>0

*  The generalized inverse Weibull (GIW) distribution [16]:
F(x)=1- (1 — e‘Ax7ﬁ>a; x>0,apBA>0

¢ The odd Weibull Weibull (OWW) distribution [18]:

zxxiB_
Py =1—e 1), v 5, a0, BA>0

*  The KM exponentiated Weibull (KMEW) distribution [34]:

e _(1_E—<ax>ﬁ)A
F(x):e_1 1—e ; x>0, a,BA>0

The comparison between the aforementioned distributions and the proposed NEW
distribution was carried out using five different datasets to investigate the goodness of fit
and adequacy in describing the data behavior.

6.1. Dataset Description
6.1.1. Dataset I: Blood Cancer Dataset

This dataset represents the lifetime, from diagnosis until death (in years), for
40 patients who suffered from blood cancer (leukemia). The data are complete (no cen-
soring) and were provided by a hospital of the Ministry of Health in Saudi Arabia. The
following data values have been used by many authors, such as Refs. [42—44]: 0.315, 0.496,
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0.616, 1.145,1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805, 2.910, 2.912,
3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381,
4.392,4.397, 4.647, 4.753, 4929, 4973, 5.074, 5.381. The data are summarized in Table 4.

Table 4. Descriptive statistics for blood cancer data.

Min Q1 Mean Qs Max SD
Value 0.315 2.199 3.141 4264 5.381 1.358

6.1.2. Dataset II: Single Carbon Fibers

The data are presented in Ref. [45] and contain tensile strength measurements in
gigapascals (GPa) for single carbon fibers and impregnated bundles of 1000 fibers, tested at
a gauge length of 20 mm. The dataset includes 69 recorded values as follows:

1.312,1.314,1.479,1.552,1.7,1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021,
2.027,2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.24, 2.253,2.27, 2.272, 2.274, 2.301, 2.301, 2.359,
2.382,2.382,2.426, 2.434, 2.435, 2.478, 2.49, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629,
2.633,2.642,2.648,2.684, 2.697,2.726,2.77,2.773, 2.8, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954,
3.012, 3.067, 3.084, 3.09, 3.096, 3.128, 3.233, 3.433, 3.585, 3.858. Table 5 provides a summary
of the data.

Table 5. Descriptive statistics for the single carbon fiber dataset.

Min Q1 Mean Qs Max SD
Value 1.312 2.478 2.455 2.773 3.858 0.505

6.1.3. Dataset III: Aircraft Windshield Dataset

This aircraft windshield dataset was used in Ref. [46] and represents the lifetimes
of aircraft windshields (in units of 1000 h). A windshield is a multi-layered structure
consisting of a strong outer skin and inner layers. If a malfunction of the heating system
or the delamination of the outer ply occurs, a failure will occur and replacement of the
windshield is required. The failure times for 63 aircraft windshields are as follows: 0.046,
1.436,2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313,
1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900,2.053, 3.102, 0.952,
2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622,1.085, 2.163, 3.665, 1.092,
2.183,3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435,4.806, 1.249, 2.464, 4.881, 1.262,
2.543, 5.140. Some descriptive statistics for the data are given in Table 6.

Table 6. Descriptive statistics for the aircraft windshield dataset.

Min Q1 Mean Qs Max SD
Value 0.046 1.122 2.085 2.820 5.14 1.245

6.1.4. Dataset IV: Aluminum Fracture Toughness Dataset

This dataset denotes the fracture toughness of Aluminum2O3 and is reported in [47].
The values are as follows: 7.060066, 6.418242, 6.289877, 8.215349, 6.546606, 6.674971,
6.674971, 6.418242, 6.033147, 5.134593, 5.776417, 5.391323, 5.262958, 5.853436, 6.431078,
6.033147, 4.017819, 4.004983, 3.440177, 3.555706, 3.465850, 3.029410, 5.622380, 7.355305,
5.583870, 8.741645, 2.451768, 3.414504, 3.350322, 2.156529, 2.618643, 2.669988, 2.734171,
4.877864, 4.788008, 4.762335, 4.210366, 5.006228, 5.134593, 4.877864, 5.262958, 5.006228,
5.198776, 5.134593, 5.070411, 5.134593, 5.776417, 5.776417, 5.391323, 5.840600, 5.968965,
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5.262958, 5.455505, 5.519688, 5.776417, 6.033147, 6.610789, 5.519688, 5.776417, 6.289877,
6.418242, 6.867518, 6.610789, 6.739154, 7.445160, 7.509343, 7.573525, 7.380978, 8.022802,
7.766072,7.573525, 4.621134, 5.262958, 5.776417, 6.803336, 6.225694, 6.803336, 6.995883, 6.546606,
6.803336, 6.674971, 6.803336, 6.739154, 6.097329, 5.776417, 5.391323, 5.134593, 5.327140, 5.455505,
5.519688, 4.813681, 5.070411, 4.505606, 5.301467, 6.931701, 6.418242, 2.695661, 5.904782, 4.107675,
3.209121, 5.262958, 4.492769, 4.107675, 4.236039, 5.904782, 5.519688, 5.519688, 5.776417, 7.060066,
5.904782, 6.289877, 5.519688, 3.850945, 4.364404, 4.749499, 5.648053, 6.289877, 6.289877, 6.418242,
10.654281, 9.370633, 7.188430, 8.728808, 7.958619, 9.884092, 9.370633, 10.525916, 10.140822,
8.343714, 8.600444. Table 7 summarizes the data.

Table 7. Descriptive statistics for the aluminum fracture toughness dataset.

Min Q1 Mean Qs Max SD
Value 2.157 5.070 5.858 6.675 10.654 1.635

6.1.5. Dataset V: Reliability Dataset

This dataset was presented in Ref. [48] and reported in Ref. [49], and it focuses on the
failure and running times for a large system with 30 units. The values are as follows: 2.75,
0.13,1.47,0.23,1.81, 0.30, 0.65, 0.10, 3.00,1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61,
2.93,0.88,2.47,0.28,1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. A summarization of this dataset is
given in Table 8.

Table 8. Descriptive statistics for the reliability dataset.

Min Q1 Mean Qs Max SD
Value 0.0200 0.6875 1.7703 2.9825 3.0000 1.1499

6.2. Distribution Comparison

This section compares the adequacy of the NEW distribution in fitting real data
with the selected competitors by focusing on the relative performance with respect to
goodness-of-fit indices and the predictive accuracy. The acquired information criteria
are the following: the Akaike information criterion (AIC), Bayesian information criterion
(BIC), Hannan—Quinn information criterion (HQIC), corrected Akaike information criterion
(AICc), consistent Akaike information criterion (CAIC), and Kolmogorov-Smirnov (KS) test
with its p-value. It is worth mentioning that the KS statistic is calculated using the estimated
parameters; thus, its p-value should be interpreted as approximate. The utilization of these
criteria is motivated by their distinct objectives and penalty structures, which allow for
a more comprehensive model assessment. The results are shown in Tables 9-13 and
Figures 6-10.
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Figure 6. The empirical pdf (right) and cdf (left) for all distributions for the blood cancer dataset.
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Table 9. The ML estimates with the standard error in parentheses and the goodness-of-fit measures
for the blood cancer dataset

Model NEW w EW MW GAPW GIW OWW KMEW
& = 0.6257 & = 24991 & = 0.3537 & = 0.1750 & = 0.4367 & = 12.0487 & = 0.0041 & = 0.1959
(0.5026) (0.3370) (0.1420) (0.3029) (0.3408) (6.5362) (0.0020) (0.0045)
B =1.1034 B =0.2841 B = 4.9594 B = 2.3580 B =21547 B = 0.5865 B =2.4139 B =12.5189
(0.6004) (0.0187) (1.5843) (1.0089) (0.4312) (0.0940) (0.3342) (0.0055)
A =0.0155 - A =0.2229 A =0.0252 A =0.0932 A =5.1389 A =10.9544 A =0.1513
(0.0106) - (0.0178) (0.0140) (0.0714) (0.7615) (8.6834) (0.0216)
Information Criteria and Fit Statistics
AIC 137.1651 143.1159 138.9426 143.2146 143.6468 164.4864 143.8760 137.3035
BIC 142.2317 146.4937 144.0092 148.2813 148.7134 169.5530 148.9427 142.3702
HQIC 138.9970 144.3372 140.7745 145.0466 145.4787 166.3183 145.7080 139.1355
AICc 137.8317 143.4403 139.6093 143.8813 144.3135 165.1530 144.5427 137.9702
CAIC 142.2317 146.4937 144.0092 148.2813 148.7134 169.5530 148.9427 142.3702
KS 0.0526 0.1183 0.1080 0.1042 0.0958 0.1798 0.1175 0.1080
p-value 0.9998 0.6298 0.7391 0.7769 0.8555 0.1501 0.6380 0.7382
Table 10. The ML estimates with the standard error in parentheses and the goodness-of-fit measures
for the single carbon fibers dataset.
Model NEW w EW MW GAPW GIW OWW KMEW
& = 10.2889 & =5.2711 & = 32.2677 & = 1.7008 & = 1.7884 & = 14.7747 & = 0.0020 & = 0.5222
(10.7520) (0.4688) (29.2769) (0.7221) (0.5257) (11.2416) (0.0001) (0.2405)
B = 0.7366 B = 03761 B = 13159 B = 0.4892 B = 5.8641 B =18116 B =4.4884 B =24747
(0.2538) (0.0091) (0.2304) (1.9075) (0.2574) (0.4163) (0.2149) (1.5662)
A =0.3701 - A =1.1526 A = 0.0063 A =0.0021 A =15.2675 A = 53847 A =52512
(0.3670) - (0.4072) (0.0023) (0.0002) (2.5918) (1.5457) (7.6128)
Information Criteria and Fit Statistics
AIC 106.5551 107.4331 113.3200 119.5249 107.5790 110.5007 113.2115 110.5007
BIC 113.2574 111.9013 120.0223 126.2273 114.2813 117.2030 119.9138 117.2030
HQIC 109.2141 109.2058 115.9790 122.1840 110.2380 113.1597 115.8705 113.1597
AICc 106.9243 107.6149 113.6892 119.8942 107.9482 110.8699 113.5807 110.8699
CAIC 113.2574 111.9013 120.0223 126.2273 114.2813 117.2030 119.9138 117.2030
KS 0.0445 0.0664 0.0772 0.0951 0.0562 0.0569 0.0921 0.0569
p-value 0.9992 0.9209 0.8060 0.5606 0.9812 0.9788 0.6011 0.9787
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Figure 7. The empirical pdf (right) and cdf (left) for all distributions for the single carbon fiber dataset.
Table 11. The ML estimates with the standard error in parentheses and the goodness-of-fit measures
for the aircraft windshield dataset.
Model NEW w EW MW GAPW GIW owWwW KMEW
& = 3.3537 & =1.6291 & = 03716 & = 0.0259 & = 0.4100 & = 77.6441 & = 0.4005 & = 0.2480
(2.6480) (0.1683) (0.1802) (0.1615) (0.3252) (48.3211) (0.5236) (0.0319)
B =03771 B = 0.4330 B =31737 B =1.7505 B =1.3709 B = 0.2880 B =1.0629 B = 4.3875
(0.1298) (0.0350) (1.1407) (0.4095) (0.2532) (0.0393) (0.4131) (1.9824)
A =0.6278 - A =02916 A =0.2063 A = 0.4608 A =5.4412 A =0.5379 A = 0.2969
(1.0550) - (0.0454) (0.0546) (0.2091) (0.6801) (0.8457) (0.1623)
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Table 11. Cont.
Model NEW w EW MW GAPW GIW OWW KMEW
Information Criteria and Fit Statistics
AIC 202.1731 204.6354 202.6543 207.0139 205.0444 222.2806 202.5313 203.1560
BIC 208.6025 208.9217 209.0837 213.4433 211.4738 228.7100 208.9607 209.5854
HQIC 204.7018 206.3212 205.1830 209.5427 207.5731 224.8093 205.0600 205.6847
AlCc 202.5799 204.8354 203.0611 207.4207 205.4512 222.6874 202.9381 203.5628
CAIC 208.6025 208.9217 209.0837 213.4433 211.4738 228.7100 208.9607 209.5854
KS 0.0672 0.1087 0.0760 0.0787 0.0921 0.1626 0.0694 0.0842
p-value 0.9203 0.4164 0.8324 0.8008 0.6263 0.0635 0.9004 0.7307
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Figure 8. The empirical pdf (right) and cdf (left) for all distributions for the aircraft wind-
shield dataset.
Table 12. The ML estimates with the standard error in parentheses and the goodness-of-fit measures
for the aluminum fracture toughness dataset.
Model NEW w EW MW GAPW GIW OWW KMEW
& = 23.3019 & = 3.8040 & = 4.5830 & = 0.3146 & = 0.5575 & = 54.4289 & = 0.6762 & =0.2183
(18.0119) (0.2446) (6.1549) (0.0942) (0.1767) (37.1112) (0.1521) (0.1224)
B =0.2020 B=01547 B=19154 B =14976 B=33734 B = 0.9082 B =0.9068 B =20311
(0.0404) (0.0038) (1.0652) (0.4971) (0.0675) (0.1428) (0.0750) (1.3359)
A = 1.5290 - A =0.2489 A = 0.0076 A = 0.0025 A = 21.2000 A =0.0237 A= 41129
(3.5645) - (0.1365) (0.0029) (0.0003) (2.6427) (0.0091) (5.8167)
Information Criteria and Fit Statistics
AIC 499.9850 503.7075 501.2128 522.2212 505.7049 502.3039 532.3287 501.8669
BIC 508.5876 509.4425 509.8154 530.8238 514.3075 510.9065 540.9313 510.4695
HQIC 503.4806 506.0378 504.7083 525.7167 509.2004 505.7995 535.8242 505.3624
AlCc 500.1755 503.8019 501.4033 5224116 505.8953 502.4944 532.5192 502.0574
CAIC 508.5876 509.4425 509.8154 530.8238 514.3075 510.9065 540.9313 510.4695
KS 0.0714 0.0964 0.0939 0.1207 0.0908 0.1014 0.1356 0.0937
p-value 0.5206 0.1785 0.2017 0.0452 0.2343 0.1381 0.0167 0.2032

04

Figure 9. The empirical pdf (right) and cdf (left) for

CDF

toughness dataset.

all distributions for the aluminum fracture
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Table 13. The ML estimates with the standard error in parentheses and the goodness-of-fit measures
for the reliability dataset.

Model NEW w EW MW GAPW GIW OWW KMEW
& = 0.1004 & =1.2649 & =0.1314 & =0.7132 & = 0.5369 & = 55.4867 & =1.1340 & =0.2926
(0.0185) (0.2044) (0.0240) (0.2111) (0.3685) (49.2265) (0.7016) (0.0025)
B =5.1482 B =05317 B = 6.9845 B = 0.4535 B =1.1494 B = 02214 B =0.8019 B =7.0663
(0.0025) (0.0797) (0.0040) (0.2199) (0.2397) (0.0447) (0.2543) (0.0026)
A =0.0426 - A =0.3109 A =0.1451 A =0.6249 A = 45377 A =0.1397 A =0.1498
(0.0023) - (0.0039) (0.0714) (0.2455) (0.9407) (0.1554) (0.0248)
Information Criteria and Fit Statistics
AIC 73.5482 96.3174 83.4906 85.8168 97.2778 107.8242 88.0998 87.0004
BIC 77.7518 99.1198 87.6942 90.0204 101.4814 112.0278 92.3034 91.2040
HQIC 74.8930 97.2139 84.8354 87.1616 98.6226 109.1690 89.4445 88.3451
AlCc 74.4713 96.7619 84.4137 86.7399 98.2009 108.7473 89.0228 87.9234
CAIC 77.7518 99.1198 87.6942 90.0204 101.4814 112.0278 92.3034 91.2040
KS 0.1556 0.2193 0.2380 0.1803 0.2084 0.2099 0.1919 0.2615
p-value 0.4616 0.1113 0.0668 0.2830 0.1475 0.1418 0.2190 0.0329
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Figure 10. The empirical pdf (right) and cdf (left) for all distributions for the reliability dataset.

As can be seen from Tables 9-13 and Figures 610, the NEW distribution achieves a
minimum value of all information criteria and a higher p-value among all distributions.
This indicates the good ability of the NEW distribution to fit the data accurately compared
with other extensions of the Weibull distribution.

7. Conclusions

Researchers’ interest in introducing new statistical distributions has resulted in an
influx of data modeling in a wide range of applications. This study aimed to introduce a new,
adaptable extension of the Weibull distribution by applying a logarithmic transformation to
the exponentiated Weibull distribution. This new distribution, called the NEW distribution,
has the ability to model different forms of pdfs and hazard functions, making it flexible in
fitting complex behaviors. Some statistical properties of the NEW distribution were studied.
Four estimation methods—the MLE, LS, CVM, and PE methods—were utilized to estimate
the distribution parameters. Moreover, the efficiency of the estimation methods was
compared using three simulation cases. The results demonstrated that the ML approach,
followed by the PE method, achieved a higher accuracy in estimating the NEW parameters
in comparison with the other methods. All the methods achieved the consistency property
when the sample size increased. Additionally, five datasets were modeled with the NEW
distribution and other formerly specified extensions of the Weibull distribution, and their
results were compared. The obtained results evidenced that the NEW distribution is
superior in terms of fitting the data; thus, it is considered a good alternative to other
Weibull extensions in modeling various forms of data.
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Although the present study indicates the applicability and usefulness of the proposed
model, future research may be able to extend these findings in various directions. For ex-
ample, using the penalized likelihood method or Bayesian technique with informative
prior can help stabilize the estimators, especially in the case of small sample settings. More-
over, constructing a regression model for the NEW distribution would have considerable
research value. Furthermore, the NEW distribution can be applied to censored data, which
are popular in the fields of reliability engineering, economics, and finance.
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