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Abstract

In this paper we present a detailed study of bonded knots and their related structures,
integrating recent developments into a single framework. Bonded knots are classical knots
endowed with embedded bonding arcs modeling physical or chemical bonds. We consider
bonded knots in three categories (long, standard, and tight) according to the type of bonds,
and in two categories, topological vertex and rigid vertex, according to the allowed isotopy
moves, and we define invariants for each category. We then develop the theory of bonded
braids, the algebraic counterpart of bonded knots. We define the bonded braid monoid, with its
generators and relations, and formulate the analogues of the Alexander and Markov theorems
for bonded braids in the form of L-equivalence for bonded braids. Next, we introduce
enhanced bonded knots and braids, incorporating two types of bonds (attracting and repelling)
corresponding to different interactions. We define the enhanced bonded braid group
and show how the bonded braid monoid embeds into this group. These models capture
the topology of chains with inter and intra-chain bonds and suggest new invariants for
classifying biological macromolecules.

Keywords: bonded links; long bonds; tight bonds; topological vertex equivalence; rigid
vertex equivalence; unplugging; tangle insertion; bonded bracket polynomial; bonded
braids; bonded braid monoid; enhanced bonds; bonded braid group; bonded L-moves;
bonded Alexander theorem; bonded Markov theorem

MSC: 57K10; 57K12; 20F36; 20F38

1. Introduction

In this paper, we develop the theory of bonded knots and bonded braids. For illustrations
of these objects see Figure 1. These structures reflect different physical situations which can
occur in applications, such as protein folding and molecular biology. We consider three
types of bonds: long bonds which can be knotted or linked and are not local, standard bonds
which are in the form of straight segments and do not cross between themselves, and tight
bonds which occur locally and are nearly equivalent to graphical nodes in the mathematical
formalism. We also discuss two kinds of isotopy for the three categories of bonded knots
and links, long, standard, and tight, which reflect different physical assumptions about the
flexibility of bonds: topological vertex isotopy, whereby the nodes of the bonds can move
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freely, and rigid vertex isotopy, whereby the nodes of the bonds move along with rigid 3-balls
in which they are embedded.

Mathematically, a bond is an embedded arc whose endpoints lie on (distinct or possibly
the same) components of the link diagram. It is a theme of this paper to compare long
bonds, standard bonds, and tight bonds in the topological and rigid categories. We present
the set of allowed moves for each category and highlight forbidden moves that distinguish
bonded links from related concepts like tied links. We also recall and extend invariants
for bonded knots: notably, the unplugging technique for the topological vertex category, the
tangle insertion for the rigid vertex category, and a Kauffman bracket type polynomial (the
bonded bracket) that is invariant under regular isotopy of rigid vertex bonded links. See [1,2].

Continuing this theme we introduce and study bonded braids as the algebraic counter-
part of bonded links. We establish the bonded braid monoid, we point out its relation to the
singular braid monoid [3], and we extend it to the bonded braid group. We further establish
the interaction between oriented topological bonded links and bonded braids by means of
a closure operation, a bonded braiding algorithm (bonded analogue of the classical Alexander
theorem) and bonded L-move equivalences as bonded analogues of the classical Markov
theorem. The classical Alexander and Markov theorems [4,5] relate knots and links to
braids and the Artin braid groups, and translate their isotopy to an algebraic equivalence
among braids. So, the algebraic structure of braids together with the two theorems above
furnish the necessary basis for encoding knotted objects by words in braid generators and
for the potential construction of knot invariants using algebraic tools. A great paradigm
of this approach is the breakthrough work of V.ER. Jones in the construction of the Jones
polynomial (see [6] and references therein), the ambient isotopy equivalent to the Kauff-
man bracket polynomial. The L-move formulation [7] of the Markov theorem provides a

geometric as well as algebraic approach to the classical braid equivalence.
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Figure 1. On the left: a bonded link. On the right: a bonded braid and its closure.

Knotted structures in proteins and other biomolecules are now well documented,
though only a small fraction of known proteins are knotted. While classical knot theory
uses closed loops, knotoids and related braidoid formalisms allow one to study open
curves without ad hoc closure. See [8,9] for the beginnings for knotoids and [10] for related
braidoid formalisms. Knotoids have been applied to the topological analysis of proteins [11].
We recall these for context. Real biomolecules also possess intra-chain contacts—disulfide
bridges, hydrogen bonds, salt bridges—that impose topological constraints (loops and
lassos) even when the backbone is open. We refer the reader to [12-15] and references
therein. To encode such interactions, bonded models have been adopted. The notion
of bonded knotoid was introduced in [16] and applied to the study of proteins, and more
recently bonded knots with distinguishable bonds were introduced in [17] for modeling
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different types of interactions. In these models, these bonds represent physical connections
that are not part of the covalently linked backbone. For example, a disulfide bond in a
protein can be modeled as a bond connecting two cysteine points on the chain [14,15]. See
also [18]. The incorporation of bonds into knot diagrams gives rise to a rich extension
of knot theory, with new moves and new invariants. A number of recent papers have
studied invariants of bonded links and knotoids, with applications to protein structure
classification, providing a novel way to distinguish different folding patterns of proteins;
see for example [2,15-18].

In this paper we focus exclusively on bonded knots and bonded braids. Our motivation
for exploring the diagrammatic settings and equivalences of bonded knots comes mainly
from the remarkable applications so far and their interest as mathematical objects. Then, a
new diagrammatic setting leads naturally to the fundamental questions about the existence
of related braid structures. The algebraic structure of bonded braids can be used for
encoding the objects that they model with words in the generators, after applying a braiding
algorithm for turning them isotopically into closed bonded braids. Topological vertex
isotopy translates into a bonded braid equivalence generated by moves between bonded
braids. One can exploit algebraic tools for constructing topological invariants in order to
distinguish our topological objects. The L-moves generating the classical braid equivalence
are fundamental in that they provide an adaptive frame for formulating braid equivalences
in other diagrammatic settings. For ensuring a sufficient set of moves for generating a braid
equivalence one has to examine all algorithmic choices and moves in the diagrammatic
setting, and finding all of them can be very subtle. See for example [7,19,20] for different
diagrammatic settings. This is also the case here for pinning down the bonded L-mouves,
which augment the classical L-moves in generating the bonded braid equivalence. The
definition and study of bonded braids and their relation to bonded links form the core of
this work.

In regard to interdisciplinary connections, we note that the interaction lines in Feyn-
man diagrams have the formal structure of bonds in our sense. Thus a Feynman diagram
can be regarded as a bonded graph (possibly with a knotted embedding in three-space). In
fact, just such ideas are behind Kreimer’s work in the book Knots and Feynman Diagrams [21]
where the bonds in the Feynman diagrams undergo tangle insertion (in our sense) and
are thereby associated with specific knots and links. Kreimer suggests that the topological
types of these knots and links associated with the diagrams are significantly related to the
physical evaluations of the diagrams.

In another direction, we note that current suggestions about knotted glueballs (closed
loops of gluon flux related to the structure of protons) can be seen in our context as
knotted structures consisting entirely of bonds. The strings of gluon field form highly
attracting bonds between quarks in this model [22,23]. Finally, we point out that there is
ongoing research in the interface of molecular biology and the construction of molecules
with specified polyhedral shapes [24]. This research also involves bonds to which our
modeling applies.

The paper is structured as follows. In Section 2, we develop the notion of long bonded
links and we establish the allowed isotopy moves in both topological and rigid vertex
categories. In Section 3, we introduce standard bonded links, namely, long bonded links with
unknotted and unlinked bonds, and we establish that any long bonded link can be isotoped
into standard form. We also give a full set of isotopy moves for standard bonded links in
both topological and rigid vertex categories. We also identify some forbidden moves due
to bonds. In Section 4, we introduce a stricter category of bonded links, called tight bonded
links. Tight bonded links are standard bonded links whose bonds do not interact with link
arcs. We also present a set of isotopy moves for this setting.



Mathematics 2025, 13, 3260

4 of 40

In Section 5, we construct invariants of long, standard, and tight bonded links via
the unplugging operation for the topological category and the tangle insertion technique
for the rigid vertex category. Furthermore, we extend the bracket polynomial for rigid
tight bonded links. We note that all three categories of bonded links (long, standard, tight)
and both isotopy types (topological and rigid vertex) extend naturally to bonded knotoids,
providing a consistent framework at the level of open curves.

In Section 6, we turn to the algebraic counterpart of bonded links: bonded braids.
We define bonded braids as braids with bonds connecting strands, and we introduce
the bonded braid monoid BB, on n strands, giving a complete presentation by generators
and relations and two reduced ones. Moreover, we establish its isomorphism to the
singular braid monoid. In Section 7, we prove an analogue of the Alexander theorem in the
topological bonded setting: every topological bonded link can be obtained as the closure of
a bonded braid.

In Section 8, we prove bonded braid equivalence theorems, showing that two bonded
braids have topologically equivalent closures if and only if they are related by certain
moves adapted to bonds and (tight) bonded braid isotopy. We begin with the adaptation
of classical L-moves to (tight) bonded braids, which we further extend to the more subtle
(tight) bonded L-moves. These moves provide a more fundamental understanding of
how bonded isotopies translate into more algebraic moves analogous to the classical
Markov theorem.

In Section 9, we introduce enhanced bonded links and braids. An enhanced bond comes
in two types, representing, for example, an attractive vs. a repelling interaction. Mathe-
matically, an attracting bond and a repelling bond may be thought of as mutual inverses.
We show how allowing two bond types effectively turns the bonded braid monoid into a
bonded braid group, and we define this enhanced bonded braid group EB;, with its extended
generator set. The analogue of the Alexander theorem and the L-move approach to the
Markov theorem are established for the enhanced setting as well.

We conclude with a discussion of further directions, including the further algebraic
exploration of the bonded braid equivalences, the extension of the study to the plat closure
of bonded braids, the formulation of a bonded Morse category and the extension of the
braidoid—knotoid interaction to the bonded and enhanced bonded settings, which we plan
to develop in future works.

2. Bonded Knots and Links

Knotted objects with bonds and their isotopy moves have been introduced for the first
time in the context of bonded knotoids [16] and then as bonded knots with distinguishable
bonds in [17]. In this section we consider bonded knots and links and their isotopy moves
in full generality, in the sense that the bonds can be knotted and linked.

2.1. Definition of Bonded Knots and Links

An (oriented) link on ¢ components is an embedding of ¢ (oriented) circles S! in the
three-sphere S3. For ¢ = 1 a link on a single component is a knot. Classical knots and
links are considered up to isotopy of the ambient space S, namely orientation-preserving
homeomorphisms taking the one knot or link to the other. We usually study knots and links
via their diagrams which are regular projections on the plane with over/under conventions
at the double points, the crossings, and where isotopy is translated into planar isotopy (see
left hand illustration of Figure 3) and the Reidemeister moves (see Figure 4).

Informally, a bonded link is a knot or link together with a set of auxiliary arcs (the
bonds) connecting pairs of points on the knot or link, which can be thought of as connecting
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chords. By (bonded) “knots” or “links” we shall be referring invariably to both (bonded)
knots and links. Formally, we have the following:

Definition 1. A bonded link (or bonded knot, in case of a single component) is a pair (L, B),
where L is a link in S®, and B is a set of k disjoint arcs properly embedded in the complement S3 \ L,
such that each bond arc in B has its two endpoints, called nodes, attached on L. The nodes are
attached transversely to L, with each node attaching at a distinct point on L. If B = @, then (L, D)
is just a classical link. In this general setting, where bonds can be knotted and linked, they will be
referred to as long bonds.

A bonded link diagram is a planar projection of a bonded link (L, B) with the usual knot
diagram over/under conventions at double points, the crossings, which may occur entirely between
link arcs or bonded arcs, or may involve both a link arc and a bonded arc. A neighbourhood of a node,
depicted as \= or =, shall be referred to as bonding site.

An oriented bonded link is obtained by assigning orientations to the link components of L
(ignoring the bonds).

In figures we depict a bond as a slightly thick or colored arc (like orange); see the
left hand illustration of Figure 2 for an example. So, a bond is an auxiliary structure that
does not intersect L except at its endpoints, and it may connect two points on the same
component of L or on different components. We may imagine L as a closed polymer chain
(like a protein backbone) and the bonds are additional connections (like disulfide bridges
or other interactions) that bind together parts of the chain.

2\ D (\J’: )
S - @
Figure 2. On the left: a bonded link diagram, where the bonds (orange arcs) connect two points on

the knot, with over/under-crossing information assigned at each bond crossing a link strand. On the
right: the corresponding trivalent graph representation.

Remark 1. Bonded knots/links can be viewed as special cases of embedded trivalent graphs [1],
where there are two types of edges: ordinary edges and bonds (orange). Bonds always start and
terminate at a classical edge and the nodes are the vertices.

2.2. Bonded Isotopy and Allowed Moves

Intuitively, two bonded links (L, B) and (L, B’) in S® are equivalent if one can be
continuously deformed into the other via an ambient isotopy of S? that carries L to L’ and
B to B/, i.e., an ambient isotopy that respects the bonds. However, in the theory of bonded
links we distinguish two types of equivalence relations, which we call topological vertex
isotopy and rigid vertex bonded isotopy.

Definition 2. Two (oriented) bonded links (L1, By) and (Ly, By) are equivalent as bonded links
via topological vertex isotopy if there is an orientation-preserving homeomorphism f : S — S°
taking L1 to Ly and By to By, such that f respects the attachment of bonds to link arcs (i.e., f carries
each bond in By to a bond in By connecting a corresponding pair of points on Ly). In analogy, the
(oriented) bonded links (Ly, B1) and (Ly, By) are equivalent via rigid vertex isotopy if the nodes
are considered to lie in local discs which are preserved by the isotopy. Bonded links subjected to
topological vertex isotopy shall be called topological bonded links, while bonded links subjected to
rigid vertex isotopy shall be called rigid bonded links.
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We shall further define the notion of trivial bonded link, which in knot theory corre-
sponds to the notion of unknot and unlinks.

Definition 3. A bonded link is trivial as topological resp. rigid bonded link if it can be turned by
topological vertex isotopy resp. rigid vertex isotopy into a planar graph.

It is easy to create examples of bonded knots which are trivial as topological but
non-trivial as rigid bonded knots. Clearly, rigid vertex isotopy implies topological vertex
isotopy. On the level of diagrams, this means that one can go from a diagram of (L, By ) to
a diagram of (Ly, B) by a finite sequence of planar isotopies and a set of local Reidemeister
moves involving any types of arcs (link arcs or bonds or both) respecting or not rigid vertex
isotopies. To see this, we adapt [1] (Theorem 2.1 and Section III) to the bonded link setting
and we obtain the following:

Proposition 1. Two (oriented) bonded links (L1, By) and (Ly, By) are equivalent via topological
vertex isotopy in S® if and only if any corresponding diagrams of theirs differ by a finite sequence of
the following basic moves:

i.  Planar isotopies of link arcs, bonded arcs, or nodes, as shown in Figure 3.

ii.  Classical Reidemeister moves (R1, R2, R3) acting on link arcs away from nodes, as exemplified
in Figure 4.

iii.  Reidemeister-type moves acting only on bonded arcs, as shown in Figure 5.

iv.  Reidemeister-type moves involving both link arcs and bonded arcs, as exemplified in Figure 6.

v.  Vertex slide moves, allowing a bond endpoint to slide along the link to a new position, exempli-
fied in Figure 7.

vi. Topological vertex twist moves (TVT), as exemplified in Figure 8.

Similarly, two (oriented) bonded links (L1, By) and (Ly, By) are equivalent as bonded links via rigid
vertex isotopy if corresponding diagrams of theirs differ by a finite sequence of the moves (i)—(v)
above together with the rigid vertex twists (RVT) shown in Figure 9, excluding the TVT moves
(Figure 8). Rigid vertex isotopy moves are illustrated in Figures 3—7 and 9.

We now present explicitly the moves listed in Proposition 1. Planar isotopy moves
involving both link arcs and bonds are shown in Figure 3. Planar isotopy includes also
sliding a node along its attaching arc.

_ /. A RN
N =/ ) J

Figure 3. The planar isotopy moves.

We have all the classical Reidemeister moves (R1, R2, R3) acting on the link arcs of L
(away from any nodes) (as in Figure 4 and their variants).

i R2 \
SRR BN

Figure 4. Reidemeister moves on link arcs.

In addition, we have the moves R1, R2, R3 that only involve bonded arcs (as in Figure 5
and their variants).
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Figure 5. Reidemeister moves on bonded arcs.

We also allow Reidemeister moves between link and bonded arcs (see Figure 6).

R K T

Figure 6. Reidemeister moves between link and bonded arcs.

Moreover, a bond can pass through an arc of the link or through another bond (or
vice versa), analogous to the R2 move as illustrated in Figure 7. We call these moves vertex
slide moves.

| B L
| S I
Figure 7. Vertex slide (VS) moves.
In the topological vertex isotopy, we allow moves analogous to the classical R1 moves

involving link arcs and bonds as illustrated in Figure 8. We call these moves topological
vertex twists (TVT).

(b ‘ T (fl ‘
Figure 8. Topological vertex twists (TVT).

Finally, Figure 9 illustrates the rigid vertex twists (RVT) moves, which replace the
TVT moves in the rigid vertex isotopy setting, obtaining thus a stricter diagrammatic
equivalence relation.

oo ]

Figure 9. Rigid vertex twists (RVT).

Proof of Proposition 1. This is an adaptation of [1] (Theorem 2.1) to the case of trivalent
topological graphs in the particular form of bonded links. The only differences are as
follows. Kauffman’s original statement of the basic moves of topological vertex isotopy on
embedded graphs includes the following moves (adapted to the bonded category) in place
of TVT and VS, see Figure 10:
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Figure 10. A mixed topological vertex twist, mTVT, and the bonded slide moves, BS.

These moves, however, follow easily from the moves in Figures 4, 7, and 8, as explicitly
demonstrated in Figures 11 and 12.

S R2 Vs
J
c\ )

Figure 11. A bonded slide move follows from the R2 and VS moves. So it is valid in the topological
and rigid vertex isotopy.

isotopy ) Vs ) R1 ) VT
~ ~ C et

Figure 12. An mTVT follows from the VS, R1 and the TVT moves. So it is valid (only) in the
topological vertex isotopy.

The case of rigid vertex isotopy for bonded links is an adaptation of [1] (Section III) to
the case of trivalent rigid vertex graphs in the particular form of bonded links and follows
analogously. Hence the proof is complete. [

2.3. More Diagrammatic Moves for Bonded Links

We now present additional local diagrammatic moves in the setting of topologi-
cal bonded links, and show that they all follow from the list of basic moves stated in
Proposition 1 and exemplified in Figures 3-8.

These additional moves fall into two main categories:

*  Moves involving the interaction of a bonded arc with a link arc or another bond,
*  Moves involving the interaction of a bonded arc with a crossing.

We analyze these cases below.

Bond-link arc interaction. When a bonded arc interacts with a link arc to which it is
attached, we have the so-called min/max sliding moves (see Figure 13). These moves involve
sliding a bonded arc along a link arc to which it is attached, creating or removing a crossing
between the bond and the link arc. In Figure 13 we show that these moves follow from the
basic topological moves listed in Proposition 1.

In addition to the min/max sliding moves, we also have the arc slide moves. An arc can
also slide across a bond: entirely within the region between the nodes (internal arc slide) (see
Figure 14), outside the region (external arc slide) (see Figure 15), or partially within (bonded
slide) (see Figure 11).
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‘ TVT isotopy ‘ R1 ‘

Figure 13. The min/max sliding moves.

Figure 15. An external arc slide move expressed in terms of the basic moves.

Bond-crossing interaction. Next, we consider moves involving the interaction of
a bond with a crossing. Three scenarios arise: (i) both arcs of the crossing lie within the
region of a bond, (ii) one arc provides a bonding site, (iii) both arcs provide a bonding site.
The first two comprise the crossing slide moves (Figures 16 and 17); the latter gives rise to the
bonded flype and bonded double flype moves (Figures 18 and 19). In Figures 16-19 we show
that these moves follow from the basic topological moves listed in Proposition 1.

e @2 e g2 = 2] = [0
M R R CSS

Figure 16. The interior crossing slide moves follow from the basic topological moves.

J J L]
; ARt

[

Figure 17. A crossing slide move expressed in terms of the basic moves.

|
\ Bond Crossmg Slide Crossmg -Slide Bond
Rotat|on MOVE Move \ Rotat|on
| I

Figure 18. The bonded ﬂype move follows from the bond rotation and the crossing slide move.

The bonded flype move follows from the TVT move (manifested as bond rotation,
that is, mTVT moves) and crossing slide moves, as demonstrated in Figure 18. The bonded
double flype move is obtained by combining a bonded flype with an R2 move. The bonded
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double flype move, so also the bonded flype move, follows easily also in the rigid vertex
isotopy by the basic moves.

~ -~

Lo
Figure 19. The bonded double flype move follows from the bonded flype and an R2 move.

2.4. Some Restrictions and Forbidden Moves

There are some important restrictions (forbidden moves) in bonded link theory that
do not appear in classical knot theory. Notably, because bonds are embedded arcs, one cannot
slide a bond around a strand in such a way that the bond passes through two consecutive
crossings of different type (over then under, or vice versa). In effect, a bond cannot be pulled
through a zig-zag in the link that would cause its endpoint to swap the side of the link it
is on. Such a move would entail the bond endpoint going through a crossing, which in
the topological model is not allowed unless it follows the allowed moves described above.
Figure 20 illustrates these forbidden moves.

ARV RV
70 A" A
DA

B A

Figure 20. Some forbidden moves in the theory of bonded links.

Another related diagrammatic setting is the theory of tied links [25,26], links equipped
with ties. A tie is a non-embedded simple arc connecting different points of a link, whose
ends can slide along the arcs they are attached but remain on the link. Ties are like phantom
bonds: they can pass freely through one another and through the arcs of the link. Two
ties can even merge into one if they connect the same arcs. Bonded links differ crucially:
bonds are embedded arcs and cannot be created or destroyed by isotopy, nor can they pass
through link arcs or through themselves arbitrarily.

3. Standard Bonded Links

Given a bonded link diagram, it is possible to simplify the diagram by applying isotopy
moves so that the bonds themselves become unknotted and are presented in a “standard”
form. Knotted objects with bonds in standard form and their isotopy moves have been
first introduced in the theory of bonded knotoids [16] and later as bonded knots with
distinguishable bonds in [17].

Recall that in a bonded link diagram, bonds may initially be knotted or entangled
on their own, forming non-trivial configurations in space. However, by performing ap-
propriate isotopies, one can eliminate such knotting in the bonds and arrange them in a
simple configuration where each bond is unknotted. In particular, it is useful to isotope the
diagram so that each bond connects two link segments in a simple H-shaped configuration.
See Figure 21 for an example. Consider a small neighborhood around each node on the link:
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the diagram can be isotoped so that near each bond endpoint, the link segment appears
roughly vertical, and the bond itself attaches like a horizontal rung, together forming
a shape reminiscent of the letter “H”, with the bond as the horizontal bar and the link
segments as the vertical bars. We refer to such a local configuration as an H-neighborhood of
a bond (see Figure 22).

Definition 4. A standard bonded link diagram is a bonded link diagram that contains no
crossings or self-crossings of bonded arcs.

‘2,\
\,&/

Figure 21. A standard bonded link.

Figure 22. An H-neighborhood of a bond in standard form. The bond (horizontal) connects two
link arcs.

We now show that any bonded link diagram can be transformed into a standard form
by a sequence of bonded isotopy moves:

Proposition 2. A (topological or rigid) bonded link diagram can be transformed isotopically into a
standard bonded link diagram.

Proof. Consider a bond that is not in standard form, and let J; and ], denote its two nodes.
Let D be a disc containing only J; and the three arcs emanating from it, one belonging to the
bond and the other two to the link. Using the vertex slide moves (recall Figure 7), we can
slide D along the bond toward J, progressively eliminating any self-crossings of bonded
arcs. During this process, new crossings may appear, but only between link arcs, and never
between arcs of the bonds themselves (see Figure 23). The procedure is then completed by
induction on the number of bonds initially not in the standard form, successively applying
this process to each bond until all are brought into the standard form. O

Dy O~ 50 - 580

~ -

20

Figure 23. An example of bond contraction.

Proposition 3. Given a long bond between two nodes, as exemplified in Figure 23, we can keep one
node fixed and contract the bond into a neighborhood of that node. This gives rise to two contractions,
one for each node. Call these contracted diagrams Dy and Dy. Then Dy and D; are topologically
isotopic or rigid vertex isotopic (depending on context) as standard bonded diagrams.
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Proof. Indeed, the long arc of the original bond provides a track along which to move the
contracted bond from the one side to the other, as shown in Figure 23. [

We now state the following theorem describing topological and rigid equivalence
diagrammatically for standard bonded links.

Theorem 1. Two (oriented) standard bonded links are topologically isotopic if and only if any
corresponding diagrams of theirs differ by a finite sequence of the moves illustrated in Figures 3, 4
and 24 with all variants.

Similarly, two (oriented) standard bonded links are rigid vertex isotopic if and only if any
corresponding diagrams of theirs differ by a finite sequence of the moves illustrated in Figures 3, 4
and 25 with all variants.

\ N
)"/'[L -

AN LS

/N

Figure 24. Topological isotopy moves between standard bonded links.

AN ﬂ
b > ool H-lod

VANV r e
\\ X ] /!

/N
Figure 25. Rigid vertex isotopy moves between standard bonded links.

4. Tight Bonded Links

We now consider a stricter category of bonded links, called tight bonded links. While
standard bonded links allow bonds to cross over or under link strands (provided the bonds
themselves remain unknotted), tight bonded links forbid such crossings entirely. See Figure 26
for an example. In a tight bonded link, each bond sits in an H-neighborhood that is free of
arcs, as illustrated in Figure 27. We have the following definition (compare with [16,17]):

Definition 5. A tight bonded link diagram is a bonded link diagram in which each bond is
presented in standard form and, additionally, no bond crosses any link arc.

2\“\/
J &/ U)

Figure 26. A tight bonded link.
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Figure 27. The H-neighborhood of a tight bond.

Proposition 4. A standard bonded link diagram can be transformed isotopically (topologically and
rigidly) into a tight bonded link.

Proof. Starting from a standard bonded link diagram, we apply the isotopy illustrated
in Figure 28 to each bond individually. This isotopy removes any crossings between the
bond and the link in the region between its two nodes, while preserving the standard
H-neighborhood configuration of the bond. Repeating this process for all bonds in the
diagram yields a tight bonded link diagram. [

K i | |
C ~ ~ :
Vool IR

Figure 28. A standard bond can be brought to tight form by vertex slide moves.

We now state the following theorem describing topological and rigid equivalence in
the tight category through diagrammatic moves.

Theorem 2. Two (oriented) tight bonded links are topological vertex isotopic in the tight category
if and only if any corresponding diagrams of theirs differ by a finite sequence of planar isotopies and
the Reidemeister moves for the link arcs (recall Figures 3, 4), and the moves illustrated in Figure 29.
Similarly, two (oriented) tight bonded links are rigid vertex isotopic in the tight category if and only if
any corresponding diagrams of theirs differ by a finite sequence of planar isotopies and the Reidemeister
moves for the link arcs, and the moves illustrated in Figure 30.

P B
S
T
N

Figure 29. Basic topological isotopy moves between tight bonded links.

||||
) (— ~ +—
NN

ool H-loe

1o & -
N

Figure 30. Basic rigid vertex isotopy moves between tight bonded links.

Remark 2. The move of Figure 15, which may at first seem necessary to include in the tight category,
ultimately follows from the other moves in the tight category, as we demonstrate in Figure 31.
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~ (e ~ 2P -
Figure 31. An external arc slide move as a combination of basic moves in the tight category.

5. Invariants of Topological and Rigid Vertex Bonded Links

In this section we briefly describe two general techniques for obtaining invariants for
bonded links, corresponding to the two types of isotopy—topological vertex isotopy and
rigid vertex isotopy—which are both due to Kauffman, adapted to the category of bonded
links. We further construct the bonded bracket polynomial.

5.1. Topological Bonded Links: Unplugging Operations

For a bonded link (K, B), we view the link together with the bonds as a trivalent
embedded graph. At each node (vertex) where a bond attaches, we may perform an
unplugging operation: removing one of the edges incident to the vertex, as shown in the top
row of Figure 32. At a 3-valent vertex there are three such choices. This yields a collection
of unknotted (redundant) arcs and classical links corresponding to the various choices of
unpluggings. A classical result due to Kauffman [1] asserts, in the language of bonded links:

Theorem 3. Let (K, B) be a bonded link. Then, considering the bonds and the link arcs as graph
edges invariantly, we obtain the following:

*  Theset L p) of classical links derived from all possible vertex unpluggings is a topological
vertex isotopy invariant of (K, B).

*  Consequently, any ambient isotopy invariant applied to L g py is also a topological vertex
isotopy invariant of (K, B).

Figure 32 bottom row shows the set of three knots derived by the unplugging of the
given bonded knot, seen as an embedded graph.

A= J\’/Kwrl\
(2 L 29N
N

Figure 32. Unplugging edges from an embedded graph.

We note that we can create finer unplugging invariants for bonded links by restricting
unplugging in relation to the bonds. There are two types, the bonded unplugging and the
strict unplugging, which are complementary:

Definition 6. The bonded unplugging of a bonded link (K, B) is the unplugging where we
unplug only the bonds, so we are left with the underlying link K.

It now follows immediately from Theorem 3 that the following is true:

Proposition 5. The underlying link K of a bonded link (K, B) is a topological vertex isotopy
invariant of (K, B).
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The bonded unplugging can distinguish bonded knots. In Figure 33 the bonded
unplugging yields an unknot in the one case and a trefoil knot in the other case. Hence the
two bonded knots are distinguished. In this example with the knotted bond, we have an
embedding of a @-graph. This knotted graph is the Turaev closure of the knotoid depicted
by the knotted bond as a diagram in the surface of the 2-dimensional sphere. The fact that
we have proved that the ®-graph has a non-trivial embedding implies that this knotoid is
non-trivial.

£) + &)

Figure 33. The bonded unplugging distinguishes the two bonded knots.

Definition 7. The strict unplugging of a bonded link (K, B) is the unplugging where at a given
node only the arcs from the link are allowed to be unplugged.

At a three-valent vertex there are two such choices. This also follows immediately
from Theorem 3:

Proposition 6. The resulting collection of knots and links (ignoring the unknotted arcs) from the
strict unplugging of a bonded link is a topological vertex isotopy invariant of the bonded link.

Figure 34 illustrates an example of a bonded knot G, which is trivialized by the bonded
unplugging. However, via the strict unplugging, we obtain an unknot and a trefoil knot.
This proves that the given bonded knot is non-trivial and that the ®@-graph where one
considers the bond as another edge is non-trivial. Let further G, be the same graph where
now the upper arc in G is a bond (see left illustration in Figure 34). If we perform bonded
unplugging to G, we obtain a trefoil knot; therefore, G, is not isotopic to G.

ponded
- .
/‘\ unplugging
—
_M A )
\/ \/ Strice
Gy G

unp/t;;ing @ ' (f\\_/@

Figure 34. Unplugging edges from an embedded graph.

In the case of G; where the bond is the lower arc of G, the unplugging invariants do
not distinguish G; and G. In fact, G; and G are isotopic as demonstrated in Figure 35.
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Figure 35. Two isotopic bonded knots.

5.2. Rigid Standard Bonded Links: Tangle Insertions

Given a standard bonded link (K, B), one may replace each bond by a properly
embedded band. Then, at each band we insert any classical two-tangle. This process is
illustrated in Figure 36. The resulting set of classical links for all possible choices of inserted
two-tangles, depends only on the rigid vertex isotopy class of (K, B).

™ .
I O

- SRR

Figure 36. Band replacements and tangle insertions.

T

More precisely, given a rigid standard bonded link diagram (L, B), we proceed as follows:

*  Replace each bond by a properly embedded band connecting its two nodes.

* Into each band, insert a properly embedded two-tangle chosen from a fixed family
of tangles.

*  Theresultis a classical link diagram whose isotopy class depends only on the rigid
isotopy class of (L, B) and the choice of tangles.

We now state the following result about tangle insertion, also due to Kauffman [1] but
adapted to the setting of rigid bonded links. Originally the tangle insertion would take
place in the disc of a rigid vertex. Here the rigid vertex is replaced by a bond. The earliest
example of tangle insertion is the replacement of a singular crossing by classical crossings
in the theory of Vassiliev invariants.

Theorem 4. Let (K, B) be a standard bonded link. Replace the bonds with properly embedded discs
in the form of bands. Then, the following is true:

*  The set Tk p) of classical links obtained from all possible tangle insertions is a rigid vertex
isotopy (resp. rigid vertex regular isotopy) invariant of (K, B).

e Forany fixed choice of tangles, the ambient (resp. regular) isotopy class of the resulting classical
link Lk py is a rigid vertex (resp. rigid vertex regular) isotopy invariant of (K, B).
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Remark 3. Evaluating the resulting classical link diagram using any ambient or regular isotopy
invariant (such as the Jones polynomial, the HOMFLY polynomial, the bracket polynomial, etc.)
yields an invariant of the original rigid tight bonded link. Since the choice of tangles is arbitrary,
and the choice of classical invariants is also arbitrary, this method generates infinitely many distinct
invariants of rigid bonded links. In practice, one typically fixes a family of tangles and a preferred
classical invariant to construct an invariant adapted to the application at hand.

Remark 4. The tangle insertion technique is specific to the rigid vertex category, since in the
topological category the nodes are allowed to rotate, making the inserted tangles ill-defined under
isotopy. Thus, tangle insertion is a natural tool for studying rigid bonded links.

5.3. Rigid Tight Bonded Links: The Bonded Bracket Polynomial

In this subsection we present the bonded bracket polynomial, which extends the Kauffman
bracket polynomial to rigid tight bonded links by assigning specific skein-theoretic relations
at bonds. This invariant arises by choosing a particular two-tangle insertion at each bond,
corresponding to a fixed linear combination of possible two-tangle states, weighted by
formal coefficients. The resulting classical diagram (obtained after resolving all bonds
via this prescribed two-tangle insertion) is then evaluated using the usual Kauffman
bracket polynomial.

We emphasize that the construction described below uses one specific choice of a
two-tangle insertion at each bond. In principle, different choices of two-tangle insertions
give rise to different invariants. Indeed, one can think of this invariant as a representa-
tive example of a much broader class of invariants defined by varying the two-tangle
substitutions at bonds. Exploring how powerful this family of invariants is remains an
open problem.

Definition 8. Let L be a tight bonded link diagram. The bonded bracket polynomial of L,
denoted (L), is defined inductively via the skein relations illustrated in Figure 37, where a and b are
formal coefficients.

=) =0
A2 =+ QIO#CAD
(00 o 1 mmsmin

Figure 37. Skein relations defining the bonded bracket polynomial.

We now show that this polynomial is invariant under regular isotopy (excluding move
R1) for tight rigid bonded links.

Proposition 7. The bonded bracket polynomial is an invariant of regular isotopy in the category of
tight rigid bonded links.

Proof. In the absence of bonds, the bonded bracket polynomial coincides with the classical
Kauffman bracket polynomial, and thus is invariant under the classical Reidemeister moves
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R2 and R3. For the moves involving bonds, invariance under the local moves analogous to
R2 at the nodes is verified directly using the skein relations, as illustrated in Figure 38.

SR =L @) )

+ b

+ b

- D
|/l
Figure 38. Invariance under a vertex slide move.

For justifying rigid vertex isotopy invariance, we argue as follows. The bonded skein
relation replaces each bond by a trivial two-tangle or a positive or a negative type of crossing.
In the end we obtain a set of 3 link diagrams for k bonds. According to Theorem 4, this set
of links and each one separately is a rigid vertex isotopy (resp. regular rigid vertex isotopy)
invariant of the original tight bonded link diagram L. Therefore, applying the Kauffman
bracket polynomial to each one will retain the regular rigid vertex isotopy invariance. [

To illustrate the bonded bracket polynomial, we explicitly compute it for three exam-
ples where, for simplicity, we set b = 1.

Example 1. Consider the unknot equipped with n bonds, denoted ©,,.
Then ;
(@) = (11 — A3 A*3) .

The proof follows by induction, as illustrated in Fiqures 39 and 40, taking into account that
the addition of a local curl to a bonded diagram by an R1 move multiplies the bracket polynomial of
the diagram by a factor of — A3 if the curl is right-handed and — A3 if the curl is left-handed.

(©p-ww

Figure 39. The unknot with n bonds, denoted ®,,.

(K=K< <O
- 1 (O =

Figure 40. Induction step for computing (®;).

Example 2. Let D, denote the two—component unlink with n bonds between the components
(Figure 41).

O+0

Figure 41. The 2-component unlink with n-bonds between the two components, denoted D,.

Then we have the following:
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(Dy) = (a+A+A"Y)" ad—A3—A3) +
@

i

-1 .
+ (A+AYYT (+A+A ) T (g A - A7)
i=1

whered = — A% — A2,
We prove relations (1) by induction on n € N\{0}. For n = 1 we have that:

R ORXCIORCOIREE:

Hence, (D1) = ad — A3 — A~3. Assume that relations (1) hold for n. Then, for n + 1 we
have:

(Dut1) = (a+A+AT")(Dn) + (A+ A1) (On) infj%tip

n

= (a+A+A N (ad—AP—A3) + (A+A ) (a—A>—A3)"+
-1 . .

b A+ANT (@ A+A D T a—A— A3 =
i=1

= (a+A+A )" (ad- A - A% +

i

(a+A+ A" (a— A3 - A79)
1

+ (A+A

n
1=

Example 3. In this example in Figure 42, we consider two versions of bonded trefoil knots Ty and
T>. In the figure the bonds are represented by curly black arcs.

&0ED

Figure 42. Two bonded trefoils.
By expanding the crossings in these examples via the Kauffman bracket identity, we find that
(Ty) = (A3d +3A%B + AB%d)(®;) + (2AB? + B%d)(Dy)

and
(Tp) = (A +3A?B + AB* + 2AB% + B*d%) (©,).

Here we use B = A~ and d = —A? — A=2. One can then see that (T;) and (T,) are
sufficiently different to verify that Ty and T, are distinct rigid vertex bonded knots. In fact, we
specifically calculate that

(T) =1+1/A84a/A7 +1/A% —1/A* —a/ A% — A* —aAD + A8
and that

(To) = —1/A" +a/A7 —2/A* —1/ A2+ a/A+aA — A* — 0 A5 + AS,
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This shows explicitly that the two bonded knots are not rigid vertex isotopic.

We note that the highest power of a appearing among all monomials in the expansion
of the bonded bracket polynomial of a bonded link diagram equals the total number of
bonds. Finally, we note that invariants defined for standard bonded links extend to tight
bonded links, and, in some cases, they become simpler to compute due to the absence of
crossings between bonds and link arcs.

6. Bonded Braids

In this section we develop the theory of bonded braids, an algebraic framework that
extends classical braids by including bonds. Note that we restrict our attention to the
standard and tight categories of bonded links, undergoing topological vertex isotopy.
Combined with the braiding result of the next section, this algebraic structure could be
used in encoding the topological structures of bonded links and of objects that they model.

We recall that a geometric braid on n strands is a homeomorphic image of 7 arcs in
the interior of [0, 1] x [0, €] x [0,1], € > 0, such that it is monotonous, that is, there are no
local maxima or minima, and the boundary of the image consists in # numbered points in
[0,1] x [0,€] x {0} and n corresponding numbered points in [0, 1] x [0,€] x {1}. We study
braids through their diagrams in the plane [0,1] x {0} x [0,1], which are also called braids.
Formally, a braid is described by its braid word in the braid group B,,, which has generators
01,02,...,0,_1 and relations:

00} = O}0; ‘l - kI >1, 0i0;110; = 0110011 i= 1,...,.n—2

The relationship between knots and braids is established through the Alexander
theorem [4], which states that every oriented knot or link can be represented isotopically as
the closure of some braid. The (standard) closure of a geometric braid comprises in joining
with simple arcs the corresponding endpoints, and it gives rise to an oriented knot or link.
Figure 43 illustrates an example of a braid on the left and its closure on the right. The braid
on the left is represented by the braid word cy07 1(7{ Loy o, !, where the generators o; and
their inverses correspond to single crossings of adjacent strands.

/ closure
—>
operation

Figure 43. A braid and its closure.

6.1. Bonded Braid Definition

In this subsection, we introduce the notion of bonded braids, which are classical braids
equipped with bonds. Bonded braids extend the classical braid framework and provide an
algebraic structure for studying bonded links. To establish this correspondence, we define
bonded braid isotopy, which preserves the bond structure under standard braid moves.
Using this framework, we prove an analogue of the Alexander theorem for bonded links.



Mathematics 2025, 13, 3260

21 of 40

We begin with the formal definition of bonded braids and their isotopy before present-
ing the braiding algorithm and proof of the Alexander theorem.

Definition 9. A bonded braid on n strands is a pair (B, B) of a classical braid p on n strands,
and a set of k disjoint, embedded horizontal simple arcs, called bonds. The boundary points of a
bond, called nodes, cannot coincide with endpoints of the braid or with other nodes, and they have
local neighborhoods that are three-valent graphs with the attaching arcs, like b, forming together
an H-neighborhood, as depicted in Figure 22. A bond joining the ith and jth strands with i < j is
denoted b; j and it threads transversely through the strands in between. By abuse of notation, we
denote by b; j a bond joining the ith and jth strands with any sequence of overpasses or underpasses.
A bond b; ;11 joining two consecutive strands i and i + 1 shall be called elementary bond, and
will be denoted by b;. If B = @, then (b, D) is just a classical braid. Moreover, a bonded braid
diagram (also referred to as bonded braid) is a reqular projection of a bonded braid in the plane
[0,1] x {0} x [0, 1] with over/under information at every crossing, and such that no crossing is
horizontally aligned with a bond. So, b; ; can be encoded unambiguously by a sequence of j —i +1
o’s and u'’s indicating the types of crossings formed between the bond and any strand in between.
For an example, see left-hand side illustration of Figure 44. A configuration of a bond which passes
either over or under all its intermediate strands, such that all crossings are marked ‘over’/under’, is
a uniform over/under.

The standard closure operation for bonded braids gives rise to bonded links (see Figure 44).

(A Q/

| /\. \?‘ .

Figure 44. A bonded braid and its closure.

6.2. Bonded Braid Isotopy

To define bonded braid isotopy, we extend the classical braid isotopy by introducing
additional moves that account for the presence of bonds. These moves reflect the topological
nature of bonds and their interactions with each other and with crossings and other strands
in the braid. The first such move is bonded planar isotopy, induced by the bonded braided A-
moves illustrated in Figure 45, where the downward orientation of the strands is preserved.

Pt
7

Figure 45. A bonded braid planar isotopy move.

The interaction between two bonds depends on their relative positions and the sequence
of crossings they form with the strands in between. More precisely:
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e Iftwobonds b;; and by are sufficiently far apart so that their threading paths do not
overlap or interact, that is j < k, they commute freely. For an example see Figure 46.

1.0 W#l..j jl..n 1.0 .. j  j#l..n

Figure 46. Interactions between two distant bonds.

* Twobonds b;; and by also commute if i < k <! < jand b;; is a uniform over/under,
that is, it passes either over or under all its intermediate strands, which include the set
of intermediate strands of by ;. In this case, the configuration of the sequence of u’s
and 0’s of the bond by ; does not matter. For an example, see Figure 47.

Figure 47. Interactions between two bonds: uniform over configurations.

*  Furthermore, the two bonds b;; and by, commute if i < k < | < j, the sequence
of crossings of by coincides with a subsequence of the sequence of crossings of b; ;
for the strands k,! and the markings in the bigger sequence before and after the
subsequence agree, i.e., they are both ‘over” or both “under’. For example, if by ; forms
the sequence (0,0,1,0) with its intermediate strands, the bond bi,]' must contain either
the subsequence [o, (0,0, u,0), 0] or the subsequence [u, (0,0, u,0),u] for the bonds to
commute. We call this configuration the matching crossing sequences. For an illustration
see Figure 48.

Figure 48. Interactions between two bonds: matching crossing sequences.

Any interaction between a bond and an arc is a result of the braided vertex slide moves
exemplified in Figure 49.

K ol gl L
C ~ ~

e
Figure 49. Braided vertex slide moves.

An interaction between a bond and a crossing depends on the relative positions of the
bond and the strands forming the crossing. More precisely,

e  If the strands i,i + 1 forming the crossing ¢; do not interact with the bond by, i.e.,
k >i+1orl < i,then the bond and the crossing commute freely (see Figure 50 for an
example).
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T i+ o j+1..n 1. i+l . j j+1...n

l N l | |
1 1

Figure 50. A crossing commuting with a bond.

e If the nodes of the bond lie on two strands that form a crossing, the bond and the cross-
ing commute, i.e., b; commutes with o; (see Figure 51). This is the bonded flype move.

T ... 0 i+l...n T ... 0 i+1...n
W
\ v
/ \ :
[
Figure 51. A crossing between strands that contain the nodes of a bond.

* Abond b, and a crossing 0; commute if the bond passes entirely over or entirely
under both strands that form the crossing. We call this configuration, the uniform
position of the bond. For an illustration of this case, see the left-hand side of Figure 52.

* Abond and a crossing also commute if the over-strand of the crossing lies above the
bond and the under-strand lies below it. In this case, the bond effectively ‘threads
through’ the crossing without disrupting its configuration. We refer to this move as
the bonded R3 move. For an illustration of this case, see the right-hand side of Figure 52.

\ \ ]

I —
o /\ o |
Figure 52. A bond passing over a crossing and a bonded R3 move.

¢  Figures 53 and 54 illustrate the cases where one node of the bond lies on a strand, resp.
on two stands, that crosses (resp. cross) another strand. In the instance of Figure 54,
there may be other strands threading through the bond, as long as they all lie under

I’k Nkl
T e )

Figure 53. Interactions between a crossing and a bond with one node on a strand of the crossing.

Figure 54. A braid strand passing over a bond.

the overcrossing strand.

VY
T

Lemma 1. A move between a crossing and a bond with one node on a strand of the crossing follows
from a move where a braid strand passes over or under a bond, together with the other moves, and
vice versa.

Proof. The proof of the Lemma is adequately described in Figure 55. [
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Figure 55. The proof of Lemma 1.

Finally, in Figure 56, we illustrate some examples of configurations that are not allowed
under bonded braid equivalence.

| L
+ |\+|\

|k # A K/\ {\/

Figure 56. Examples of moves that are not allowed in bonded braid equivalence. These configurations
violate the topological constraints of the bonded braid model.

The additional moves depicted in Figures 47, 48 and 52 are essential to define bonded
braid equivalence. These moves account for the interactions specific to bonds, ensuring
that the topological properties of the bonded braid are preserved. Using these moves, we
extend classical braid isotopy to include bonded braid isotopy, leading to the following
formal definition.

Definition 10. Two bonded braids are isotopic if and only if they differ by classical braid isotopy
that takes place away from the bonds, together with moves depicted in Figures 47-52. An equivalence
class of isotopic bonded braid diagrams is called a bonded braid.

6.3. The Bonded Braid Monoid

Let now BBy, be the set of bonded braids on n-strands. In BB,, we define as operation
the usual concatenation of classical braids. Then, the set of bonded braids forms a monoid,
called the bonded braid monoid. We denote by b; ; any bond whose nodes lie on the ith and
jth strand of the braid, and by b; we denote the bond b; ;1 whose nodes lie on the ith and
(i + 1)th strands, which we shall call elementary bond, in contrast to the long bonds b; ; for
i # j. We are now ready to give a presentation of BB;,.

Theorem 5. The set BB,, of bonded braids on n strands forms a monoid under braid concatenation.
The bonded braid monoid has a presentation with generators:

01,01 (classical braid generators) and b;; (1<i<j<mn) (bonds),

subject to the following relations:

- The classical braid relations among the o;’s,
- The relations illustrated in Figures 4654 (including all their variants), describing all possible
interactions of bonds among themselves and with arcs or crossings.
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Proof. The proof of the Theorem is an immediate consequence of the exhaustive listing
above of all possible interactions of bonds among themselves as well as with other arcs or
crossings in the bonded braid. O

We further have the following:
Lemma 2. A standard bond is a word of the classical braid generators and an elementary bond.

Proof. Figure 57 illustrates a bonded braid isotopy for contracting the bond or equivalently
for pulling to the side strands crossing over or under the bond, using braided vertex slide
moves (recall Figure 49). O

1.0l ... 1 j..n T .0l ... J1j..n

e

‘ Q
H ‘ ‘(\1

Figure 57. The bond b; ; expressed as a combination of classical braid generators and an elementary
bond.

Using now Lemma 2 and standard Tietze transformations on the presentation of BB,
of Theorem 5, one can obtain a reduced presentation for BB, that uses only the classical
braid generators o; and the elementary bonds b;. Namely, we have the following:

Theorem 6. The bonded braid monoid, BB, on n strands admits the following reduced presentation:

it is generated by the classical braid generators and their inverses (flil, cee, (T;t_ll and the elementary

bonds by, ..., b, _1, subject to the relations:

cio; = 0j0; for |i—j| >1,
0i0iy10; = 0110041 forall i,

blb] = b]bl f07’|i—j| >1,

bioj*! = oj*l; for |i—j| >1,
b ol = oty forall i,
bioip10i = 0i410ibiy forall d,
o;0iy1b; = bii100i41 forall 1.

When considering BB, with its reduced presentation, we shall refer to it as the tight
bonded braid monoid.

We now observe that the algebraic structure of the bonded braid monoid is closely
related to the well-studied singular braid monoid [3,27]. In particular, one can interpret
each bond between two strands as a kind of singular crossing, where the two arcs are
tangential instead of forming a crossing, as illustrated in Figure 58.

Figure 58. Bonds as singular crossings.

For reference, the singular braid monoid SB,, is generated by the usual braid gener-

+1 +1 . . . .
ators 07, ..., 0, together with singular crossing generators 1y, ..., 7,1, subject to the

following relations:
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cioj = 0j0; for|i—j| >1,
0;0i110; = 0j410;0;11 for all i
TT = T for|i—j| >1,
to = oy for |i —j| > 1,
Tot = ogfly for all i,
Ti0i410; = 0i+10; T4 foralli
0i0i1 T = T10;i0541 forall i

Comparing the above presentation of SB;, with the reduced presentation of BB, in
Theorem 6 leads to the following result:

Theorem 7. The bonded braid monoid BB, is isomorphic to the singular braid monoid SB,.

Proof. By identifying each bond generator b; with the singular crossing generator 7; as
illustrated in Figure 58, we see that the defining relations of BB, coincide with those of
SB,. Hence, the assignment b; — T7; and 0; — 0; extends to a monoid isomorphism
BB, = SB,. O

The above leads also to the following remark:

Remark 5. A singular knot or braid can be realized geometrically with tangential singularities in
place of singular crossings, giving rise to a new theory. Regarding the singularities as tangentialities
of lines, one can analyze the dynamics of the birth and death of such interactions in a generalization
of the present work.

Remark 6. We observe that the first two relations in Theorem 6 are the relations of the classical
braid group B,,. So we have that the classical braid group By, injects in the tight bonded braid monoid
BBy, This follows from Theorem 7 and from the analogous result about the singular braid monoid
SBy,. In general, by virtue of Theorem 7, any result on the singular braid monoid SB,, transfers
intact to the tight bonded braid monoid BB,,. And vice versa, like Theorem 8 that follows, which is
also valid for SBy,. We further observe that the relations satisfied by the b;’s are compatible with the
braid relations. Therefore, there is a surjection from BBy, to B, by assigning b; — o; and o; — 0;
and another one by assigning b; — id and o; — ;.

We can further reduce the presentation of BB, using only the classical braid generators
o; and a single bond generator b;. Indeed, by any of the two last relations in Theorem 6 all
elementary bonds b; for i > 1 can be expressed as conjugates of b; by the appropriate braid
words. Suppose we fix the first ones: b; 0;1 0; = 0;1 0; bj11. Then we obtain

by = (0p01)7 by (0201)

by = (0302) Noa01) 7 by (0207) (0302)

bi = (0;0i-1)7 1 (0201) 7 by (0207) - - - (0307-1),
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On the other hand, by the last relations in Theorem 6, we obtain: b, = (7 02) by (07 02) 1.
So, substituting b, in the first of the above relations, we extract the following relation:

bl (0’20’1) (0’1 0'2) = (0’20’1)(0’1 0'2) bl

Therefore, using the above and applying Tietze transformations on the relations of
Theorem 6, we obtain the following irredundant presentation:

Theorem 8. The tight bonded braid monoid BB, admits the following irredundant presentation: it
is generated by the classical braid generators o, . .., 0,1 and a single bond generator by, subject to
the following relations:

cioj = 0j0; for|i—j| >1,
0;0i410; = 0;4+10;0i11 fOT’ all i,
by Ujil = Ujil by forj>2,
by (0201)(0102) = (0201) (01 02) by
b1 Ulil = Ulil bl-

7. An Analogue of the Alexander Theorem for Bonded Links

As noted in Section 6, one can apply to a bonded braid the usual closure operation and
obtain a bonded link (recall Figure 44). In this section we focus on the theory of topological
standard bonded links and we present a braiding algorithm for oriented standard bonded
links. Namely, we prove the following bonded analogue of the Alexander Theorem for
classical links:

Theorem 9 (Braiding theorem for bonded links). Every oriented topological standard bonded
link can be represented topological vertex isotopically as the closure of a standard resp. tight
bonded braid.

Proof. For proving the theorem we adapt to the bonded setting the braiding algorithm
used in [7] for braiding classical oriented link diagrams. The main idea was to keep the
downward arcs (with respect to the top-to-bottom direction of the plane) of the oriented
link diagrams fixed and to replace upward arcs with braid strands. Upward arcs may need
to be further subdivided into smaller arcs, each passing either over or under other arcs, as
shown in Figure 59, which we label with an ‘0’ or a “u” accordingly. These final upward
arcs are called up-arcs. If an up-arc contains no crossings, then the choice is arbitrary.

Figure 59. Upward-oriented arcs are further subdivided to up-arcs, entirely ‘over” or ‘under’.

We assume, by general position, that there are no horizontal or vertical link arcs and
that no two subdividing points or local maxima and minima or crossings are vertically
aligned and no crossing is horizontally aligned with a bond. We then proceed with applying
the braiding moves, as illustrated abstractly in Figure 60. We perform an o-braiding move on
an up-arc with an ‘o’ label, whereby the new pair of corresponding braid strands replacing
the up-arc run both entirely over the rest of the diagram (see Figure 60), and analogous
u-braiding moves on the up-arcs with a “u” label.
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Figure 60. Braiding moves for up-arcs.

In order to use this classical braiding algorithm on standard/tight bonded links we
need to deal further with situations containing bonds. In the bonded general position, we
also require that a node is not vertically aligned with subdividing points or local maxima
and minima.

Step We first bring all bonds to horizontal position using (bonded) planar isotopy, observing
1:  the general position rules. See Figure 61.

/ %p\

Figure 61. Bringing bonds to horizontal position.

Step We next deal with up-arcs in the diagram that contain at least one node of a bond,

2:  standard or tight. For this we apply the isotopy moves TVT or RVT as exemplified in
Figures 62 and 63, according to whether the two joining arcs are antiparallel or parallel
upward arcs. Note that the braiding preparation of a bonded region with two parallel
upward arcs can also be achieved with planar isotopy, by performing a 180-degree
rotation on the plane. Then the bonds will only lie on down-arcs, so that the braiding
algorithm will not affect them.

-1

Figure 62. Braiding preparation for two antiparallel bonded arcs using TVI-moves.
H - oy

Figure 63. Braiding preparation for two parallel bonded arcs oriented upward using RVT-moves.

Step Finally, we apply the braiding algorithm of [7] for the link diagram, ignoring the
3:  bonds. After eliminating all up-arcs, we obtain a standard bonded braid, the closure
of which is—by construction—isotopic to the original oriented bonded link diagram.
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Step In the end of the process some braid strands may cross over or under some bonds.
4:  Using the braided vertex slide moves (recall Figure 57) we bring them to tight form.
The algorithm above provides a proof of Theorem 9.
O

Remark 7.

(a)  Note that in the rigid vertex category it is not possible to braid two antiparallel strands that
are connected by a bond. This is because braiding such strands necessarily requires the use
of a topological vertex twist at one of the nodes, a move that is forbidden in the rigid vertex
category. For this reason we restricted our focus to the topological vertex category.

(b)  The vertex slide moves for bringing the bonds to tight form (recall Figure 28) could have been
already applied after Step 1 or Step 2. In the end we might still need to apply the braided vertex
slide moves for new braid strands.

8. Bonded Braid Equivalences

To determine whether two classical braids yield isotopic knots or links via their
closures, the Markov theorem provides the necessary and sufficient conditions [5]. It
states that two braids have equivalent closures if and only if they are related by a finite
sequence of
e Conjugation: B ~ vBy~!, B,7v € By;

e  Stabilization move: B ~ oyt € Byy1, P € By

In [7] a one-move analogue of the Markov theorem is formulated using the L-mouves,
which generalize the stabilization moves and also generate conjugation.

In this section we formulate and prove two bonded braid equivalences for topological
bonded braids: the bonded L-equivalence for standard bonded braids and the tight bonded
L-equivalence for tight bonded braids. For proving a braid equivalence we need to have the
diagrams in general position, as described in the proof of the bonded braiding algorithm,
to which we now add the triangle condition, whereby any two sliding triangles of up-arcs
do not intersect. This is achieved by further subdivision of up-arcs, if needed, and it allows
any order in the sequence of the braiding moves. We note here that the interior of a sliding
triangle may intersect a bond.

We proceed with introducing the notion of L-moves in the bonded setting. In the classical
setting, the L-moves naturally generalize the stabilization moves in the Markov theorem for
classical braids, since an L-move is equivalent to adding in a braid a positive or a negative
crossing, so that two braids that differ by an L-move have isotopic closures. Moreover, as
shown in [7], the L-moves can also realize conjugation for classical braids. On the other
hand, an L-move can be created by braid isotopy, stabilization and conjugation [7]. The
L-move approach to Markov-type theorems is flexible and powerful for formulating braid
equivalences in practically any topological setting. They prove to be particularly useful in
settings where the braid analogues do not have an apparent algebraic structure. In [7,19,20]
L-moves and braid equivalence theorems are presented for different knot theories.

Definition 11. A classical L-move or simply L-move on a bonded braid B, consists in the
following operation or its inverse: we cut an arc of B open and we pull the upper cutpoint downward
and the lower upward, so as to create a new pair of distinct braid strands with corresponding
endpoints (on the vertical line of the cutpoint), and such that both strands run entirely over or
entirely under the rest of the braid (including the bonds). Pulling the new strands over will give
rise to an Lo-move and pulling under to an L,-move. By definition, an L-move cannot occur in
a bond or at a node. By a general position arqument, the new pair of strands does not pass by a
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crossing or a node. Figure 64 shows L, and L, moves taking place above or below a bond, on its
attaching strand.

Furthermore, a tight L-move on a tight bonded braid is defined as above, with the addition
that, if the new strands are vertically aligned with a bond, the strands can be pulled to the side,
right or left, using the braided vertex slide moves as described in Figure 57, see also Figure 65, so as
to remain in the tight category. A pulled away L-move in the tight category shall be called tight
L-move. Tight L-moves include the L-moves that do not cross bonds.

/]

e

N\
\[\
N

/

Y r

“ gl

Figure 64. L-moves on a strand with a bond.

Note 1. The closures of two bonded braids that differ by an L-move are rigid vertex isotopic. See
second illustration of Figure 65 , where the closure of the L-move contracts to the original arc.

Note 2. Like in the classical setting, an L-move is equivalent to introducing a crossing in the
bonded braid formed by the new pair of strands. Note that in the closure, the L-move in this form
contracts to an R1 move. This formation can be further pulled away from the bond to the (far) right
(or left) of the bonded braid using bonded braid isotopy. In Figure 65 the new pair of strands is
pulled to the far right of the bonded braid.

‘ || ‘ | _____ I | I
| || RN RN ——
) N \ |
cutpoint | Lo | y | H |
| <~ I P I P N
\ A / K " .
AN ! ~ i
™~ < / ~ / | T

| [ ‘ T ‘ 1. —
Figure 65. A crossing formed after an L-move is performed, pulling the strands of an L-move away
from the bond.

We consider now the left-hand and the right-hand side bonded diagrams in Figure 62,
which differ only by the one crossing which can be positive or negative. We braid the
two bonded diagrams using the braiding moves described in the proof of Theorem 9.
Examining carefully the resulting bonded braids leads to the following definition.
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Definition 12. A bonded L-move between two bonded braids resembles an L-move with an in-box
crossing. More precisely, a bonded L,-move (resp. a bonded L,-move) consists in the following
operation or its inverse: we cut an arc adjacent to a bond node and create with the two cutpoints a
crossing of specific type. We then pull the two ends, the upper upward and the lower downward, so
as to create a new pair of vertically aligned braid strands, such that both strands run entirely over
(resp. entirely under) the rest of the bonded braid (including the bonds). The choice of the crossing
is determined by the following property: a vertex slide move with the arc of the crossing not adjacent
to the bond node cannot give rise to a classical L,-move with a crossing (resp. a classical Ly,-move
with a crossing). More precisely, if the two cutpoints lie in the upper right arc of the H-region of a
bond, the crossing is positive, while if they lie in the lower right arc of the H-region, the crossing is
negative. See Figure 66. If the two cutpoints lie in the upper left arc of the H-region of a bond, the
crossing is negative, while if they lie in the lower left arc, the crossing is positive.

Furthermore, a tight bonded L-move is a bonded L-move defined in analogy to a tight
L-move.

>
> N bonded > < bonded >
—~~ —~~
Lo-move Lu-move ﬁ

° \closure H topological e closure/ Y
vertex
isotopy /
O~ X

Figure 66. Bonded L-moves.

Note 3. As indcated in Figure 66, the closures of two bonded braids that differ by a bonded L-move
are topologically vertex equivalent.

Definition 13. L-moves (resp. tight L-moves) together with bonded L-moves (resp. tight bonded
L-moves) and bonded braid isotopy generate an equivalence relation in the set of all bonded braids
(resp. tight bonded braids), the bonded L-equivalence (resp. tight bonded L-equivalence).

We are now in a position to state one of the main results of our paper.

Theorem 10 (Bonded L-equivalence for topological bonded braids). Two bonded braids
upon closure give rise to topologically vertex isotopic oriented standard bonded links if and only
if they can be obtained one from the other by a finite sequence of bonded braid isotopy and the
following moves:

1. L-moves,
2. Bonded L-moves,
3. Bond Commuting: ab;j ~ b;;a, fora, b;; € BBy.

Furthermore, two tight bonded braids upon closure give rise to topologically vertex isotopic
oriented tight bonded links if and only if they can be obtained one from the other by a finite sequence
of tight bonded braid isotopy and the following moves:

1.  Tight L-moves,
2. Tight bonded L-moves,
3. Elementary Bond Commuting: ab; ~ b;a, for a, b; € BB,,.
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The bond commuting is illustrated in Figure 67.

1T ... i i+1 ...n 1T ... i i+1 ...n

Figure 67. Tight bond commuting.

Proof. For the one direction, the closures of two standard/tight bonded braids that differ
by the moves of either statement are clearly topologically vertex equivalent. Indeed, the
closures of L-moves are discussed in Notes 1 and 2 (recall Figure 65)—for the closures
of bonded L-moves see Figure 66 and Note 3— while bonded commuting is realized via
planar isotopy:.

For the converse, in order to ensure that the stated moves are sufficient, we need to
examine any choices made for bringing a bonded diagram to general position and during
the braiding algorithm, and show that they result in bonded L-equivalent bonded braids,
as well as that any bonded isotopy moves on a bonded diagram correspond to bonded
L-equivalent bonded braids. We shall only examine choices involving bonds. All others are
proved as in the classical case [7].

The first choice made for bringing a bonded diagram to general position is when bringing
a vertical bond to the horizontal position; see Figure 61. Let D;, D, be two oriented bonded
diagrams that differ by one such move, from the one horizontal position to the other. Figure 68
demonstrates the L-equivalence of the corresponding bonded braids for the case of parallel
attaching arcs at the nodes, after braiding the regions of the two nodes. The other cases are
proved likewise. The arrow indication on the bond is placed for facilitating the reader in
following the different directions. Note that, if some arcs cross the bonds, these can be pulled
away in both diagrams using the same vertex slide moves, so they will be braided identically.
Therefore, the moves can be assumed to be local, and that all other up-arcs in both diagrams
are braided, so that we can compare in the figure the final braids.

AT
B N

o

|
’—} W l o .\\u o
|u u lo °

Figure 68. The choice of bringing a vertical bond to horizontal gives rise to L-equivalent bonded
braids.

) |
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Another choice made during the braiding algorithm is when applying a TVT-move, as
exemplified in Figure 62, so as to prepare our diagram for braiding. The crossing involved
in the move can be positive or negative. One can then easily verify that the resulting braids
are bonded L-equivalent.

Let now Dj, D, be two bonded diagrams that differ by a topological bonded isotopy
move. For classical planar isotopies and the classical Reidemeister moves, the reader is
referred to [7], as the proofs pass intact in this setting. Note that the bond commuting move
as well as the move we examined above, with tight bonds, comprise bonded planar isotopy
moves. The moves of type Reidemeister 2 and 3 of Theorem 1 with one bond, all end up
being invisible in the bonded braid after completing the braiding. Suppose next that D1, Dy
differ by a topological vertex twist (TVT) move. We have two cases (if we overlook the
signs of the crossings), illustrated in Figure 69.

/\Nf,/\ﬁ,‘
W ) |

Figure 69. The two types of oriented TVT moves.

The first type of oriented TVT (left hand side of Figure 69) is treated in Figure 70,
where we first braid the region of the node in the one diagram. According to the triangle
condition we may assume that the rest of the diagrams are braided, so that in the figure we
compare the final bonded braids.

CA= 0K~ dtw {}\~ ﬁ/.z T
Ho

Figure 70. L-equivalence of one type of an oriented TVT move.

The second type of oriented TVT (right hand side of Figure 69) is straightforward, as
shown in Figure 71, where we braid the region of the node in the one diagram using the
same crossing as in the other diagram.

o¢ - |
‘1, braiding

\/\
Figure 71. Braiding consistently the node in the oriented TVT move results in identical diagrams.

We finally check the vertex slide (VS) moves. The three representing cases of oriented
VS moves with the middle arc being an up-arc are illustrated in Figures 72—-74. The moves
are considered local so that all other braiding is done and we can compare the final braids.
Figure 72 shows the case of parallel down-arcs at the bonding sites. After the performance
of the L-moves, we see that the move is invisible on the bonded braid level.
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Figure 72. An oriented VS move with parallel down-arcs and its braiding analysis.
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Figure 73 shows the case of antiparallel arcs at the bonding sites. After braiding the
up-arc with a TVT move, we perform a classical R3 move, which ensures L-equivalent
bonded braids, and we arrive at the formation of the previous case.

AR AN
N | (]

‘/ braiding \ braiding

~ 1 & /(\/+~ ~ N
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Figure 73. An oriented VS move with antiparallel down-arcs and its braiding analysis.

Finally, Figure 74 shows the case of parallel up-arcs at the bonding sites. Clearly this
move rests also on the previous cases after braiding up-arcs at the nodes with TVT moves
and performing R3 moves.

FEE SRS
N | |

Figure 74. The braiding analysis of an oriented VS move with parallel up-arcs reduces to the

previous cases.

Note that, if some arcs cross the bonds in either one of the three cases, these can be
pulled away in both diagrams involved in the move, using the same vertex slide moves, so
they will be braided identically. In the course of proving this Theorem, it becomes apparent
that it suffices to assume that all bonds are contracted to tight bonds. Likewise all L-moves
can be assumed to be tight L-moves by bonded braid isotopy. From the proof above it
follows that, eventually, we only need to check the moves of Theorem 2.

We have checked all moves of Theorems 1 and 2, so the proof of both statements is
completed. O

Note 4. It is important to emphasize on the fact that bond commuting (in the closure of bonded
braids) constitute equivalence moves for bonded braids, since these moves are not captured by the
L-moves. The situation is in direct comparison with the L-move equivalence for singular braids,
where the commuting of a singular crossing is imposed in the equivalence (see [19]).
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The L-moves naturally generalize the stabilization moves for classical braids, since an
L-move is equivalent to adding a positive or a negative crossing (see Note 2 and Figure 65).
Moreover, as shown in [7], the L-moves can also realize conjugation for classical braids
and this carries through also to bonded braids. On the other hand, as demonstrated in
Figure 65, an L-move can be created by braid isotopy, stabilization and conjugation. Hence,
we may replace moves (1) of Theorem 10 and, along with the algebraization of the bonded
L-moves, we can obtain the analogue of the Markov theorem for bonded braids. This will
be discussed in a future paper.

9. The Theory of Enhanced Bonded Links and Braids

We now extend the bonded knot theory by introducing enhanced bonds. In an enhanced
bonded link, each bond is assigned one of two types, conventionally termed attracting vs.
repelling bonds (see Figure 75). These types are meant to model different physical interac-
tions: for example, an attracting bond might represent a bond arising from an attractive
force (like a disulfide bond pulling two parts of a protein together), whereas a repelling
bond may model an effective constraint that prevents two regions from approaching too
closely, for example due to steric hindrance or electrostatic repulsion. Topologically, we can
regard an attracting or a repelling bond as the same kind of embedded arc as before, but
we treat them as ‘inverses’ of one another in an algebraic sense. We will formalize this by
allowing bonds to be cancelling inverses on the level of enhanced bonded braids.

In this section, we first define enhanced bonded links and the moves that relate them.
Then we introduce the enhanced bonded braid group, denoted EB,;, which extends the
bonded braid monoid by adding inverses for the bond generators. We then describe
analogues of the Alexander and Markov theorems and L-equivalence in the enhanced
context. We believe that the theory of enhanced bonded links can serve as a better model
for biological knotted objects, as well as in other physical situations.

9.1. Enhanced Bonds: Attracting vs. Repelling

Definition 14. An (oriented) enhanced bonded knot/link is a pair (L, B), where L is an
(oriented) link in S3, and B = B U B_ is a finite set of bonds, as defined in Definition 1, and such
that each element of the subset B is equipped with two arrows pointing toward one another, and
each element of the subset B_ is equipped with two arrows pointing away from one another. Call
elements of By attracting bonds and elements of B_ repelling bonds. For an example see Figure 75
where the enhanced bonds are standard. Moreover, two adjacent bonds are called parallel if together
they form two opposite sides of a standardly embedded rectangular band, so that the other two sides
are link arcs, and such the band can be contracted by isotopy to a reqularly projected planar tight
rectangle (in the sense that its interior does not intersect other arcs or bonded arcs). Further, if
we have two adjacent parallel bonds of opposite type, then they cancel, meaning that the pair of
bonds can be removed. An enhanced bonded link diagram is a diagram of an (oriented) enhanced
bonded knot/link.

\

em/

Figure 75. Interpretation of enhanced bonds as ‘attracting’ and ‘repelling’.

Regarding isotopy, the moves we introduced for bonded links do not alter the types
assigned to the bonds in enhanced bonded links. So, enhanced bonded isotopy is defined in the
same way as bonded isotopy, with the additional requirements that the bond type (attracting
or repelling) assigned to each bond remains fixed throughout the isotopy, and that parallel



Mathematics 2025, 13, 3260

36 of 40

bonds of opposite type cancel; see Figure 76. Both isotopy categories, topological and rigid
vertex, continue to apply in this setting, as do the three diagrammatic forms: long, standard,
and tight enhanced bonded links.

’» || <
Figure 76. Cancellation of parallel bonds of opposite type.

Remark 8. Note that it is possible to generalize the definition of enhanced bonded link diagrams to
include bonds that are without the above form of enhancement (so that they do not have inverses)
and also, one can include many types of bonds, with or without inverses, if these are needed. We
retain the above definition in our discussion for the sake of simplicity.

9.2. The Enhanced Bonded Braid Group

Recall that bonded braids are defined as classical braids equipped with embedded
horizontal simple arcs, the bonds. Similarly, enhanced bonded braids are classical braids
equipped with two different types of bonds, the attracting and the repelling bonds. By
abuse of notation, we shall denote by b; an attracting elementary enhanced bond and by bl._1
we shall denote the corresponding repelling bond. Moreover, we will denote by b; ; an
attracting bond between the ith and jth strands of an enhanced bonded braid, and by
b;jl the corresponding repelling bond, such that when we have two consecutive bonds of
different types between the same strands of an enhanced bonded braid, they cancel out
(see Figures 76 and 79).

Recall that the singular braid monoid SB;, is isomorphic to the bonded braid monoid,
BB, (Theorem 7). Also that, as shown in [28], SB,, embeds into a group, called the singular
braid group. This proves that the argument in [28] extends to the bonded braid context, so
that the bonded braid monoid also embeds into a group isomorphic to the the singular braid
group, corresponding the two distinct types of enhanced bonds, attracting and repelling, to
the two distinct types of marked singular crossings, as illustrated in Figure 77.

Y -
AN

Figure 77. The bonds as marked singular crossings.

Hence, we have shown the following;:
Theorem 11. The bonded braid monoid embeds into a group, the enhanced bonded braid group.

The above results lead to the definition of the enhanced bonded braid group EB,, with
operation the concatenation of bonded braids in the set of enhanced bonded braids on
n-strand. Note that as in the case of bonded braids, we will denote by b; ; all possible
sequences of j — i+ 1 0’s and u’s, that indicate the type of the crossings formed between
the enhanced bond and the strands of the braid, and by b;jl its corresponding inverse in
the enhanced bonded braid group. Finally, isotopy between two enhanced bonded braids
is defined in the same way as isotopy between bonded braids, since these isotopy moves
do not alter the type on the enhanced bonds. Then with the same reasoning as earlier
we obtain the following:
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Theorem 12. The enhanced tight bonded braid group EB,, is the group generated by oy, ..., 0,1,

;}1, collectively called enhanced
bonds (see Figure 78), with operation the usual braid concatenation. The generators satisfy the

the attracting bonds by, . . ., b, _1 and the repelling bonds bfl, ...,b

same relations as the generators of the tight bonded braid monoid, BB, together with the following
relations:
bib;' =1 = b 'b, foralli.

IRV
INE

—

)

Figure 78. The enhanced bonds b; and bl-_l.

In Figure 79 we demonstrate the relations b; bi_1 =1=0b"lp.

1

Figure 79. The relations b; b;l =1= b;l b;.

Note that when two enhanced bonds cancel, the underlying knot is not affected by the
cancellation.

We further note that, as in the tight bonded braid monoid (recall Theorem 8), the
enhanced tight bonded braid group EB; also admits an irredundant presentation:

Theorem 13. The enhanced tight bonded braid group EB,, admits an irredundant presentation
with generators the classical braid generators oy, . . ., 0,1 together with a single attracting bond
generator by and its inverse by 1 subject to the following relations:

cioj = 0j0; for|i—j| >1,
0i0i410; = 0i110i0i41 forall i,
bioj = oih forj>2,
by (0201)(0102) = (0201)(0102) by
byoy = o10;.

9.3. Analogues of the Alexander and Markov Theorems for Enhanced Bonded Braids

In this subsection we present analogues of the Alexander theorem and the Markov
theorem in the form of L-equivalences for enhanced bonded braids. The main idea is that
the bonded isotopy moves remain the same as for usual bonds, so enhanced bonds respect
the braiding algorithm presented in Section 7, and the results we obtained for the bonded
L-equivalences in Section 8 also carry through. We have the following analogue of the
classical Alexander theorem:

Theorem 14 (Braiding theorem for enhanced bonded links). Every oriented topological
standard enhanced bonded link can be represented isotopically as the closure of a standard resp. tight
enhanced bonded braid.

Before moving toward a braid equivalence theorem for enhanced bonded braids,
we first generalize the notion of the classical L-moves and the bonded L-moves to this
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setting. We define an L-move and a bonded L-move on an enhanced bonded braid as
in Definitions 11 and 12, by ignoring the types of the bonds (recall Figure 64). It follows
from the results Section 8 that with the use of the classical /bonded L-moves on enhanced
bonded braids, we obtain the enhanced bonded L-equivalence for enhanced bonded braids, by
treating enhanced bonds as simple bonds. Namely, we obtain the following:

Theorem 15 (Bonded L-equivalence for enhanced bonded braids). Two enhanced bonded
braids upon closure give rise to topologically vertex isotopic oriented enhanced standard bonded
links if and only if they can be obtained one from the other by a finite sequence of enhanced bonded
braid isotopy and the following moves:

1. L-mowves,
2. Bonded L-moves,

3. Enhanced Bond Conjugation: o ~ bl.i]-l « bfjl,for a, b;j € EBy.

Furthermore, two enhanced tight bonded braids upon closure give rise to topologically vertex
isotopic oriented enhanced tight bonded links if and only if they can be obtained one from the other
by a finite sequence of tight bonded braid isotopy and the following moves:

1. Tight L-moves,
2. Tight Bonded L-moves,
3. Enhanced Elementary Bond Conjugation: & ~ b;ﬂ o bel,for «, b; € EBy.

We can replace moves (1) of Theorem 15 by considering stabilization moves and
conjugation for classical braids and, along with the algebraization of the bonded L-moves,
we obtain the analogue of the Markov theorem for enhanced bonded braids. This is the
subject of a sequel work.

10. Conclusions and Further Work

In this paper we have used topological, diagrammatic, and algebraic methods to
define and analyze bonded structures. This means that it is assumed that the reader
understands how to translate such language into three dimensions. Diagrams can be
regarded as schemata for producing specific three dimensional structures and embeddings,
just as a weaving pattern is an instruction for producing a given weave. Our topological
argumentation is fully rigorous because the diagrammatics are a formal system for these
topological and combinatorial structures. Thus the diagrammatics have a pivotal place
where one has formality on the one hand and interpretability on the other.

This topologists” stance may be new to some scientists who look directly at the three-
dimensional structure. Our approach is particularly useful for the formulation of algebraic
invariants and for the formulation of algorithms for computation of invariants. To un-
derstand the full story of subjects like protein folding, one needs three three-dimensional
structure and here the diagrams provided a basis for further articulation. If we wish to
further study physical interactions (beyond the present paper), then one can add more
structure to the combinatorial models given here and work with them three-dimensionally.
This is a project for further research, and it promises deeper relationships between our
invariants and the physical behaviours of molecules.

The combinatorial and algebraic coding of structures that we use in this paper has
many potentials for applications. The standard diagramming can be used to produce
embeddings in three dimensional space directly. The braid representations are concise
algebraic methods to encode bonded structures and they are new and need to be studied
further for their potential. Each method of formalizing a three-dimensional topological
structure has its own properties that deserve further research.
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In a paper to follow the present work, we will investigate more deeply the invariants
described here. These include the unplugging invariants, the invariants using insertion and
the Kauffman Bracket and Jones polynomials, and the new invariants that arise from the
L-move braiding formulations for bonded knots and links. In the case of the L-moves, we
will continue the formulation in terms of generalizations of the algebraic Markov theorem
for bonded braids and consequent invariants defined in these terms.

Computational approaches to our work include the use of molecular databases (we
refer to Sulkowska’s works in KnotProt and the Protein Data Base [15]) where one can
translate three-dimensional data into the combinatorics, allowing one to compute invariants
and analyse the bonding structure of proteins. In the other direction one can translate
diagrammatic encoding into chosen three-dimensional embeddings and then work with
these models in three dimensional space, including comparison with molecules from
the database. This relationship with experimental and three-dimensional information is
ongoing. We have used these methods in our previous work and will continue to use them
in applications of the present research.

In the case of the ideas we have suggested for Feynman diagrams, the ideas are in a
state of flux in that it is not yet clear that adding knotted structure to Feynman diagrams will
advance the understanding of the quantum field theory. On the other hand, field theoretic
approaches to protein folding are clearly needed (and under investigation [22]) and we
need to see how such approaches are related to the three-dimensional combinatorial and
topological structure of molecules. The Feynman diagrams are an intermediation between
the field theory and the combinatorics. For all these reasons we regard the present work as
constructing a foundation for much-needed further research.

Bonded knotoids are especially relevant for modeling open chains such as proteins. We
will revisit bonded knotoids [16], their closure operations (introducing the bonded closure),
and we will introduce the theory of (enhanced) bonded braidoids and their topological
interaction with bonded knotoids.

In another direction we will define the plat closure for bonded braids and braidoids
and formulate Hilden and Birman type theorems for turning an unoriented bonded
knot/knotoid to bonded plat/platoid and for their equivalences.

We will explore a bonded Morse category, a natural next step for multi-knotoids
and linkoids: a Morse-theoretic diagrammatics that admits cups/caps and incorporates
bonds. This framework will carry a corresponding move calculus and normal-form results,
enabling functorial invariants via monoidal functors to module categories (with trace
constructions).
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