. mathematics

Article

Al-Driven Optimization for Efficient Public Bus Operations

Cheng-Yu Ku 2@, Chih-Yu Liu 1-2-*

check for

updates
Academic Editors: Araceli
Queiruga-Dios, Deolinda M. L.
Dias Rasteiro and Maria

Anciones-Polo

Received: 12 September 2025
Revised: 6 October 2025
Accepted: 10 October 2025
Published: 10 October 2025

Citation: Ku, C.-Y,; Liu, C.-Y,; Wu,
T.-Y. AI-Driven Optimization for
Efficient Public Bus Operations.
Mathematics 2025, 13, 3249.
https://doi.org/10.3390/
math13203249

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Ting-Yuan Wu !

Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan;
chkst26@mail.ntou.edu.tw (C.-Y.K.); 11252007@email.ntou.edu.tw (T.-Y.W.)

Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
Correspondence: 20452003@email. ntou.edu.tw

Abstract

Public transport bus services often experience financial inefficiencies due to high oper-
ational costs and unbalanced service allocation. To address these challenges, this study
presents a machine learning-based framework aimed at optimizing financial and opera-
tional performance in public bus systems. A dataset comprising 57 routes including cost,
service, and ridership data was analyzed to identify key factors correlated with net revenue.
These features were integrated into multiple predictive models, among which support
vector regression (SVR) with a Gaussian kernel and Bayesian optimization achieved the
highest accuracy (R? = 0.99), indicating excellent generalization capability. Scenario simula-
tions using the trained SVR model evaluated the effects of service and cost adjustments.
Results showed that cutting personnel costs had the most significant effect on net income,
followed by administrative and financial expenses. These findings highlight the impor-
tance of data-driven strategies such as route reallocation and workforce optimization. The
proposed framework offers transit agencies a robust tool for improving efficiency and
ensuring financial sustainability.

Keywords: public transport; machine learning; support vector regression; optimization;
net revenue

MSC: 35D35; 656M32

1. Introduction

With the accelerating pace of global urbanization and the growing emphasis on sus-
tainable development, the operational efficiency and resource allocation of public transport
bus services have become critical issues in urban governance [1-4]. As a primary mode of
urban mass transit, bus services significantly influence residents’ travel convenience and
quality of life, while also bearing directly on local governments’ fiscal burdens and policy ef-
fectiveness [5-7]. In densely populated and topographically complex cities, enhancing bus
operational performance through scientific management and intelligent decision-making
has emerged as a key research focus in the fields of transportation engineering and urban
planning [8-10].

Traditional studies on bus system performance have primarily relied on conventional
statistical analysis and efficiency measurement models such as data envelopment analysis
(DEA) and stochastic frontier analysis (SFA) [11-13]. These approaches are effective in
evaluating relative efficiency but often limited in their ability to handle high-dimensional
data and non-linear relationships [14,15]. While traditional analytical approaches have
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attempted to identify cost centers and suggest improvements, they often fail to provide ac-
tionable predictions or account for the non-linear interactions between multiple operational
variables [16,17].

With the rapid advancement of data science, machine learning (ML) techniques have
gained increasing attention in transportation research for their predictive power and
ability to uncover complex patterns [18-20]. In this context, machine learning offers a
promising alternative to uncover latent patterns within large, complex datasets [21-23].
In recent years, deep learning approaches such as Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and Graph Neural
Network (GNN) have been widely applied in the transportation domain, particularly for
passenger flow prediction and spatiotemporal data modeling, where they demonstrate
superior performance compared to traditional methods [18,20]. These methods are highly
effective in capturing nonlinear and dynamic relationships and tend to excel when trained
on large-scale datasets [17,19,24].

However, few studies have applied ML to analyze Taiwan’s municipal bus systems,
and even fewer have considered financial performance as a core outcome variable [25].
Applications include demand forecasting, route optimization, cost control, and service
quality assessment. Among these, support vector regression (SVR) is particularly noted
for its effectiveness in capturing non-linear relationships with limited training data and
strong generalization capability [24,26-31]. This study employs a machine learning-based
approach to analyze operational data from 57 urban bus routes in Keelung City for the
year 2023. An SVR model is constructed to predict net revenue, with parameter tuning
and model validation conducted to ensure robustness and accuracy. Additionally, scenario-
based simulations are performed to examine the impacts of service frequency. The main
contributions of this study are as follows: (1) it presents an integrated machine learning
framework for evaluating the financial and operational performance of urban bus systems;
(2) it develops a predictive model for net revenue using support vector regression (SVR),
leveraging comprehensive operational and cost-related data; and (3) it assesses the financial
impacts of various adjustment strategies, such as service frequency modification and cost
reduction, and provides concrete policy recommendations. The findings not only offer
insights for future policy formulation in Keelung City but also serve as a reference for smart
transportation planning and performance improvement in other urban regions.

2. Study Area and Dataset

Keelung City, located in northern Taiwan, faces unique challenges in urban transport
planning due to its mountainous terrain, high population density, and frequent rainfall.
The public bus system, managed by one of Taiwan’s few remaining public-sector transit
authorities, has long operated under fiscal stress, with most routes incurring annual losses.
Despite its importance in ensuring social equity and mobility, the city’s bus system suffers
from low operational efficiency and limited strategic resource deployment.

The city operates 57 urban bus routes serving a total of 979 bus stops. The system
is managed by the Keelung City Public Bus Administration, one of only two remaining
publicly operated bus systems in Taiwan, thereby attracting particular attention regarding
its operational performance. The primary transit hubs in Keelung are the Keelung Railway
Station and the Qidu Railway Station, as illustrated in Figure 1.
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Figure 1. Map of bus routes and station locations in Keelung city.

According to operational data from 2023, this study collected and analyzed a total
of 1083 data records from 57 bus routes in Keelung City. For each route, 15 cost-related
variables, along with passenger-kilometers, vehicle-kilometers, ridership, and net income,
were compiled. The operational data indicated that the bus system in the city operated
under a financial deficit, with each route generating an average net loss of approximately
NT$3,419,917.

To improve operational efficiency, this study compiled a dataset consisting of
19 operational and financial variables, including fuel cost, vehicle depreciation, driver-
related expenses, maintenance materials, equipment depreciation, maintenance-related
expenses, administrative staff salary, driver salary, business staff salary, maintenance staff
salary, business expenses, administrative expenses, taxes and duties, depot rental, financial
costs, vehicle-kilometers traveled, passenger-kilometers traveled, total ridership, and net
revenue, as listed in Table 1.

Among the 15 cost-related variables, the original data for Factors 7, 9, 10, 11, 12, 13, 14,
and 15 were reported as the total cost of the entire road network, without disaggregated
data for individual routes. Accordingly, the cost for each route was allocated based on
the proportion of its mileage relative to the total mileage of all routes, so as to derive
the corresponding cost for each specific route [32,33]. The remaining input factors were
determined directly based on the actual conditions of each route.

Table 2 lists descriptive statistics for 19 factors. Within the 19 factors, fuel (Factor 1)
and repair materials (Factor 4) exhibit the highest averages among vehicle and maintenance
costs, whereas ancillary repair expenses (Factor 6) are negligible. In personnel costs,
operating personnel salaries (Factor 8) dominate at an average of 239.4, far exceeding
management employee salaries (Factor 7), administrative staff salaries (Factor 9), and
maintenance personnel salaries (Factor 10). Administrative and financial costs highlight
substantial variation in operating expenses (Factor 11) and financial expenses (Factor 15),
while tax expenses (Factor 13) and station rent (Factor 14) remain comparatively minor.



Mathematics 2025, 13, 3249

4 0f 20

Table 1. Datasets used in this study.

Factor Description
Factor 1 Fuel Bus fuel or energy consumption costs
Factor 2 Vehicle depreciation Amortization of bus purchase costs
Factor 3 Operating-related Additional operating-related expenses
expenses (e.g., insurance premiums)
Vehicle and Factor 4 Repair material Costs of parts and materials for
maintenance costs actor cpair matenais bus maintenance
Factor 5 Depreciation of Depreciation costs of office and station
equipment equipment
. . Additional in th i
Factor 6 Ancillary repair expenses dditional expenses in the repair process
(e.g., tool maintenance)
Factor 7 Management employee Salaries of supervisors and
salaries management personnel
Operati 1 . .
Factor 8 perating personne Driver salaries and related allowances
salaries
Personnel costs Admini - p
Factor 9 ministrative sta Salaries of office and administrative staff
salaries
Factor 10 Maintenance personnel Salaries and allowances of
salaries maintenance personnel
Factor 11 Operating expenses Operational mane.agement-.related costs
(e.g., office supplies)
Admini :
- . Factor 12 Management expenses dministrative mangger'nent expenses
Administrative and (e.g., communication fees)
financial costs Factor 13 Tax expenses Business tax and other statutory taxes
Factor 14 Station rent Bus station rental fees
Factor 15 Financial expenses Interest expenses or loan costs
Factor 16 Vehicle-kilometers Total distance traveled by buses on each route
. Passenger count X travel distance for
Operational data Factor 17 Passenger-kilometers & v vel di
each bus route
Factor 18 Passenger count Passenger count for each bus route
Financial income Factor 19 Net income Net income for each bus route

Table 2. Descriptive statistics of factors.

Factor Mean Standard Deviation = Minimum Median Maximum

Factor 1 Fuel 108.6 30.8 0.0 109.5 174.7
Factor 2 Vehicle depreciation 471 13.3 0.0 47.6 75.6
Factor 3 Operating-related expenses 10.0 2.7 0.0 10.1 15.8
Factor 4 Repair materials 76.6 21.4 0.0 77.3 122.7
Factor 5 Depreciation of equipment 52 1.5 0.0 5.3 8.4
Factor 6 Ancillary repair expenses 0.0 0.0 0.0 0.0 0.0
Factor 7 Management employee salaries 35.7 10.2 0.0 36.1 57.5
Factor 8 Operating personnel salaries 239.4 80.9 0.0 244.0 412.8
Factor 9 Administrative staff salaries 20.7 6.8 0.0 21.1 35.3
Factor 10  Maintenance personnel salaries 7.3 2.6 0.0 74 12.9
Factor 11 Operating expenses 56.2 12.8 0.0 56.3 83.6
Factor 12 Management expenses 242 5.4 0.0 24.4 35.8
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Table 2. Cont.
Factor Mean Standard Deviation = Minimum Median Maximum

Factor 13 Tax expenses 0.7 0.2 0.0 0.7 1.1
Factor 14 Station rent 3.8 1.0 0.0 3.9 5.8
Factor 15 Financial expenses 39.7 9.9 0.0 40.3 60.6
Factor 16 Vehicle-kilometers 10.9 13.1 0.2 54 46.0
Factor 17 Passenger-kilometers 125.8 185.3 0.2 42.3 687.8
Factor 18 Passenger count 30.4 43.4 0.1 59 180.1
Factor 19 Net income —3,419,917 4 4,289,441.1 —9,818,006 —4,309,681 8,317,715

Operational data reveal skewed demand patterns, with vehicle-kilometers (Factor 16)
and passenger-kilometers (Factor 17) showing wide dispersion, passenger count (Factor 18)
averaging only 30.4 per route, and net income (Factor 19) exhibiting large variability, with
most routes operating at a financial deficit.

2.1. Vehicle and Maintenance Costs

Vehicle and maintenance costs encompass a comprehensive range of expenditures
associated with the routine operation and upkeep of bus fleets. Fuel costs represent the
financial outlays required for energy consumption, which may include diesel, natural gas,
or electricity, depending on the propulsion system utilized. Vehicle depreciation accounts
for the systematic allocation of the acquisition cost of buses over their estimated service
life, reflecting the gradual decline in asset value.

Operating-related expenditures refer to supplementary costs directly linked to vehicle
operation, such as insurance premiums and road usage fees. Costs related to repair
materials include expenditures on spare parts and consumables necessary for routine
maintenance activities. Depreciation of ancillary equipment pertains to fixed assets—such
as administrative offices and station facilities—whose value diminishes over time due to
usage and obsolescence. Additionally, ancillary repair costs comprise indirect maintenance-
related expenditures, including the servicing and replacement of tools and equipment used
in repair operations.

Collectively, these cost components illustrate the breadth of financial and material
resources required throughout the lifecycle of public transit vehicles, from procurement
through to ongoing operation and maintenance.

2.2. Personnel Costs

Personnel costs represent a critical dimension in the present analysis, encompassing
all expenditures related to salaries and employee benefits across various functional roles
within the public bus system. Salaries for managerial personnel include compensation for
administrative and supervisory staff, as well as individuals involved in back-office opera-
tions. Driver compensation consists of base pay, shift differentials, and performance-based
incentives provided to bus operators. Salaries for office staff encompass remuneration for
administrative and customer service employees, while maintenance personnel costs refer
to the fixed wages and supplementary allowances allocated to technical staff responsible
for vehicle repair and upkeep. As a major component of operating expenditures, personnel
costs play a pivotal role in shaping the financial performance of publicly operated bus
services, and thus warrant careful consideration in transport system evaluations.

2.3. Administrative and Financial Costs

Administrative and financial costs represent a category of indirect expenditures that,
while not directly attributable to core transit operations, significantly influence the overall
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cost structure of public bus services. Business expenses encompass routine operational
outlays related to administrative management, including expenditures on office supplies,
printing, transportation, and procurement activities. Management expenses are generally
associated with the consumption of internal resources such as utilities (e.g., electricity and
water) and communication services required for daily operations. Tax obligations include
statutory payments such as business tax and vehicle license tax, mandated by governmental
regulations. Facility rental costs refer to payments made for the lease of essential infras-
tructure, including parking lots and bus terminal spaces. Financial expenses primarily
relate to interest payments on loans and associated banking service charges. Although
these costs are not directly incurred through route-level service delivery, they constitute
a vital component of total operational expenditures and warrant careful consideration in
comprehensive cost analyses.

2.4. Operational Data

Operational data factors serve as key performance indicators for evaluating the ef-
fectiveness and efficiency of bus route services. Vehicle-kilometers denote the cumulative
distance traveled by all scheduled trips on a specific route over a defined time period,
serving as a proxy for service supply. Passenger-kilometers, calculated as the product of
the number of passengers and the distance each travels, provide insight into the scale and
reach of service utilization. Passenger count, or total ridership, reflects the number of users
within a given timeframe and offers a direct measure of demand. Net income—defined
as the difference between total revenues and all associated costs—serves as the primary
indicator of financial performance and is employed as the target variable in the predictive
modeling framework developed in this study.

The integration of these performance metrics with cost variables facilitates a holistic
assessment of bus route operations and provides an empirical basis for model training and
the formulation of evidence-based policy recommendations.

To examine the interrelationships among the factors, Figure 2 presents the correlation
matrix. The first 15 factors, which are primarily cost-related, exhibit high degrees of inter-
correlation. In contrast, service-related variables, such as vehicle, passenger, and passenger
demand, demonstrate only moderate correlations with cost items. Notably, net income,
passenger, and passenger numbers are strongly and positively correlated, demonstrating
that financial sustainability is driven more by growth in demand than by cost escalation.
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3. Development of the ML Model via SVR

Machine learning provides an effective approach to analyzing and predicting bus oper-
ation performance, especially in scenarios involving multiple factors and high-dimensional
data. This study applies machine learning techniques, using SVR as the primary model, to
predict the net income of 57 urban bus routes in Keelung City. The SVR model, known for
its excellent generalization ability, tolerance to outliers, and flexibility in handling nonlinear
problems, demonstrated high accuracy and stability in this study, making it the optimal
choice for net income prediction.

In this study, the SVR model was employed to develop a regression model for bus net
income. The SVR is an extension of the support vector machine for regression tasks [32-36].
It employs the loss function to balance model complexity and error tolerance, while kernel
functions allow effective modeling of nonlinear relationships. The overall research process
includes four main steps: database construction, model training, performance evaluation
and model optimization, and application analysis. First, through data collection and
organization, a database was constructed, covering 18 input factors, including vehicle and
maintenance costs, personnel costs, administrative and financial costs, and operational
data, with net income as the output factor. Subsequently, 70% of the data was used for
training, and 30% for testing, corresponding to 40 training samples and 17 test samples,
with SVR used for model construction. The model’s performance was evaluated using
indicators such as R2, RMSE, and MAE.

During the model optimization phase, various kernel functions and hyperparameter
tuning strategies were compared. The results showed that the Gaussian kernel function
combined with Bayesian Optimization yielded the best performance. The model demon-
strated high accuracy on the training data and, through K-fold cross-validation (K = 10),
confirmed its generalization ability and stability.

Once the model was constructed, application scenario analysis was performed, which
included adjustments to bus schedules and cost structures, simulating financial outcomes
under different strategies. The results indicated that adjusting the schedules of both
high-efficiency and low-efficiency routes, along with reducing specific cost items, could
effectively increase overall net income. Figure 3 illustrates the flowchart of this study. The
following sections further elaborate on the application process and outcomes of SVR in
optimizing bus performance in Keelung City.
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4. Validation
4.1. Hyperparameter Optimization of the Model

Hyperparameter optimization is considered crucial for achieving high accuracy during
the training process. In the SVR model, optimizing hyperparameters is key to improving
model performance and balancing its complexity. This study compares the effects of
different kernel functions and selects the kernel function based on the results.

Table 3 lists the parameters proposed for SVR model. Three types of kernel functions
were employed in the modeling process to evaluate their impact on prediction performance:
Gaussian, linear, and polynomial kernels. These kernel functions were selected to capture
different patterns of nonlinearity and complexity in the data. The hyperparameter optimiza-
tion was performed using the Bayesian optimization method. The key optimization settings
are summarized as follows: the box constraint parameter was set to 218.2, the kernel scale
was specified as 36.34, and the convergence tolerance was defined as 5.70 x 10~%. These
parameter choices were aimed at ensuring stable convergence while preserving model
generalization capability.
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Table 3. Parameters proposed for SVR model.
Parameter Parameter Value
Kernel function Gaussian, Linear, and polynomial Kernel function
Optimization method Bayesian optimization
Box Constraint parameter 218.2
Kernel scale 36.34
Tolerance 5.70 x 10~*

4.2. Model Validation

This study further evaluates the reliability and accuracy of the model using various
error metrics, including the coefficient of determination (Rz), root mean square error
(RMSE), variance accounted for (VAF), prediction interval (PI), mean absolute error (MAE),
Willmott index (WI), weighted mean absolute percentage error (WMAPE), and the Nash—
Sutcliffe efficiency coefficient (NS). We adopted a broad set of performance measures
to capture complementary aspects of model performance. This multi-metric approach
reduces bias and strengthens both the credibility and practical relevance of the results. Such
indicators are commonly used in machine learning, and the definitions of the eight error
metrics are provided in the following section. The goodness of fit of the regression model is
assessed using the R?, which ranges between 0 and 1. A higher R? value indicates a better
fit between the model and the observed data, as follows:

(di — davg) (vi — yavg)

It

R® = :
T 5 T 5
igl (di — davg) El (Yi — Yavg)

where represents the mean of the actual values of the dependent variable, represents the

actual measured values of the dependent variable, represents the mean of the predicted
values of the dependent variable, represents the predicted values of the dependent variable,
T represents the total number of data points.

RMSE is used to quantify the deviation between observed values and predicted values,
calculated by taking the average of the squared differences and then taking the square root,
as follows:

VAF is used to quantify the degree to which the independent variables explain the
variation in the dependent variable, as follows:

VAF = {1 ] x 100 3)

~SST
where SSE refers to the sum of squared errors, while SST represents the total sum of squares.
A higher VAF value indicates that the independent variables in the model explain a larger
proportion of the variation in the dependent variable.

PI represents a range of values used to predict future outcomes at a specific confidence

VAF\ .2
= (2= ) +R* — RMSE 4
PI (100) 5 @)

level, as follows:
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where R” refers to the adjusted R%. MAE is used to evaluate the accuracy of predictions by
identifying the maximum absolute error, as follows:

MAE = max(|y; —d;|) ®)

where max represents the maximum absolute deviation between the predicted values and
the observed values.

The Wl is a composite metric that combines weighted factors to produce a single score,
highlighting the importance of individual contributing elements, as follows:

T
g(di —yi)

WI=1- (6)

T 2
,Zl(wi — davg| + |yi — davg|)

1=

WMARPE is used to quantify the average relative error between the predicted values
and the actual values, expressed as a percentage, as follows:

T
X lyi —di
WMAPE = ﬁlTi 7)
¥ (vi)

i=1

The Nash—Sutcliffe efficiency (NS) is a performance evaluation metric used to assess
the degree of agreement between model simulations and observed data. It evaluates the
model by calculating the ratio of residual variation to total variation, with a score of 1
indicating ideal model accuracy. A score below 0 indicates that the model’s performance is
worse than a simple prediction based on the mean value, as follows:

(di — i)

™M=

Juy

NS=1- 8

(di - davg) 2

L=y

1

The predictive model developed in this study demonstrated exceptional performance
during both the training and testing phases. Specifically, the model achieved a R? of 0.99 and
a RMSE of 7.95 x 1072 in the training phase. Similarly, in the testing phase, it maintained
an R? of 0.99 and an RMSE of 4.47 x 1073, indicating high accuracy and robustness. The
regression results are illustrated in Figure 4. Furthermore, additional evaluation metrics—
including the VAF, PI, MAE, WI, WMAPE, and NS—all reached favorable values, as
presented in Table 4, further substantiating the model’s overall predictive efficacy.

Table 4. Optimized Performance evaluation for both training and testing datasets.

Performance Indices Ideal Value Training Phase Testing Phase
R2 1 0.99 0.99
RMSE 0 7.95 x 1073 447 x 1073
VAF 100 99.90 99.95
PI 2 1.99 1.99
MAE 0 405 x 1073 3.18 x 1073
WI 1 0.99 0.99
WMAPE 0 1.11 x 1073 991 x 1073
NS 1 0.99 0.99
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Figure 4. Optimized performance of the proposed SVR model on training and testing datasets.

The SVR model employed a Gaussian kernel function, with hyperparameters opti-
mized through Bayesian Optimization. The final configuration included a box constraint of
218.2, kernel scale of 36.34, and a tolerance level of 5.70 x 10~%.

As listed in Table 5, the high R? values may raise concerns about potential overfitting.
However, route-level net income in our dataset is largely driven by service- and demand-
related variables. Passenger-kilometers, vehicle-kilometers, and ridership all exhibit strong
correlations with net income (correlation coefficients exceeding 0.9, as shown in Figure 2).
Given the stable and structured relationships among costs, service provision, and revenue
within this system, the model’s high predictive performance is well explained.

Moreover, this study conducted additional validation. The distributions of the training
and testing datasets were examined through visualization (Figure 5) and were found to be
highly consistent, with the majority of values concentrated within the range of 0.4 to 0.8.
This similarity suggests that the model does not exhibit early convergence or entrapment.
In addition, residual error distributions were analyzed for both datasets (Figure 6). The
training residuals predominantly ranged between —0.02 and 0.02, whereas the testing
residuals ranged between —0.04 and 0.04. The absence of systematic deviations or clusters
of extreme errors further indicates that the model is not subject to overfitting.

Table 5. Performance metrics from K-fold cross-validation.

Ideal Value Mean Standard Deviation

R? 1 0.99 1.08 x 103
RMSE 0 522 x 1073 231 x 1074
VAF 100 99.95 1.85 x 1072
PI 2 1.99 5.89 x 1073
MAE 0 3.58 x 1073 1.04 x 10~*
WI 1 0.99 1.01 x 103
WMAPE 0 1.25 x 1073 9.77 x 1074
NS 1 0.99 7.52 x 1073
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To further assess robustness, we conducted a 10-fold cross-validation stratified at the
route level to prevent data leakage. The results yielded a mean R? of 0.99 with a very small
standard deviation (1.08 x 10~3), demonstrating stable performance across folds (Table 6).
In addition, beyond the original 70/30 split, we performed multiple hold-out validations
with alternative ratios (e.g., 60/40, 80/20), which consistently produced comparable results.
Since the dataset is cross-sectional at the route level rather than longitudinal, time-based
splits are not applicable; instead, robustness was evaluated through repeated hold-outs
and K-fold cross-validation as described above.

Table 6. Comparison of SVR model performance across alternative training-to-testing split ratios.

Training/Testing Split 90/10 80/20 70/30 60/40
R2 0.97 0.99 0.99 0.99
RMSE 5.85 x 1073 492 x 1073 447 x 1073 459 x 1073
VAF 98.63 99.86 99.95 99.93
PI 1.98 1.99 1.99 1.99
MAE 541 x 1073 412 x 1073 3.18 x 1073 392 x 1073
WI 0.98 0.99 0.99 0.99
WMAPE 1.06 x 1072 9.96 x 1073 9.91 x 1073 9.95 x 103
NS 0.98 0.99 0.99 0.99

20

| Training
Testing

16

Number of data

0 E— —

-0.04 -0.02 0 0.02 0.04
Residual

Figure 5. Distribution of the training and testing datasets.
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Figure 6. Residual error distributions of the training and testing datasets.
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4.3. Comparison of ML Models

To develop a precise prediction model for the net income of individual urban bus
routes in Keelung City, this study compared the predictive performance of four widely
used machine learning regression models: SVR, random forest (RF), and artificial neural
network (ANN), eXtreme Gradient Boosting (XGBoost), and light gradient boosting ma-
chine (LightGBM). Each model was evaluated through 50 repeated tests, and performance
was assessed using a range of regression evaluation metrics, including the R2, RMSE, VAF,
PI, MAE, WI, WMAPE, and NS.

The comparison results indicate that the SVR model outperformed all other models
across all evaluation metrics. It achieved an R? of 0.99, an RMSE as low as 5.21 x 103, and
a VAF of 99.92%. Other indicators such as PI, MAE, and WI were also close to ideal values,
demonstrating both high predictive accuracy and stability. In contrast, the ANN, and RF
models showed relatively inferior performance, as reflected in their higher error rates and
lower stability under the same evaluation framework, as summarized in Table 7.

The main reasons for the poorer performance of ANN, RF, and XGBoost may lie in
the interaction between dataset characteristics and model assumptions. Specifically, our
dataset is relatively small, where SVR is well known for its strong generalization capability
under small-sample, high-dimensional conditions. In contrast, ANN and XGBoost typically
require larger datasets to avoid overfitting and to fully utilize their capacity, which limited
their effectiveness in this study. Furthermore, the Gaussian kernel in SVR effectively
captures nonlinear relationships between financial and operational variables, while RF and
XGBoost may also model nonlinearities but tend to produce less stable results when sample
size is limited and variable interactions are complex.

In conclusion, the SVR model proved most suitable for predicting bus route net income
in Keelung City. Its superior performance across evaluation metrics reflects a better fit to
the scale and characteristics of our dataset, offering high accuracy and robust generalization
that provide a reliable basis for scenario analysis and policy recommendations.

Table 7. Comparison of results using different machine learning models.

Performance

Indi Ideal Value SVR RF ANN XGBoost LightGBM
ndices
R? 1 0.99 0.93 0.99 0.98 0.98
RMSE 0 521 x 1073 6.34 x 1072 1.17 x 1072 2.54 x 102 2.69 x 1072
VAF 100 99.92 93.11 99.70 98.70 99.87
PI 2 1.99 1.96 1.99 1.99 1.99
MAE 0 352 x 1073 451 x 1072 6.97 x 1073 752 x 1073 6.51 x 1073
WI 1 0.99 0.98 0.99 0.98 0.98
WMAPE 0 1.24 x 1072 1.22 x 1071 2.74 x 1072 3.15 x 102 452 x 1072
NS 1 0.99 0.93 0.99 0.99 0.99

5. Application Example

To validate the effectiveness of the SVR model developed in this study for predicting
net income in bus operations, this section introduces two major scenario-based simulation
strategies: service frequency adjustment and cost adjustment. By modifying operational
parameters, the analysis aims to evaluate the extent of improvement in overall financial
performance and to provide concrete policy recommendations.
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5.1. Scenario Simulation: Service Frequency Adjustment

According to the Keelung City Public Bus Administration, the city operates a total of
57 urban bus routes. This study selected the top 10 most profitable and the bottom 10 least
profitable bus routes, based on net income rankings, to conduct a scenario simulation.

As illustrated in Figure 7, the simulation focused on adjusting service frequency to
evaluate the impact of resource reallocation on overall net income. The y-axis indicates the
corresponding bus routes. The x-axis represents the normalized daily service frequency,
defined as the number of daily trips for each bus route divided by the maximum number
of daily trips among all routes, as formulated in Equation (9):

SE,
SFmax

Normalized daily service frequency = )
where SF; denotes the number of daily service frequency for bus route i, and SFnax rep-
resents the maximum number of daily service frequency among all bus routes. In this
study, Equation (9) normalizes service frequency relative to the maximum observed value
to ensure a consistent comparison across routes and to avoid bias toward high-frequency
services. As shown in Table 2, we examined that the maximum frequency was not an
outlier, thereby minimizing the risk of distortion. Moreover, the analysis emphasizes rela-
tive changes in service frequency before and after adjustment rather than absolute values,
ensuring that the normalization does not compromise the validity of the policy implications.
The adjustment strategy involved increasing the service frequency for high-performing
routes, specifically Routes 1 through 10, as shown in Figure 7a, while moderately reducing
or maintaining the frequency for low-performing routes, namely Routes 48 through 57, as
illustrated in Figure 7b.

Figure 8 shows the comparison of net income before and after service frequency
adjustment. The x-axis indicates the corresponding bus routes, while the y-axis on the left
represents the normalized net income, as formulated in Equation (10):

NI; — Nlnin

Normalized net income = —————
N Imax —N Imin

(10)
where NI; denotes the net income of bus route i, NI, is the minimum net income among
all bus routes, and NInax is the maximum net income among all bus routes. The y-axis on
the right side of Figure 8 represents the percentage increase in net income, which can be
expressed by Equation (11) as follows:

- NIbefore - NIafter

Percentage increase in net income (%) = NI x 100 % (11)
before

where Nly.rore denotes the net income before adjustment, and N, denotes the net
income after adjustment. The post-adjustment results, as illustrated in Figure 8, demon-
strate a significant improvement in net income following the implementation of service
frequency adjustments. Figure 8a presents a comparative analysis of net income before
and after adjustment for the ten highest-performing bus routes, revealing moderate yet
consistent gains in profitability. Figure 8b illustrates the corresponding comparison for the
ten lowest-performing bus routes.

Notably, the results indicate that routes with initially low net income experienced
substantial improvements when service frequencies were moderately reduced. In several
cases, the percentage increase in net income was particularly pronounced, suggesting
that scaling back operations on underperforming routes can effectively reduce operating
costs while maintaining essential service coverage. This finding highlights the potential
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Route

of demand-responsive strategies in public transport planning. Overall, the observed im-
provements across both high- and low-performing routes underscore the effectiveness
of strategic resource reallocation in optimizing network-wide performance. The increase
in the total net income of Keelung City’s urban bus system confirms that data-driven
frequency adjustments can significantly enhance operational efficiency and financial sus-
tainability. These results provide empirical support for implementing adaptive transit
management strategies aimed at improving the cost-effectiveness of urban bus systems
under constrained resources.

Original daily service frequency
Adjustment of daily service frequency

\OOO\JO\L{I-I}-UJ[\)»—-

_
<

g
o

0.2 0.4 0.6 0.8 1.0
Normalized daily service frequency

(a) The ten highest-performing bus routes in terms of net income.

Original daily service frequency
Adjustment of daily service frequency

0.00

0.01 0.02 0.03 0.04 0.05 0.06
Normalized daily service frequency

(b) The ten lowest-performing bus routes in terms of net income.

Figure 7. Scenario for service frequency adjustment.



Mathematics 2025, 13, 3249

16 of 20

+———— Percentage increase in net income (%)
[ Original normalized net income
[ 1 Adjustment of normalized net income
> 1 — — 10
T 1] [— i )
Sos- /A - g 2%
= =/ ] L 2
= 1/ \ — B 5 o
5 0.6 |/ e £ £
Q
B oa- [, 32
N 0.4 — —4 = .=
< ] i o 2
§0.2— LT~ N -2 5 o
ZO - | ~ = e
0 0
1 2 3 4 5 6 7 8 9 10
Route
(a) The ten highest-performing bus routes in terms of net income.
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(b) The ten lowest-performing bus routes in terms of net income.

Figure 8. Comparison of net income before and after service frequency adjustment.

5.2. Cost Adjustment Scenario Simulation

In addition to service frequency, operational costs are also key determinants of net
income. Therefore, this study further categorized cost components into three major types:
vehicle and maintenance costs, personnel costs, and administrative and financial costs.
Proportional reductions of 50%, 60%, 70%, 80%, and 90% were applied to each cost category
to simulate and evaluate their respective impacts on net income. The 50-90% cost-reduction
scenarios were selected to reflect both phased, practical strategies and more extreme reforms.
This range also functions as a sensitivity analysis, illustrating how net income responds to
varying cost adjustments and providing decision-makers with a broader perspective on
potential policy outcomes.

Figure 9 presents the cost-adjustment net income prediction chart. The x-axis of
Figure 9 represents the percentage of the original value, indicating various levels of cost
adjustment. Cost adjustments include three major categories: vehicle and maintenance
costs, personnel costs, and administrative and financial costs. The percentages range from
100% to 50%, where 100% denotes the original (baseline) cost level, and lower percentages
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(e.g., 90%) represent cost reductions—such as 90% indicating a 10% decrease in the respec-
tive cost category, and so forth. The y-axis of Figure 9 shows the normalized net income,
calculated using the following Equation:

NIx - NIbase

_ 12
NImax — Nljgse (12)

Normalized net income =
where NI, represents the net income corresponding to a specific level of adjustment, NI,
denotes the total net income of Keelung City’s bus network before adjustment, and NInax
denotes the maximum total net income of the bus network observed after adjustment.

According to the analysis results illustrated in Figure 9, the optimal cost-efficiency
points for the three cost categories can be identified at specific adjustment levels. For
vehicle and maintenance costs, the most favorable outcome is achieved when costs are
adjusted to 90% of the original value. For personnel costs, the optimal adjustment level is
80%, yielding the greatest improvement in net income. Similarly, for administrative and
financial costs, adjusting to 80% also results in the highest net benefit.

Moreover, personnel costs exhibited the largest marginal effect on net income among
all categories. This dominance can be explained from two perspectives: first, personnel
expenditures constitute the largest share of the overall cost structure, so any proportional
reduction produces a relatively greater absolute financial impact; second, the SVR model
shows that net income is more sensitive to changes in personnel costs than in other cate-
gories, implying a steeper partial derivative with respect to this variable. The combination
of a large baseline magnitude and high response elasticity thus accounts for the strong
marginal effect of personnel costs on net income.

- Vehicle and maintenance costs

0.8 = Personnel costs 4 e

Normalized net income /

Normalized net income
1

Administrative and financial costs /
Oplimal / /

0 6_ adjustment
. level

\

Optimal
adjustment
level

I I I I
90 80 70 60 50
Percentage of the original value (%)

Figure 9. Cost adjustment net income prediction chart.

In summary, the results demonstrate that service frequency adjustment can effectively
optimize operational resource allocation, while cost adjustments, particularly in personnel
and vehicle maintenance, significantly contribute to overall revenue enhancement.
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6. Discussion

This study applies Al-driven methods, specifically SVR, to predict net revenue and
optimize public bus services in Keelung City. The key contributions and limitations of this
study are summarized in this Discussion section. The following three key highlights are
outlined first:

(1) In contrast to conventional machine learning (ML) studies that emphasize ridership
or fare revenue forecasting, this study develops a predictive framework for route-
level net income by explicitly incorporating disaggregated cost components, thereby
providing a more rigorous basis for addressing long-term financial sustainability in
public bus systems.

(2) We construct a comprehensive route-level panel dataset integrating 19 operational
and financial variables, including service frequency, vehicle-km, and detailed cost
categories (personnel, administrative, financial, etc.). In contrast to prior approaches
that treat costs implicitly or uniformly, our formulation explicitly encodes hetero-
geneous cost structures, thereby allowing the estimation of marginal effects by cost
type. Additionally, we introduce normalized service frequency and normalized net
income to ensure comparability across routes, which is an element typically absent
from revenue-only models.

(3) Beyond predictive accuracy, this study integrates a policy-oriented simulation frame-
work to quantitatively assess the impacts of service and cost adjustments on net
income. This approach enables the derivation of operational thresholds applica-
ble to route reallocation and workforce optimization, thereby advancing machine
learning applications from purely predictive modeling toward prescriptive, decision-
support analysis.

On the other hand, potential limitation of this study is the mileage-based allocation of
aggregate cost variables, which may not fully capture route-level cost heterogeneity. While
this approach can overstate costs for long, low-ridership routes and understate them for
short, high-demand routes, strong correlations between vehicle-kilometers and passenger
demand support its validity as a reasonable proxy. Additionally, financial performance is
normalized linearly to ensure consistent comparisons across routes, with outlier diagnostics
confirming data reliability. Finally, the analysis focuses on financial optimization, without
explicitly addressing equity or social impacts, and assumes proportional cost reductions
for sensitivity analysis rather than precise operational adjustments.

7. Conclusions

This study introduces an innovative method for optimizing the performance of the
public bus services in Keelung City through the application of Al-driven techniques,
specifically utilizing SVR for net revenue prediction. The approach significantly enhances
the accuracy of revenue forecasting. The key findings of the research are as follows:

(1) The machine learning model based on SVR was developed, incorporating 19 factors,
including vehicle and maintenance costs, personnel costs, administrative and financial
costs, and operational data. The SVR model outperformed several other machine
learning models, such as RF, ANN, XGBoost, and LightGBM based on comparative
analysis. Its predictive performance metrics are as follows: R? = 0.99, RMSE =
5.21 x 1073, VAF = 99.92%, PI = 1.99, MAE = 3.52 x 103, WI = 0.99, WMAPE =
1.24 x 1072, and NS = 0.99. These results indicate that the model is highly accurate
and stable, making it suitable for forecasting bus route net revenues.

(2) Validation of the model was conducted using K-fold cross-validation, which con-
firmed its strong generalization capabilities and the absence of overfitting. Residual
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analysis indicated that the distribution of training and test data was consistent, further
reinforcing the model’s robustness and its practical applicability.

(3) Scenario-based simulations evaluated the effects of adjusting service frequency and
optimizing cost structures on net income. Results indicate that reducing vehicle
and maintenance costs to 90% and personnel as well as administrative and financial
costs to 80% yields the most favorable outcomes. Notably, personnel and vehicle
maintenance cost reductions offer the greatest revenue gains. Overall, strategic service
frequency and targeted cost adjustments can effectively enhance operational efficiency
and financial performance, offering practical guidance for improving public transit
system profitability.
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